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Abstract

Adaptive radiotherapy (ART) enhances prostate cancer treatment by accounting for
daily anatomical variations, but clinical implementation remains limited due to the
need for accurate and efficient auto segmentation; manual corrections after auto-
mated contouring often hinder workflow efficiency. To address this, we propose a
patient-specific network (PSN) approach for clinical target volume (CTV) segmen-
tation using cone-beam computed tomography (CBCT). This retrospective study
included 26 prostate cancer patients treated with CBCT-guided online ART using the
Ethos therapy system, comprising 119 retrospectively exported fractions. The PSN
framework uses a two-stage strategy: initial pre-training followed by patient-specific
fine-tuning via PSN, . . or PSN___ . implemented with the Swin UNETR architec-
ture. This approach is distinct from static personalization methods as it continuously
adapts to daily anatomical changes. Segmentation performance was compared
against deformable registration and generalized deep learning models using the
Dice similarity coefficient (DSC), 95" percentile Hausdorff distance (HD), and mean
surface distance (MSD). PSN significantly improved segmentation performance,
with PSN_ .. achieving a DSC of 0.978+0.005, HD of 1.681+0.743mm, and MSD
of 0.510+0.035mm by the fifth fraction, with accuracy improving across sequential
fractions. Visual assessments confirmed high agreement with physician contours,
especially in anatomically complex regions. These findings support the PSN frame-
work as a clinically feasible and accurate solution for patient-specific segmentation in
prostate ART, potentially reducing the need for manual editing, streamlining workflow

efficiency, and enhancing the precision of adaptive treatment delivery.
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Introduction

External beam radiotherapy plays a key role in the management of prostate cancer
across all stages, and hypo-fractionated regimens are increasingly adopted for patient
convenience. A recent randomized phase lll trial confirmed the efficacy of stereotactic
body radiotherapy (SBRT) as a curative treatment for localized prostate cancer [1]. How-
ever, the study also reported a higher incidence of late genitourinary toxicity with SBRT,
emphasizing the importance of precise treatment delivery and effective normal tissue
sparing, particularly in high-dose per-fraction regimens. Adaptive radiotherapy (ART)
has emerged as a strategy to address daily anatomical variations and to improve the
therapeutic ratio further in prostate cancer [2,3]. By adjusting the treatment plan to daily
changes in prostate and organ-at-risk (OAR) positioning, ART facilitates smaller margins
and improved dose conformity. Planning studies have shown that daily ART can signifi-
cantly reduce OAR doses, thereby potentially lowering complication risks [2].

Clinical studies on the organ motion consistently demonstrate that the inter-frac-
tion geometric variation can exceed the 5mm isotropic margin conventionally used
in prostate RT. Langen et al. analyzed 550 fractions with electromagnetic tracking
and found that the prostate spent a median 13.6% of beam-on time with a variation
of 2 3mm from its planning position and 3.3% with > 5mm; in some fractions the
variation of = 3mm threshold persisted for 99% of the treatment time [4]. Ghilezan et
al. showed with cine-MRI that rectal filling drives rapid posterior shifts, with > 3mm
displacement reached within 60s in 10% of full-rectum scans [5]. For the seminal
vesicles, a recent systematic review reported inter-fraction systematic/random errors
of 1-7mm and 1-5mm, respectively, with median centroid shifts around 4 mm,
recommending 28 mm planning margins [6]. Shape-based (deformable) changes
of 2-4mm have also been observed on serial cone-beam computed tomography
(CBCT) registrations [7]. These magnitudes of variation clearly exceed conventional
margins, especially in hypo-fractionated SBRT, and strongly motivate the use of daily
online ART.

Early clinical data have also shown that adaptive SBRT reduces acute urinary toxic-
ity by 44% and bowel toxicity by 60% compared to non-adaptive SBRT, reinforcing its
potential to enhance treatment tolerability and outcomes [8]. Despite these advantages,
the clinical implementation of ART remains challenging. The requirement for daily target
re-contouring and plan re-optimization increases both the workload and treatment time,
limiting the adoption of real-time ART in routine clinical practice. Among these chal-
lenges, efficient and accurate auto-segmentation stands out as one of the most critical
barriers to routine clinical implementation of ART. Recent clinical evaluations using the
Ethos platform in breast cancer have demonstrated the feasibility of ART workflows
and auto-segmentation performance, supporting their potential in streamlining adaptive
radiotherapy across disease sites [9,10]. Therefore, efficient automation is essential to
streamline workflows and fully integrate ART into prostate cancer radiotherapy (RT).

Recent advancements in artificial intelligence (Al), particularly deep-learning-based auto
segmentation (DLAS), have enabled the highly accurate segmentation of various anatomical
structures [11]. In prostate cancer radiotherapy planning, DLAS achieves high geometric
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accuracy (DSC 0.83-0.92), with most Al-generated contours deemed clinically acceptable [12—15]. However, training DLAS typically
requires large, consistently contoured datasets, posing challenges for developing patient-specific auto-contouring models tailored

to individual risk profiles. When delineating the prostate clinical target volume (CTV) for definitive RT, the extent of seminal vesicle
(SV) inclusion varies according to the patient risk group, and currently, no clear consensus exists regarding the precise extent of SV
coverage [16,17]. Similarly, CTV delineation for post-operative RT is even more challenging because the target is a virtual volume
intended to encompass potential microscopic tumor cells rather than a visible tumor. Contouring inherently involves physician
judgment, complicating standardization and limiting the applicability of general auto-contouring models [18,19]. In daily adaptive
ART, the main challenge of auto-contouring is not to redefine the CTV daily based on patient risk, but to maintain the initial contour in
response to inter-fractional variations, thereby ensuring consistent treatment accuracy and reproducibility.

