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Abstract 

Adaptive radiotherapy (ART) enhances prostate cancer treatment by accounting for 

daily anatomical variations, but clinical implementation remains limited due to the 

need for accurate and efficient auto segmentation; manual corrections after auto-

mated contouring often hinder workflow efficiency. To address this, we propose a 

patient-specific network (PSN) approach for clinical target volume (CTV) segmen-

tation using cone-beam computed tomography (CBCT). This retrospective study 

included 26 prostate cancer patients treated with CBCT-guided online ART using the 

Ethos therapy system, comprising 119 retrospectively exported fractions. The PSN 

framework uses a two-stage strategy: initial pre-training followed by patient-specific 

fine-tuning via PSN
adaptive

 or PSN
sequence

, implemented with the Swin UNETR architec-

ture. This approach is distinct from static personalization methods as it continuously 

adapts to daily anatomical changes. Segmentation performance was compared 

against deformable registration and generalized deep learning models using the 

Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD), and mean 

surface distance (MSD). PSN significantly improved segmentation performance, 

with PSN
adaptive

 achieving a DSC of 0.978 ± 0.005, HD of 1.681 ± 0.743 mm, and MSD 

of 0.510 ± 0.035 mm by the fifth fraction, with accuracy improving across sequential 

fractions. Visual assessments confirmed high agreement with physician contours, 

especially in anatomically complex regions. These findings support the PSN frame-

work as a clinically feasible and accurate solution for patient-specific segmentation in 

prostate ART, potentially reducing the need for manual editing, streamlining workflow 

efficiency, and enhancing the precision of adaptive treatment delivery.
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Introduction

External beam radiotherapy plays a key role in the management of prostate cancer 
across all stages, and hypo-fractionated regimens are increasingly adopted for patient 
convenience. A recent randomized phase III trial confirmed the efficacy of stereotactic 
body radiotherapy (SBRT) as a curative treatment for localized prostate cancer [1]. How-
ever, the study also reported a higher incidence of late genitourinary toxicity with SBRT, 
emphasizing the importance of precise treatment delivery and effective normal tissue 
sparing, particularly in high-dose per-fraction regimens. Adaptive radiotherapy (ART) 
has emerged as a strategy to address daily anatomical variations and to improve the 
therapeutic ratio further in prostate cancer [2,3]. By adjusting the treatment plan to daily 
changes in prostate and organ-at-risk (OAR) positioning, ART facilitates smaller margins 
and improved dose conformity. Planning studies have shown that daily ART can signifi-
cantly reduce OAR doses, thereby potentially lowering complication risks [2].

Clinical studies on the organ motion consistently demonstrate that the inter‑frac-
tion geometric variation can exceed the 5 mm isotropic margin conventionally used 
in prostate RT. Langen et al. analyzed 550 fractions with electromagnetic tracking 
and found that the prostate spent a median 13.6% of beam‑on time with a variation 
of ≥ 3 mm from its planning position and 3.3% with ≥ 5 mm; in some fractions the 
variation of ≥ 3 mm threshold persisted for 99% of the treatment time [4]. Ghilezan et 
al. showed with cine‑MRI that rectal filling drives rapid posterior shifts, with ≥ 3 mm 
displacement reached within 60 s in 10% of full‑rectum scans [5]. For the seminal 
vesicles, a recent systematic review reported inter‑fraction systematic/random errors 
of 1–7 mm and 1–5 mm, respectively, with median centroid shifts around 4 mm, 
recommending ≥ 8 mm planning margins [6]. Shape‑based (deformable) changes 
of 2–4 mm have also been observed on serial cone-beam computed tomography 
(CBCT) registrations [7]. These magnitudes of variation clearly exceed conventional 
margins, especially in hypo-fractionated SBRT, and strongly motivate the use of daily 
online ART.