Previously, we evaluated the utility of a patient-specific network (PSN), a novel deep-learning (DL) framework that
utilizes the entire daily CBCT sequence throughout the treatment course. PSN is designed to ensure robust segmentation
despite anatomical changes during the treatment period by adapting to daily variations, making it an effective solution for
adaptive ART environments. The PSN model is not merely personalized but adaptive, providing a solution that can be
directly applied to improve segmentation in ART.

This study aimed to develop a DL algorithm for accurate CTV segmentation using daily CBCT scans of patients with
prostate cancer who underwent online ART. Specifically, we evaluated whether a PSN model offers advantages compared
to a generalized DL model and deformable image registration (DIR).

Materials and methods
Patient data

This retrospective study analyzed data from 26 patients with prostate cancer who underwent CBCT-guided online ART using the
Ethos therapy system (Varian Medical Systems, Palo Alto, CA) at Ewha Womans University Seoul Hospital between November
2022 and June 2024. The study was approved by the Institutional Review Board of Ewha Womans University Seoul Hospital
(approval number: 2024-03-012-002), and all procedures were conducted according to applicable guidelines and regulations.
De-identified clinical data were accessed for research purposes on 15 July 2024. All data were anonymized prior to analysis, and
the researchers did not have access to any personally identifiable information. All patients were treated with definitive intent. Among
eleven high-risk patients, conventional fractionated whole pelvic radiotherapy (WPRT) of 46 Gy or 50 Gy was initially adminis-

tered without adaptation, followed by online ART for a prostate boost. For these prostate boost sessions, eight patients received a
hypo-fractionated regimen (18 Gy in three to four fractions), while the remaining patients underwent conventionally fractionated pros-
tate boosts (24—34 Gy in 12—17 fractions). The other 15 patients underwent prostate SBRT at a dose of 36.25 Gy in five fractions.
WPRT CBCTs were excluded because their clinical target volume (pelvic nodes + prostate) differs fundamentally from the pros-
tate-only CTV addressed in this study and including them would have required a separate segmentation and dosimetric framework
beyond our scope. After this exclusion, the final dataset comprised 119 retrospectively exported daily CBCT fractions: 75 SBRT, 29
hypofractionated-boost and 15 conventional-boost fractions. For each patient, we analyzed the earliest adaptive CBCTs, up to a
maximum of five fractions: SBRT courses contributed all five fractions; hypofractionated boosts contributed all available three or four
fractions; conventional boosts contributed the first five fractions in chronological order, thereby capping every regimen at five training
cases and emulating an early-course adaptation scenario. Detailed patient characteristics are provided in S1 Table in S1 File.

Models

The PSN framework utilized the Swin UNETR architecture, which combines transformer-based and convolutional com-
ponents for CTV segmentation [20]. Swin UNETR is implemented natively in MONAI v1.3 [21] and has demonstrated
strong performance in brain-tumor, abdominal-organ, and prostate segmentation tasks [20]. Recent advances, such as
Swin-Transformer pre-training for 3-D medical images [22] and scalable depth/width variants [23], further support their
suitability for volumetric radiotherapy workflows.
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Fig 1 schematically depicts the encoder—decoder: four Swin-Transformer stages extract multi-scale representations,
and a symmetric decoder reconstructs high-resolution masks via skip concatenations.

For full reproducibility, the Swin UNETR was configured as follows. CBCT volumes were partitioned into non-
overlapping patches of size 2% 2 x 2 voxels and linearly projected into an embedding space with dimension 48. The
encoder consisted of four Swin Transformer stages, each containing 2 transformer blocks (total 8 layers). The number of
feature channels doubled at each stage, progressing as 48 — 96 — 192 — 384, with attention heads configured as 3, 6, 12,
and 24, respectively. Self-attention computations were restricted to 7 x 7 x 7 voxel windows, employing shifted windowing
for subsequent layers. Patch merging at the end of each stage reduced spatial resolution by a factor of two, aggregating
the stage-4 features into a bottleneck with 768 channels.

The decoder adopted a symmetric U-shaped structure, using residual blocks comprising two 3 x 3 x 3 convolutional
layers with InstanceNorm3D normalization. Features were up sampled using 3D transposed convolutions (stride =2) and
concatenated with corresponding encoder features at each resolution via skip connections. A drop-path rate of 0.10 was
employed for regularization. The final segmentation output was generated by a 1 x 1 x 1 convolutional layer with SoftMax
activation for binary classification (CTV vs. background). All codes ran under PyTorch 1.12 with MONAI v1.3.

PSN framework

The dataset was split patient-wise: 21 patients (94 fractions) formed the pre-training cohort, while the remaining five
patients (25 fractions) were reserved for sequential fine-tuning and testing. Stratified randomization preserved the SBRT-
to-boost ratio across the two subsets. The innovative PSN framework constructs patient-specific DL models using a
two-stage training strategy tailored to personalized medical applications. In the first stage, DL models were trained on
CBCT scans from 21 patients, with performance outcomes assessed on the first to fifth fractions of CBCT scans from
five remaining patients. The second stage introduced two specific methodologies: PSN,_ . . and PSN___ . These
approaches systematically trained and evaluated the pre-trained network on sequential fractions of each patient.