Early clinical data have also shown that adaptive SBRT reduces acute urinary toxic-
ity by 44% and bowel toxicity by 60% compared to non-adaptive SBRT, reinforcing its 
potential to enhance treatment tolerability and outcomes [8]. Despite these advantages, 
the clinical implementation of ART remains challenging. The requirement for daily target 
re-contouring and plan re-optimization increases both the workload and treatment time, 
limiting the adoption of real-time ART in routine clinical practice. Among these chal-
lenges, efficient and accurate auto-segmentation stands out as one of the most critical 
barriers to routine clinical implementation of ART. Recent clinical evaluations using the 
Ethos platform in breast cancer have demonstrated the feasibility of ART workflows 
and auto-segmentation performance, supporting their potential in streamlining adaptive 
radiotherapy across disease sites [9,10]. Therefore, efficient automation is essential to 
streamline workflows and fully integrate ART into prostate cancer radiotherapy (RT).

Recent advancements in artificial intelligence (AI), particularly deep-learning-based auto 
segmentation (DLAS), have enabled the highly accurate segmentation of various anatomical 
structures [11]. In prostate cancer radiotherapy planning, DLAS achieves high geometric 
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accuracy (DSC 0.83–0.92), with most AI-generated contours deemed clinically acceptable [12–15]. However, training DLAS typically 
requires large, consistently contoured datasets, posing challenges for developing patient-specific auto-contouring models tailored 
to individual risk profiles. When delineating the prostate clinical target volume (CTV) for definitive RT, the extent of seminal vesicle 
(SV) inclusion varies according to the patient risk group, and currently, no clear consensus exists regarding the precise extent of SV 
coverage [16,17]. Similarly, CTV delineation for post-operative RT is even more challenging because the target is a virtual volume 
intended to encompass potential microscopic tumor cells rather than a visible tumor. Contouring inherently involves physician 
judgment, complicating standardization and limiting the applicability of general auto-contouring models [18,19]. In daily adaptive 
ART, the main challenge of auto-contouring is not to redefine the CTV daily based on patient risk, but to maintain the initial contour in 
response to inter-fractional variations, thereby ensuring consistent treatment accuracy and reproducibility.

Previously, we evaluated the utility of a patient-specific network (PSN), a novel deep-learning (DL) framework that 
utilizes the entire daily CBCT sequence throughout the treatment course. PSN is designed to ensure robust segmentation 
despite anatomical changes during the treatment period by adapting to daily variations, making it an effective solution for 
adaptive ART environments. The PSN model is not merely personalized but adaptive, providing a solution that can be 
directly applied to improve segmentation in ART.

This study aimed to develop a DL algorithm for accurate CTV segmentation using daily CBCT scans of patients with 
prostate cancer who underwent online ART. Specifically, we evaluated whether a PSN model offers advantages compared 
to a generalized DL model and deformable image registration (DIR).

Materials and methods

Patient data

This retrospective study analyzed data from 26 patients with prostate cancer who underwent CBCT-guided online ART using the 
Ethos therapy system (Varian Medical Systems, Palo Alto, CA) at Ewha Womans University Seoul Hospital between November 
2022 and June 2024. The study was approved by the Institutional Review Board of Ewha Womans University Seoul Hospital 
(approval number: 2024-03-012-002), and all procedures were conducted according to applicable guidelines and regulations. 
De-identified clinical data were accessed for research purposes on 15 July 2024. All data were anonymized prior to analysis, and 
the researchers did not have access to any personally identifiable information. All patients were treated with definitive intent. Among 
eleven high-risk patients, conventional fractionated whole pelvic radiotherapy (WPRT) of 46 Gy or 50 Gy was initially adminis-
tered without adaptation, followed by online ART for a prostate boost. For these prostate boost sessions, eight patients received a 
hypo-fractionated regimen (18 Gy in three to four fractions), while the remaining patients underwent conventionally fractionated pros-
tate boosts (24–34 Gy in 12–17 fractions). The other 15 patients underwent prostate SBRT at a dose of 36.25 Gy in five fractions. 
WPRT CBCTs were excluded because their clinical target volume (pelvic nodes ± prostate) differs fundamentally from the pros-
tate‑only CTV addressed in this study and including them would have required a separate segmentation and dosimetric framework 
beyond our scope. After this exclusion, the final dataset comprised 119 retrospectively exported daily CBCT fractions: 75 SBRT, 29 
hypofractionated‑boost and 15 conventional‑boost fractions. For each patient, we analyzed the earliest adaptive CBCTs, up to a 
maximum of five fractions: SBRT courses contributed all five fractions; hypofractionated boosts contributed all available three or four 
fractions; conventional boosts contributed the first five fractions in chronological order, thereby capping every regimen at five training 
cases and emulating an early‑course adaptation scenario. Detailed patient characteristics are provided in S1 Table in S1 File.