In PSN,.. (Fig 2(a)), the network is incrementally fine-tuned. Training begins with the first fraction, and testing

is conducted on the second to fifth fractions. The model is then fine-tuned using the first and second fractions and
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Fig 1. Schematic illustration of the Swin UNETR architecture used for volumetric segmentation of the prostate CTV.

https://doi.org/10.1371/journal.pone.0332603.9001
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: the model is fine-tuned on cumulatively increasing fractions and tested on subse-

: the model is sequentially fine-tuned using the previously trained weights for each next fraction. DLg represents the pre-trained
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tested on the third to fifth fractions. This pattern continues until the model is fine-tuned with the first to fourth frac-
tions and tested on the fifth fraction. As more fractions are added to the training set, the time required for fine-tuning
increases, as the network is continually updated with additional data. This approach is designed to improve perfor-
mance as more patient-specific data is used for training, but the trade-off is longer training times as more fractions
are incorporated.

By contrast, PSNsequence (Fig 2(b)), is explicitly framed as a continual learning progression: each update uses the most
recently adapted model and the next new fraction, sequentially propagating knowledge forward while keeping the amount
of new data per step fixed. Because every adaptation step involves the same-sized input (one fraction), the per-step train-
ing time remains constant, making PSNsequence a more time-efficient mechanism for patient-specific refinement while still
leveraging previously acquired patient information.

Preprocessing and data augmentation

To achieve accurate segmentation of the prostate CTV, we employed multiple neural networks and automated segmenta-
tion techniques, supported by a series of preprocessing and augmentation strategies designed to enhance model perfor-
mance. Preprocessing included pixel intensity normalization, resolution standardization, and spatial augmentations
(random cropping, flipping, and rotation). Specifically, CBCT intensities were clipped to a range of =350 to +350 HU to
ensure consistency across the dataset. The resolution of all scans was standardized to 1.0 x 1.0 x 2.0 mm to maintain uni-
formity during the model training process.

To expand the dataset and improve the model’s robustness, random augmentations were applied to the CBCT scans.
Each scan was randomly cropped to a size of 96 x 96 x 96, with flipping and rotation performed along all three axes at
a probability of 0.1. Additionally, intensity augmentation was introduced by randomly shifting the intensity values with a
probability of 0.5 and an offset of 0.1, enhancing the model’s ability to adapt to variations in CBCT intensity profiles. The
augmentation parameters were adapted from the Swin UNETR framework [21] and were empirically adjusted to account
for the anatomical scale and image characteristics of prostate CBCT.

Optimization strategy

To balance overlap accuracy with voxel-wise classification, we optimized the network with a composite loss in which

the Dice component and the cross-entropy component were each assigned 50% weight (1: 1). The model was trained
using the AdamW optimizer, with a learning rate of 1x10-4 and weight decay of 1 x 10-5. Mixed precision training with
GradScaler was applied to ensure numerical stability. All experiments were performed on a workstation equipped with an
NVIDIA RTX 3090 GPU (24 GB VRAM).

Training strategy

In the first stage of the PSN framework, the network was pre-trained on CBCT scans from 21 patients over 30,000 itera-
tions, leveraging a diverse training set to establish a robust and generalized foundation. In the second stage, the frame-
work adopted two distinct fraction-based sequential approaches: PSN and PSN

adaptive sequence”

In PSN the network was fine-tuned for 50 epochs using CBCT scans from the first fraction of each patient and

adaptive’
subsequentl; tested on the second to fifth fractions. This process was iteratively expanded, with fine-tuning incorporating
the first and second fractions to test on the third to fifth fractions, and continuing this pattern until the network was fine-
tuned on the first to fourth fractions and tested on the fifth fraction.
In PSNsequence, the network was fine-tuned for 50 epochs per fraction, following a progressive fine-tuning strategy. Start-

ing from the first fraction, the model was fine-tuned sequentially, using the previously trained weights to train and test on
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the next fraction. This process continued iteratively, with the network fine-tuned on the second fraction and tested on the
third, then fine-tuned on the third fraction and tested on the fourth, and so forth. By saving and loading the model at each
stage, the approach leveraged accumulated learning from prior fractions to refine the model’s performance, focusing on
temporal continuity and personalized optimization.

We selected 50 epochs after a pilot sweep (20, 40, 50, 80 epochs) on three validation patients: validation DSC pla-
teaued between 40 and 45 epochs, and additional training (<1 percentage-point gain) did not justify longer wall-time. 50
epochs therefore guarantee full convergence while keeping per-fraction fine-tuning under ~2 minutes on our GPU.

This dual-stage training strategy exemplifies the transition from generalization during the pre-training phase to the
development of highly personalized models. By integrating both PSN and PSN the framework achieved seg-

adaptive sequence’

mentation accuracy optimized for prostate cancer treatment planning.

Evaluation

To assess the performance of our network, we employed three widely used metrics: the Dice similarity coefficient (DSC),
the 95" percentile Hausdorff distance (HD), and the mean surface distance (MSD). Detailed formulae and implementation
steps are provided in S1 Appendix (Egs. 1-3) in S1 File. Each of these metrics offers unique insights into the accuracy
and reliability of segmentation results, ensuring a comprehensive evaluation of the model.

To compare segmentation methods, we analyzed paired differences in DSC, HD and MSD for the same five
patients (n=5). Owing to the small sample size, the two-sided Wilcoxon signed-rank test (a=0.05) was used as the
sole inferential test; Holm-adjusted p-values are reported. Effect sizes are expressed as rank-biserial correlations (r)
with 95% bootstrap confidence intervals (10 000 resamples). Results with 0.05<p <0.10 are described as marginally
significant.

To evaluate segmentation approaches for prostate CTV, we implemented a comparative framework encompassing
three distinct methods: a generalized DL model, the deformed planning CT obtained from Ethos (via deformable image
registration), and the PSN model. Each method was designed to address specific challenges in relation to segmentation
accuracy and adaptability, and their evaluation provided a comprehensive understanding of segmentation performance
capabilities across various scenarios.

The first method employed a generalized DL model trained on CBCT scans from multiple patients. This approach
prioritized generalization over personalization, leveraging a broad dataset to achieve robust segmentation across diverse
cases. The model served as a baseline for evaluating segmentation accuracy without patient-specific adaptation.

The second method involved the use of deformed planning CTs generated by the Ethos system. Here, deformable
image registration was applied to align the planning CT with the CBCT. The resulting deformation field was then propa-
gated to the planning CT’s CTV, enabling the evaluation of the segmentation accuracy based on the deformed planning
CT. This method incorporated patient-specific alignment but was limited by the inherent constraints of the deformable
registration process.

The third method utilized the PSN framework, which employed a two-stage training process. In the first stage, a pre-
trained model was developed using CBCT scans from multiple patients to establish a robust foundation. In the second
stage, the PSN framework fine-tuned the model by incorporating CBCT data from sequential fractions of each patient.
This deliberate overfitting process enabled the model to adapt to patient-specific anatomical variations, resulting in a
highly personalized segmentation model.

For each method, segmentation accuracy was assessed by comparing the predicted volumes to reference
ground truths using three key metrics: the DSC, HD, and MSD. Statistical analyses, including hypothesis testing,
were conducted to compare the performance outcomes of the three methods, ensuring a rigorous evaluation of
their prostate CTV segmentation capabilities. All statistical evaluations were conducted using the R programming
language.
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Dosimetric evaluation

In accordance with ICRU Report 83 [24], four dose—volume indices were analyzed for the CTV. D, and D, denote the
minimum doses received by 95% and 98% of the CTV, respectively, and serve as “near-minimum” coverage metrics. D___
is the arithmetic mean dose to the entire CTV, reflecting overall energy deposition, while D, denotes the near-maximum
dose, i.e., the dose received by the hottest 2% of the CTV. These indices collectively describe under-coverage (D, D),
overall conformity (D___ ) and over-dosage (D,).

For every CBCT, the three-dimensional dose distribution was recalculated with the adaptive plan generated by the
Ethos system, keeping beam geometry and monitor units unchanged. The four indices were extracted from five contour
sets, physician reference, DIR, the pre-trained network, PSN_ . - and PSN_ . and absolute dose errors were com-
puted as:

|AD,| = ‘D)r(nethod_Dghysician (Gy) forx e {95,98 mean, 2} )

Paired two-sided Wilcoxon signed-rank tests (a=0.05) compared PSN-adaptive and PSN-sequence with DIR and with

the pre-trained model across the five evaluation patients (n=5). Holm correction controlled the family-wise error rate, and
effect sizes were expressed as rank-biserial correlations with 95% bootstrap confidence intervals based on 10 000 resam-
ples. All statistical analyses were performed in R.

Results
Evaluation results for CTV segmentation with the PSN framework

The segmentation accuracy for prostate CTV was evaluated using the DSC, HD, and MSD. The results highlight the
improvements achieved by incorporating the PSN framework, leveraging CBCT data across multiple fractions for
patient-specific training. Notably, both PSN and PSN approaches demonstrated substantial performance gains

adaptive sequence

compared to the deformed planning CT and pre-trained models.

CTV results
The progression of CTV segmentation accuracy across fractions is depicted in Tables 1 and 2, and Fig 3 compares the
deformed planning CT, pre-trained model, and the two variations of the PSN framework, i.e., PSNadaptive and PSNsequeme.

The performance is evaluated using DSC, HD, and MSD.

On average across fractions 1-5, the deformed planning CT achieved an average DSC of 0.974, while the pre-trained
model averaged 0.933. These results highlight the limitations of generalized segmentation approaches. The PSNadamive
framework achieved superior results, with DSC values progressively increasing as more fractions were incorporated into
training. It achieved a DSC of 0.974 in the fourth fraction and a peak of 0.978 in the fifth fraction, demonstrating its ability
to refine the segmentation accuracy effectively. The PSNsequence framework also showed strong performance, achieving
a DSC of 0.972 in the fourth fraction and 0.976 in the fifth fraction. While both PSN approaches performed comparably,
PSN, ... demonstrated slightly better performance in the final fraction.

The deformed planning CT recorded an HD of 2.480 mm for the first fraction and 1.979 mm for the fifth fraction, show-
ing modest improvements across fractions. The pre-trained model, however, exhibited consistently higher HD values,
averaging 4.377 mm for the first fraction and increasing to 7.249 mm by the fifth fraction, reflecting its inability to adapt
to patient-specific anatomy. The PSN_ oive framework achieved the most substantial reductions in HD, with 1.649mm
for the fourth fraction and a low 1.681 mm for the fifth fraction, showcasing its capacity to accurately delineate complex
anatomical structures. The PSN framework was comparable at the fourth fraction (1.642mm) but higher at the fifth

sequence

(2.198 mm), thus trailing PSN in later fractions.

adaptive
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Table 1. Average DSC, HD, and MSD for the Deform from ETHOS, the pre-trained Swin UNETR model, and the PSN