Models

The PSN framework utilized the Swin UNETR architecture, which combines transformer-based and convolutional com-
ponents for CTV segmentation [20]. Swin UNETR is implemented natively in MONAI v1.3 [21] and has demonstrated 
strong performance in brain-tumor, abdominal-organ, and prostate segmentation tasks [20]. Recent advances, such as 
Swin-Transformer pre-training for 3-D medical images [22] and scalable depth/width variants [23], further support their 
suitability for volumetric radiotherapy workflows.
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Fig 1 schematically depicts the encoder–decoder: four Swin-Transformer stages extract multi-scale representations, 
and a symmetric decoder reconstructs high-resolution masks via skip concatenations.

For full reproducibility, the Swin UNETR was configured as follows. CBCT volumes were partitioned into non- 
overlapping patches of size 2 × 2 × 2 voxels and linearly projected into an embedding space with dimension 48. The 
encoder consisted of four Swin Transformer stages, each containing 2 transformer blocks (total 8 layers). The number of 
feature channels doubled at each stage, progressing as 48 → 96 → 192 → 384, with attention heads configured as 3, 6, 12, 
and 24, respectively. Self-attention computations were restricted to 7 × 7 × 7 voxel windows, employing shifted windowing 
for subsequent layers. Patch merging at the end of each stage reduced spatial resolution by a factor of two, aggregating 
the stage-4 features into a bottleneck with 768 channels.

The decoder adopted a symmetric U-shaped structure, using residual blocks comprising two 3 × 3 × 3 convolutional 
layers with InstanceNorm3D normalization. Features were up sampled using 3D transposed convolutions (stride = 2) and 
concatenated with corresponding encoder features at each resolution via skip connections. A drop-path rate of 0.10 was 
employed for regularization. The final segmentation output was generated by a 1 × 1 × 1 convolutional layer with SoftMax 
activation for binary classification (CTV vs. background). All codes ran under PyTorch 1.12 with MONAI v1.3.

PSN framework

The dataset was split patient-wise: 21 patients (94 fractions) formed the pre-training cohort, while the remaining five 
patients (25 fractions) were reserved for sequential fine-tuning and testing. Stratified randomization preserved the SBRT-
to-boost ratio across the two subsets. The innovative PSN framework constructs patient-specific DL models using a 
two-stage training strategy tailored to personalized medical applications. In the first stage, DL models were trained on 
CBCT scans from 21 patients, with performance outcomes assessed on the first to fifth fractions of CBCT scans from 
five remaining patients. The second stage introduced two specific methodologies: PSN

adaptive
 and PSN

sequence
. These 

approaches systematically trained and evaluated the pre-trained network on sequential fractions of each patient.
In PSN

adaptive
 (Fig 2(a)), the network is incrementally fine-tuned. Training begins with the first fraction, and testing 

is conducted on the second to fifth fractions. The model is then fine-tuned using the first and second fractions and 

Fig 1.  Schematic illustration of the Swin UNETR architecture used for volumetric segmentation of the prostate CTV.

https://doi.org/10.1371/journal.pone.0332603.g001

https://doi.org/10.1371/journal.pone.0332603.g001
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Fig 2.  Training workflows for the PSN framework. (a) PSN
adaptive

: the model is fine-tuned on cumulatively increasing fractions and tested on subse-
quent ones. (b) PSN

sequence
: the model is sequentially fine-tuned using the previously trained weights for each next fraction. DL

g
 represents the pre-trained 

model, and n denotes the patient index (n = 1, 2,..., 5).

https://doi.org/10.1371/journal.pone.0332603.g002

https://doi.org/10.1371/journal.pone.0332603.g002
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tested on the third to fifth fractions. This pattern continues until the model is fine-tuned with the first to fourth frac-
tions and tested on the fifth fraction. As more fractions are added to the training set, the time required for fine-tuning 
increases, as the network is continually updated with additional data. This approach is designed to improve perfor-
mance as more patient-specific data is used for training, but the trade-off is longer training times as more fractions 
are incorporated.

By contrast, PSN
sequence

 (Fig 2(b)), is explicitly framed as a continual learning progression: each update uses the most 
recently adapted model and the next new fraction, sequentially propagating knowledge forward while keeping the amount 
of new data per step fixed. Because every adaptation step involves the same-sized input (one fraction), the per-step train-
ing time remains constant, making PSN

sequence
 a more time-efficient mechanism for patient-specific refinement while still 

leveraging previously acquired patient information.

Preprocessing and data augmentation

To achieve accurate segmentation of the prostate CTV, we employed multiple neural networks and automated segmenta-
tion techniques, supported by a series of preprocessing and augmentation strategies designed to enhance model perfor-
mance. Preprocessing included pixel intensity normalization, resolution standardization, and spatial augmentations  
(random cropping, flipping, and rotation). Specifically, CBCT intensities were clipped to a range of −350 to +350 HU to 
ensure consistency across the dataset. The resolution of all scans was standardized to 1.0 × 1.0 × 2.0 mm to maintain uni-
formity during the model training process.

To expand the dataset and improve the model’s robustness, random augmentations were applied to the CBCT scans. 
Each scan was randomly cropped to a size of 96 × 96 × 96, with flipping and rotation performed along all three axes at 
a probability of 0.1. Additionally, intensity augmentation was introduced by randomly shifting the intensity values with a 
probability of 0.5 and an offset of 0.1, enhancing the model’s ability to adapt to variations in CBCT intensity profiles. The 
augmentation parameters were adapted from the Swin UNETR framework [21] and were empirically adjusted to account 
for the anatomical scale and image characteristics of prostate CBCT.

Optimization strategy

To balance overlap accuracy with voxel-wise classification, we optimized the network with a composite loss in which 
the Dice component and the cross-entropy component were each assigned 50% weight (1: 1). The model was trained 
using the AdamW optimizer, with a learning rate of 1 × 10−4 and weight decay of 1 × 10−5. Mixed precision training with 
GradScaler was applied to ensure numerical stability. All experiments were performed on a workstation equipped with an 
NVIDIA RTX 3090 GPU (24 GB VRAM).

Training strategy

In the first stage of the PSN framework, the network was pre-trained on CBCT scans from 21 patients over 30,000 itera-
tions, leveraging a diverse training set to establish a robust and generalized foundation. In the second stage, the frame-
work adopted two distinct fraction-based sequential approaches: PSN

adaptive
 and PSN

sequence
.

In PSN
adaptive

, the network was fine-tuned for 50 epochs using CBCT scans from the first fraction of each patient and 
subsequently tested on the second to fifth fractions. This process was iteratively expanded, with fine-tuning incorporating 
the first and second fractions to test on the third to fifth fractions, and continuing this pattern until the network was fine-
tuned on the first to fourth fractions and tested on the fifth fraction.

In PSN
sequence

, the network was fine-tuned for 50 epochs per fraction, following a progressive fine-tuning strategy. Start-
ing from the first fraction, the model was fine-tuned sequentially, using the previously trained weights to train and test on 
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the next fraction. This process continued iteratively, with the network fine-tuned on the second fraction and tested on the 
third, then fine-tuned on the third fraction and tested on the fourth, and so forth. By saving and loading the model at each 
stage, the approach leveraged accumulated learning from prior fractions to refine the model’s performance, focusing on 
temporal continuity and personalized optimization.