UNETR, along with their standard deviations, as illustrated in Fig 2(a).

adaptive

approach using Swin

Deform Pre-train PSN trained PSN trained PSN trained PSN trained
on 1 fx on 1-2 fxs on 1-3 fxs on 1-4 fxs
CTvVDSC 1st 0.961+0.020 0.927+0.046
2nd 0.963+0.015 0.933+0.046 0.966+0.009
3rd 0.970+0.014 0.932+0.055 0.972+0.010 0.975+0.007
4th 0.974+0.012 0.936+0.047 0.972+0.007 0.973+0.008 0.974+0.007
5th 0.977+0.004 0.938+0.039 0.971+0.008 0.975+0.007 0.976+0.007 0.978+0.005
CTV HD (mm) 1st 2.480+0.560 4.377+2.193
2nd 2.694+0.822 4.198+2.174 2.103+0.688
3rd 2.727+1.868 4.487 +2.662 1.685+0.449 1.595+0.265
4th 1.860+0.418 3.690+1.726 1.813+£0.377 1.642+0.359 1.649+0.321
5th 1.979+0.597 7.249+8.094 2.141+0.877 1.943+£1.015 1.966+1.192 1.681+0.847
CTV MSD (mm) 1st 0.840+0.290 1.566 £1.057
2nd 0.828+0.166 1.496+£1.028 0.782+0.133
3rd 0.730+0.328 1.664 £1.293 0.669+0.118 0.612+0.080
4th 0.599+0.134 1.494£1.030 0.693+0.091 0.657+0.098 0.631+0.066
5th 0.540+0.083 1.662+0.984 0.678+0.090 0.613+0.058 0.570+0.055 0.510+0.035
https://doi.org/10.1371/journal.pone.0332603.t001
Table 2. Average DSC, HD, and MSD for the PSNEdaMVe and the PSNseque"ce approach using Swin UNETR, along with their standard deviations,
as illustrated in Fig 2.
PSN PSN
Trained on Trained on Trained on Trained on Trained on Trained on Trained on Trained on
1 fx 1-2 fxs 1-3 fxs 1-4 fxs 1 fx 2 fx 3 fx 4 fx
CTVDSC 2nd | 0.966+0.009 0.966+0.009
3rd | 0.972+0.010 |0.975+0.007 0.972+0.010 |0.970+0.009
4th | 0.972+0.007 |0.973+0.008 |0.974+0.007 0.972+0.007 |0.968+0.007 |0.972+0.006
5th | 0.971+0.008 | 0.975+0.007 |0.976+0.007 |0.978+0.005 |0.971+0.008 |0.971+0.008 |0.975+0.006 |0.976+0.005
CTVHD (mm) |2nd |2.103+0.688 2.103+0.688
3rd | 1.685+0.449 |1.595+0.265 1.685+0.449 |1.860+0.418
4th | 1.813+0.377 |1.642+0.359 |1.649+0.321 1.813+0.377 |1.987+0.252 |1.642+0.359
5th | 2.141+0.877 [ 1.943+1.015 [1.966+1.192 |1.681+0.847 |2.141+0.877 |2.140£0.726 |1.912+0.825 |2.198+0.845
CTV MSD 2nd | 0.782+0.133 0.782+0.133
(mm) 3rd | 0.669+0.118 |0.612+0.080 0.669+0.118 |0.730+0.158
4th | 0.693+0.091 |0.657+0.098 |0.631+0.066 0.693+0.091 |0.768+0.080 |0.687+0.095
5th | 0.678+0.090 | 0.613+0.058 |0.570+0.055 |0.510+0.035 |0.678+0.090 |0.680+0.109 |0.601+0.065 |0.546+0.070

https://doi.org/10.1371/journal.pone.0332603.t002

The deformed planning CT approach achieved an MSD of 0.540 mm for the fifth fraction, while the pre-trained model

scored 1.662mm, highlighting its significant inaccuracy in capturing surface boundaries. The PSN

adaptive

framework signifi-

cantly outperformed the baseline methods, with MSD values of 0.631 mm for the fourth fraction and 0.510 mm for the fifth

fraction. The PSN
PSN

adaptive

sequence

framework achieved similar results, with an MSD of 0.546 mm for the fifth fraction, slightly trailing
but still significantly outperforming the other methods.

The results described above clearly demonstrate the superior performance of the PSN framework in improving the

segmentation accuracy for CTV compared to both deformed planning CT and the pre-trained model. While both PSN
showed substantial improvements, PSN

and PSN

sequence

adaptive

consistently outperformed PSN

sequence’

adaptive

particularly in the later
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Fig 3. Average DSC, HD, and MSD values (* standard deviation) for prostate CTV segmentation. Results are shown for the deformable registra-

tion method (ETHOS), pre-trained model (Swin UNETR), PSN_ . . (Fig 2(a)), and PSN___ . . (Fig 2(b)).

https://doi.org/10.1371/journal.pone.0332603.9003
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fractions. These findings validate the PSN framework’s potential as a robust and reliable tool for personalized treatment
planning, with its ability to adapt to patient-specific CBCT data and achieve clinically accurate segmentation.

Moreover, the computational efficiency of the framework supports its clinical feasibility. The generalized model required
approximately 24 hours for pre-training, while the PSNadaptive training time increased linearly with the number of input frac-
tions, ranging from 104 seconds (one fraction) to approximately 420 seconds (four fractions). The PSNsequence framework
maintained a constant per-fraction training time of ~100 seconds due to its stepwise sequential update strategy. Inference
time for all methods averaged 110 seconds, including preprocessing and postprocessing steps, supporting potential inte-
gration into time-sensitive ART workflows.

The statistical analyses further supported these findings. For DSC the two-sided Wilcoxon signed-rank test comparing
the pre-trained model with PSN__ . . vielded W=0, p=0.0625 (Holm-adjusted p=0.125, n=5) in each of fractions 3-5;
the pre-trained versus PSN__ . .. contrast produced the same values. The corresponding contrasts for HD and MSD also
returned p=0.0625 (Holm p=0.125). No statistically significant differences were detected between the deformable-
registration method and any PSN variant (e.g., DSC, fraction 5, deform vs PSN_ . - W=6, p=0.8125, p,, =1.000;

MSD, fraction 4: W=5, p=0.625, p,, .= 1.000). Likewise, PSNadaptive and PSNsequence were indistinguishable across all
metrics (largest observed difference: DSC, fraction 5, W=3, p=0.125, p,, . =0.313; MSD, fraction 5, W=6, p=0.3125,
Prom = 0-625). All pre-train vs PSN contrasts exhibited very large effect sizes (|r[>0.8), confirming a substantial benefit from
patient-specific fine-tuning despite the limited sample size (n=5).

To further illustrate the consistency of the improvements at the individual-patient level, we provide per-patient DSC
trajectories across fractions in S1 Fig; DSC was selected for this visualization because it clearly illustrates the patient-wise
trends of adaptation between the pre-trained baseline and the PSN variants.

To complement the geometric evaluation, we compared dose—volume metrics against the physician-defined CTV. Four
absolute errors |AD,|, |AD|, |AD, .| and |AD,| were computed for each fraction (Table 3; representative DVHs in S2 Fig).
Paired two-sided Wilcoxon signed-rank tests (a=0.05) with Holm adjustment and rank-biserial effect sizes (95% bootstrap
Cl, 10 000 resamples) were applied across the five patients.

Table 3. Absolute deviations from physician-defined CTV dose (|AD,,|, |AD|, |AD, .. |, |AD,|) across fractions.

mean

Fraction Method | AD | | AD | |aD___ | |AD,|

2" fraction DIR 0.841+0.386 0.842+0.436 0.295+0.258 0.018+0.015
Pre-train 1.992+2.688% 2.396+3.162% 0.646+0.848% 0.020+0.012
PSN 0.370+0.373 t+ 0.360+0.230 t1 0.083+0.136 t1 0.003+0.0041
PSN 0.370+0.373 1t 0.360+0.230 11 0.083+0.136 11 0.003+0.0041

3 fraction DIR 0.817 +0.660 0.749+0.359 0.286+0.416 0.016+0.011
Pre-train 2.586+4.1561 3.247+5.037¢ 0.717+1.180% 0.039+0.035
PSN 0.227+0.212t 0.283+0.169t 0.031+0.0241 0.004 +0.003
PSN 0.439+0.229 t1 0.504+0.439 t+ 0.089+0.080 1+ 0.003+0.003

4" fraction DIR 0.498+0.285 0.462+0.429 0.135+0.166 0.014+0.016
Pre-train 2.408+2.908% 3.098+3.844% 0.651+0.881% 0.032+0.042%
PSN 0.351+0.239t 0.348+0.235t 0.100+0.108t 0.006+0.008
PSN 0.278+0.2461 0.294+0.2141 0.089+0.138t 0.003+0.003

5t fraction DIR 0.589+0.566 0.887+0.364 0.215+0.321 0.006+0.006
Pre-train 1.911+2.496% 2.607+3.025¢ 0.559+0.655¢% 0.037+0.034%
PSN 0.274+0.173t 0.389+0.282t 0.074+0.0411 0.012+0.009
PSN 0.279+0.338t 0.399+0.596t 0.079+0.069t 0.013+0.014

Values are mean + standard deviation over the five patients. TpHolm <0.05 vs DIR; $pHolm <0.05 vs Pre-train (Wilcoxon signed-rank).

https://doi.org/10.1371/journal.pone.0332603.t003
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Both PSNadaptive and PSNsequem yielded large, statistically significant improvements over the Pre-train network for nearly
all indices. For example, mean |AD___ | and |AD,| fell by > 70% (adjusted p<0.001, |r| >0.7), indicating better overall
coverage and suppression of high-dose hot spots. Coverage errors |AD, | and |AD,| were likewise reduced (adjusted
p <0.0002).

When compared with DIR, improvements were more selective. PSN
(adjusted p=0.0115), whereas changes in D__. and D, did not reach significance, suggesting DIR already captures bulk
dose reasonably well. PSN__ . showed a significant advantage over DIR mainly in |AD,|, reflecting its strength in repro-
ducing the high-dose tail. Direct PSN_,_. . vs PSN___ . contrasts revealed no consistent significant differences, confirm-
ing comparable dosimetric performance.

Overall, these results mirror the geometric gains: patient-specific fine-tuning with the PSN framework produces dose
distributions that are markedly closer to the physician reference than those from the generic model and, in selected met-

rics, than DIR, supporting the clinical value of both PSN approaches for adaptive, personalized radiotherapy planning.

adaptive significantly lowered |AD, | and |AD|

Visual evaluation of CTV segmentation results

Fig 4(a) and (b) present visual comparisons of CTV segmentation results against reference contours manually anno-
tated by a physician. The evaluated methods include the pre-trained model, deformed planning CT, and the PSN
framework.