We selected 50 epochs after a pilot sweep (20, 40, 50, 80 epochs) on three validation patients: validation DSC pla-
teaued between 40 and 45 epochs, and additional training (<1 percentage-point gain) did not justify longer wall-time. 50 
epochs therefore guarantee full convergence while keeping per-fraction fine-tuning under ~2 minutes on our GPU.

This dual-stage training strategy exemplifies the transition from generalization during the pre-training phase to the 
development of highly personalized models. By integrating both PSN

adaptive
 and PSN

sequence
, the framework achieved seg-

mentation accuracy optimized for prostate cancer treatment planning.

Evaluation

To assess the performance of our network, we employed three widely used metrics: the Dice similarity coefficient (DSC), 
the 95th percentile Hausdorff distance (HD), and the mean surface distance (MSD). Detailed formulae and implementation 
steps are provided in S1 Appendix (Eqs. 1–3) in S1 File. Each of these metrics offers unique insights into the accuracy 
and reliability of segmentation results, ensuring a comprehensive evaluation of the model.

To compare segmentation methods, we analyzed paired differences in DSC, HD and MSD for the same five 
patients (n = 5). Owing to the small sample size, the two-sided Wilcoxon signed-rank test (α = 0.05) was used as the 
sole inferential test; Holm-adjusted p-values are reported. Effect sizes are expressed as rank-biserial correlations (r) 
with 95% bootstrap confidence intervals (10 000 resamples). Results with 0.05 < p ≤ 0.10 are described as marginally 
significant.

To evaluate segmentation approaches for prostate CTV, we implemented a comparative framework encompassing 
three distinct methods: a generalized DL model, the deformed planning CT obtained from Ethos (via deformable image 
registration), and the PSN model. Each method was designed to address specific challenges in relation to segmentation 
accuracy and adaptability, and their evaluation provided a comprehensive understanding of segmentation performance 
capabilities across various scenarios.

The first method employed a generalized DL model trained on CBCT scans from multiple patients. This approach 
prioritized generalization over personalization, leveraging a broad dataset to achieve robust segmentation across diverse 
cases. The model served as a baseline for evaluating segmentation accuracy without patient-specific adaptation.

The second method involved the use of deformed planning CTs generated by the Ethos system. Here, deformable 
image registration was applied to align the planning CT with the CBCT. The resulting deformation field was then propa-
gated to the planning CT’s CTV, enabling the evaluation of the segmentation accuracy based on the deformed planning 
CT. This method incorporated patient-specific alignment but was limited by the inherent constraints of the deformable 
registration process.

The third method utilized the PSN framework, which employed a two-stage training process. In the first stage, a pre-
trained model was developed using CBCT scans from multiple patients to establish a robust foundation. In the second 
stage, the PSN framework fine-tuned the model by incorporating CBCT data from sequential fractions of each patient. 
This deliberate overfitting process enabled the model to adapt to patient-specific anatomical variations, resulting in a 
highly personalized segmentation model.

For each method, segmentation accuracy was assessed by comparing the predicted volumes to reference 
ground truths using three key metrics: the DSC, HD, and MSD. Statistical analyses, including hypothesis testing, 
were conducted to compare the performance outcomes of the three methods, ensuring a rigorous evaluation of 
their prostate CTV segmentation capabilities. All statistical evaluations were conducted using the R programming 
language.
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Dosimetric evaluation

In accordance with ICRU Report 83 [24], four dose–volume indices were analyzed for the CTV. D
95

 and D
98

 denote the 
minimum doses received by 95% and 98% of the CTV, respectively, and serve as “near‑minimum” coverage metrics. D

mean
 

is the arithmetic mean dose to the entire CTV, reflecting overall energy deposition, while D
2
 denotes the near‑maximum 

dose, i.e., the dose received by the hottest 2% of the CTV. These indices collectively describe under‑coverage (D
95

, D
98

), 
overall conformity (D

mean
) and over‑dosage (D

2
).

For every CBCT, the three‑dimensional dose distribution was recalculated with the adaptive plan generated by the 
Ethos system, keeping beam geometry and monitor units unchanged. The four indices were extracted from five contour 
sets, physician reference, DIR, the pre‑trained network, PSN

adaptive
 and PSN

sequence
 and absolute dose errors were com-

puted as:

	

∣∣∆Dx
∣∣ =

∣∣∣Dmethod
x – Dphysician

x

∣∣∣ (Gy) for x ∈
{
95, 98,mean, 2

}
	 (1)

Paired two‑sided Wilcoxon signed‑rank tests (α = 0.05) compared PSN‑adaptive and PSN‑sequence with DIR and with 
the pre‑trained model across the five evaluation patients (n = 5). Holm correction controlled the family‑wise error rate, and 
effect sizes were expressed as rank‑biserial correlations with 95% bootstrap confidence intervals based on 10 000 resam-
ples. All statistical analyses were performed in R.

Results

Evaluation results for CTV segmentation with the PSN framework

The segmentation accuracy for prostate CTV was evaluated using the DSC, HD, and MSD. The results highlight the 
improvements achieved by incorporating the PSN framework, leveraging CBCT data across multiple fractions for 
patient-specific training. Notably, both PSN

adaptive
 and PSN

sequence
 approaches demonstrated substantial performance gains 

compared to the deformed planning CT and pre-trained models.

CTV results

The progression of CTV segmentation accuracy across fractions is depicted in Tables 1 and 2, and Fig 3 compares the 
deformed planning CT, pre-trained model, and the two variations of the PSN framework, i.e., PSN

adaptive
 and PSN

sequence
. 

The performance is evaluated using DSC, HD, and MSD.
On average across fractions 1–5, the deformed planning CT achieved an average DSC of 0.974, while the pre-trained 

model averaged 0.933. These results highlight the limitations of generalized segmentation approaches. The PSN
adaptive

 
framework achieved superior results, with DSC values progressively increasing as more fractions were incorporated into 
training. It achieved a DSC of 0.974 in the fourth fraction and a peak of 0.978 in the fifth fraction, demonstrating its ability 
to refine the segmentation accuracy effectively. The PSN

sequence
 framework also showed strong performance, achieving 

a DSC of 0.972 in the fourth fraction and 0.976 in the fifth fraction. While both PSN approaches performed comparably, 
PSN

adaptive
 demonstrated slightly better performance in the final fraction.

The deformed planning CT recorded an HD of 2.480 mm for the first fraction and 1.979 mm for the fifth fraction, show-
ing modest improvements across fractions. The pre-trained model, however, exhibited consistently higher HD values, 
averaging 4.377 mm for the first fraction and increasing to 7.249 mm by the fifth fraction, reflecting its inability to adapt 
to patient-specific anatomy. The PSN

adaptive
 framework achieved the most substantial reductions in HD, with 1.649 mm 

for the fourth fraction and a low 1.681 mm for the fifth fraction, showcasing its capacity to accurately delineate complex 
anatomical structures. The PSN

sequence
 framework was comparable at the fourth fraction (1.642 mm) but higher at the fifth 

(2.198 mm), thus trailing PSN
adaptive

 in later fractions.
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The deformed planning CT approach achieved an MSD of 0.540 mm for the fifth fraction, while the pre-trained model 
scored 1.662 mm, highlighting its significant inaccuracy in capturing surface boundaries. The PSN

adaptive
 framework signifi-

cantly outperformed the baseline methods, with MSD values of 0.631 mm for the fourth fraction and 0.510 mm for the fifth 
fraction. The PSN

sequence
 framework achieved similar results, with an MSD of 0.546 mm for the fifth fraction, slightly trailing 

PSN
adaptive

 but still significantly outperforming the other methods.
The results described above clearly demonstrate the superior performance of the PSN framework in improving the 

segmentation accuracy for CTV compared to both deformed planning CT and the pre-trained model. While both PSN
adaptive

 
and PSN

sequence
 showed substantial improvements, PSN

adaptive
 consistently outperformed PSN

sequence
, particularly in the later 

Table 1.  Average DSC, HD, and MSD for the Deform from ETHOS, the pre-trained Swin UNETR model, and the PSNadaptive approach using Swin 
UNETR, along with their standard deviations, as illustrated in Fig 2(a).