In Fig 4 (a), the axial view demonstrates that contours generated by the pre-trained model (green) deviate notably from
the reference, especially in regions with complex anatomical boundaries. The deformed planning CT (yellow) exhibits
better conformity than the pre-trained model but still demonstrates inaccuracies in critical anatomical areas. Conversely,
the PSN framework (blue) closely aligns with the physician-drawn contours (red), substantially reducing boundary discrep-
ancies and enhancing the segmentation accuracy.

adaptive

Fig 4. (a—b) Visual comparisons of CTV segmentation against reference contours (red), including outputs from the deformed planning CT
(yellow), pre-trained model (green), and PSN, . . (blue). (a) Axial slice; (b) magnified view in a complex region. (c—€) 3D deviation maps between
reference contours and segmentation results from the pre-trained model (c), deformed CT (d), and PSN model trained on the 1%t fraction (e).

adaptive

https://doi.org/10.1371/journal.pone.0332603.9004
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Notably, the PSN framework showed marked improvements in specific anatomical subregions, such as the apex and
base of the prostate, where inter-fractional variability is typically higher and soft-tissue contrast is limited on CBCT. In the
seminal vesicle region, especially in cases where it was partially included in the CTV, the PSN-based contours captured
the elongated and variable shape more faithfully than both the pre-trained model and the deformed planning CT. These
improvements were visually consistent across multiple test cases.

Fig 4(c-e) show the 3D deviation maps between the physician-drawn reference contours and segmentation results
from each method. The deviation maps utilize color coding, with red and blue indicating positive and negative deviations,
respectively.

(Fig 4 (c)) Pre-trained model vs. label: The map reveals considerable deviations throughout, underscoring the general-
ized model’s limitations in adapting to patient-specific anatomy. (Fig 4 (d)) Deformed planning CT vs. label: This method
demonstrates improved alignment compared to the pre-trained model, but notable discrepancies persist, particularly at the
boundary regions. (Fig 4 (e)) PSN framework vs. label: The deviation map displays minimal deviations, reflecting superior
conformity with the reference contours and validating the effectiveness of the patient-specific PSN framework in achieving
high segmentation accuracy

In particular, the deviation maps show that the largest improvements from PSN occurred at the anterior base and pos-
terior apex, where CBCT quality often degrades and inter-observer variability is highest. The model’s ability to consistently
match physician contours in these anatomically challenging regions underscores its clinical utility in adaptive radiotherapy.

Discussion

This study significantly advances prostate CTV segmentation by integrating the Swin UNETR model within the PSN
framework, a patient-specific deep-learning approach. Unlike generalized models, which often struggle to delineate indi-
vidual patient anatomy accurately due to inter-patient variability and limited adaptability to daily anatomical changes, PSN
dynamically fine-tunes segmentation using sequential CBCT data. Generalized deep-learning models typically achieve
suboptimal accuracy because of their fixed parameters and inability to incorporate sequential, patient-specific data. Sim-
ilarly, deformable registration methods, despite wide clinical use, frequently yield suboptimal contours owing to inherent
inaccuracies in handling significant anatomical variations, as reported extensively in the radiotherapy literature.

Compared with previous studies on CBCT-based online adaptive radiotherapy (0ART), which primarily evaluated
dosimetric improvements and workflow feasibility using the Ethos system but highlighted persistent limitations in contour-
ing accuracy that required manual physician intervention, our study contributes a novel solution by directly addressing
the challenge of precise auto-segmentation in daily ART [3,25]. By integrating PSN with transformer-based architectures,
our approach demonstrates significant improvements in segmentation precision and establishes a robust foundation for
efficient and reliable adaptive planning without frequent manual corrections. Visual assessments by experienced clinicians
confirmed clinically plausible segmentation, showing improvements over both Ethos-generated deformation-based con-
tours and baseline Swin UNETR segmentations.

In this study, we quantitatively evaluated PSN_, . and PSN__ using DSC, HD, and MSD standard segmentation
metrics that, although not directly used in clinical decision-making, serve as important indicators of technical accuracy.
The achieved DSCs exceeded 0.97, well above the commonly cited clinical acceptability threshold of 0.90 for prostate
targets [26] and surpassing the 0.95 level often interpreted as highly reliable [26,27]. Regarding HD, values below 3mm
have been suggested as a spatial-accuracy requirement for clinical prostate contouring [28], and both PSN variants con-
sistently met this benchmark. Similarly, MSD values remained below 1 mm, with values under 0.6 mm reflecting excellent
conformity with expert contours [29]. These results not only indicate technical excellence but also point to strong potential
for clinical adoption with minimal adaptation.

To further validate the consistency and generalizability of our findings, we additionally evaluated PSN using Dynamic
UNet, a widely used, publicly benchmarked segmentation backbone [30,31]. Results (S2 and S3 Table in S1 File)
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paralleled those obtained with Swin UNETR across all metrics, reinforcing the architecture-independent benefits of PSN in
adaptive prostate segmentation.

Notably, recent studies employing personalized deep-learning strategies akin to PSN have consistently shown supe-
rior segmentation accuracy versus generalized methods and deformable registration in prostate cancer radiotherapy
[13,32,33]. While earlier work relied mainly on MRI-based ART data, our study demonstrates that accurate patient-specific
segmentation is also achievable in CBCT workflows despite the modality’s lower soft-tissue contrast. A key distinguish-
ing feature of PSN is its formalization of continuous, sequential adaptation: unlike static patient-specific models, PSN
is updated using the complete series of daily CBCTs, making it uniquely suited for online ART workflows and marking a
conceptual advance over previous personalization strategies [34].

Clinically, PSN offers substantial workflow benefits by automating adaptive segmentation, reducing physician work-
load, and improving reproducibility. Its fast incremental training enables integration into routine practice without disrupting
ART schedules. Similar to the Ethos intelligent-optimization engine (IOE) that has demonstrated planning efficiency in
real-world ART [35], PSN facilitates rapid adaptation and enhances confidence in daily contours, particularly in anatomi-
cally complex regions where deformable registration struggles.

Although Wilcoxon tests did not show statistical significance (adjusted p>0.05) for most metrics, particularly in terms
of DSC, PSN offers practical and conceptual advantages that extend beyond mean segmentation accuracy. DIR relies
on predefined deformation fields and may produce spatially inconsistent errors in anatomically irregular or low-contrast
regions. In contrast, PSN enables dynamic, patient-specific adaptation without manual tuning or reliance on registration
assumptions. By operating in an end-to-end fashion and directly optimizing ground-truth masks, PSN avoids potential
image-warping artifacts and reduces error propagation. The consistency and reduced inter-fraction variability observed
across patients (S1 Fig) further support its robustness, indicating stable improvements rather than outlier-driven gains.
Moreover, PSNSequence offers constant and predictable per-step training time, while PSNadaptive enables deeper personal-
ization as more fractions are assimilated, providing clinicians with control over the latency—performance trade-off. These
properties collectively position PSN as a reliable and efficient alternative, or complement, to DIR-based workflows, espe-
cially in anatomically complex or time-constrained adaptive radiotherapy settings.

Beyond target-volume segmentation, the PSN framework also shows a promise for OARs such as bladder and rec-
tum, which typically exhibit substantial inter-fraction anatomical and volumetric variation during prostate radiotherapy.
These variations are often driven by physiological factors, for example, variable bladder filling or rectal gas, rather than
stable patient-specific anatomy, and they frequently challenge the accuracy of deformable registration. In contrast, PSN’s
sequential learning mechanism enables dynamic adaptation by leveraging daily CBCT data, allowing it to model evolving
organ shapes over time and potentially improving robustness in regions where registration often fails. Recent CBCT-
based studies have demonstrated that deep learning can achieve accurate segmentation of these OARs despite the high
variability of the organs: Fu et al. reported mean DSCs of 0.96 and 0.93 for the bladder and the rectum, respectively, using
CBCT and synthetic MR [7]; Léger et al. achieved 0.874 and 0.814 with cross-domain augmentation [36]; and Radici et
al. confirmed that deep learning-generated contours are clinically acceptable and require minimal manual revision [37].
Based on these findings, PSN may further enhance OAR segmentation by learning patient-specific physiological patterns
rather than relying on the static anatomical assumptions, offering the potential to reduce manual contour edits and stream-
line adaptive workflows in online ART.

Despite these encouraging results, our study has several limitations that inform future directions. First, the analysis
relied on a relatively small, single-institution cohort (26 patients, 119 fractions in total; evaluations on five patients, 25
fractions) acquired on one CBCT platform (Ethos), which may restrict generalizability. Second, PSN performance depends
on stable CBCT image quality and introduces additional computational overhead that could challenge clinical throughput.
To address these issues, we are (i) forming multi-institutional collaborations to enlarge and diversify the dataset, (ii) testing
PSN robustness under variable imaging protocols and scanner types, (iii) optimizing code and hardware for real-time
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execution, and (iv) exploring reinforcement-learning-based online adaptation. Prospective studies will also measure
contour-editing time savings and dosimetry impact to establish clinically meaningful end-points, paving the way for PSN
deployment across diverse adaptive-radiotherapy platforms and anatomical sites [25,32—-35,38—40].

Conclusion

This study demonstrates that the PSN framework enables highly accurate, patient-specific segmentation for CBCT-guided
adaptive radiotherapy in prostate cancer, achieving clinically acceptable performance (mean DSC>0.97, HD <3 mm) and
substantially reducing manual contour-editing requirements compared with both generalized deep learning models and
deformable image registration. By supporting rapid, incremental model updates using daily imaging data, PSN integrates
seamlessly into online adaptive workflows and offers a scalable foundation for broader deployment across diverse ana-
tomical sites and imaging platforms.

Supporting information

S1 File. Supporting information. This file includes S1 Appendix (Equations for evaluation metrics), S1 Table (Patient
Characteristics), S2 Table (Average DSC, HD, and MSD for the PSNadaptive approach using Dynamic Unet), and S3
Table (Average DSC, HD, and MSD for the PSNsequence approach using Dynamic Unet).

(PDF)

S2 File. Minimal data set. This file contains the underlying raw data for the five patients evaluated in this study. It
includes the individual values for all geometric metrics (DSC, HD, MSD) and dosimetric metrics (JAD,,|, |AD|, |AD
|AD,|) which were used to calculate the summary statistics presented in the manuscript’s tables.

(XLSX)

meanl’

S1 Fig. Patient-wise DSC across fractions. This figure illustrates the per-patient DSC trajectory, comparing the pre-
trained model with the PSN_ deptive and PSNSequence variants over five treatment fractions.
(JPG)

S2 Fig. DVH for a representative patient. This figure shows a representative DVH for the fifth treatment fraction of
a single patient, comparing the dose distribution for contours generated by the physician (reference), DIR, pre-trained
model, PSN_, .., and PSN__ .. methods.

(JPG)
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