Deform Pre-train PSN trained 
on 1 fx

PSN trained 
on 1–2 fxs

PSN trained 
on 1–3 fxs

PSN trained 
on 1–4 fxs

CTV DSC 1st 0.961 ± 0.020 0.927 ± 0.046

2nd 0.963 ± 0.015 0.933 ± 0.046 0.966 ± 0.009

3rd 0.970 ± 0.014 0.932 ± 0.055 0.972 ± 0.010 0.975 ± 0.007

4th 0.974 ± 0.012 0.936 ± 0.047 0.972 ± 0.007 0.973 ± 0.008 0.974 ± 0.007

5th 0.977 ± 0.004 0.938 ± 0.039 0.971 ± 0.008 0.975 ± 0.007 0.976 ± 0.007 0.978 ± 0.005

CTV HD (mm) 1st 2.480 ± 0.560 4.377 ± 2.193

2nd 2.694 ± 0.822 4.198 ± 2.174 2.103 ± 0.688

3rd 2.727 ± 1.868 4.487 ± 2.662 1.685 ± 0.449 1.595 ± 0.265

4th 1.860 ± 0.418 3.690 ± 1.726 1.813 ± 0.377 1.642 ± 0.359 1.649 ± 0.321

5th 1.979 ± 0.597 7.249 ± 8.094 2.141 ± 0.877 1.943 ± 1.015 1.966 ± 1.192 1.681 ± 0.847

CTV MSD (mm) 1st 0.840 ± 0.290 1.566 ± 1.057

2nd 0.828 ± 0.166 1.496 ± 1.028 0.782 ± 0.133

3rd 0.730 ± 0.328 1.664 ± 1.293 0.669 ± 0.118 0.612 ± 0.080

4th 0.599 ± 0.134 1.494 ± 1.030 0.693 ± 0.091 0.657 ± 0.098 0.631 ± 0.066

5th 0.540 ± 0.083 1.662 ± 0.984 0.678 ± 0.090 0.613 ± 0.058 0.570 ± 0.055 0.510 ± 0.035

https://doi.org/10.1371/journal.pone.0332603.t001

Table 2.  Average DSC, HD, and MSD for the PSNadaptive and the PSNsequence approach using Swin UNETR, along with their standard deviations, 
as illustrated in Fig 2.

PSNadaptive PSNsequence

Trained on 
1 fx

Trained on 
1–2 fxs

Trained on 
1–3 fxs

Trained on 
1–4 fxs

Trained on 
1 fx

Trained on 
2 fx

Trained on 
3 fx

Trained on 
4 fx

CTV DSC 2nd 0.966 ± 0.009 0.966 ± 0.009

3rd 0.972 ± 0.010 0.975 ± 0.007 0.972 ± 0.010 0.970 ± 0.009

4th 0.972 ± 0.007 0.973 ± 0.008 0.974 ± 0.007 0.972 ± 0.007 0.968 ± 0.007 0.972 ± 0.006

5th 0.971 ± 0.008 0.975 ± 0.007 0.976 ± 0.007 0.978 ± 0.005 0.971 ± 0.008 0.971 ± 0.008 0.975 ± 0.006 0.976 ± 0.005

CTV HD (mm) 2nd 2.103 ± 0.688 2.103 ± 0.688

3rd 1.685 ± 0.449 1.595 ± 0.265 1.685 ± 0.449 1.860 ± 0.418

4th 1.813 ± 0.377 1.642 ± 0.359 1.649 ± 0.321 1.813 ± 0.377 1.987 ± 0.252 1.642 ± 0.359

5th 2.141 ± 0.877 1.943 ± 1.015 1.966 ± 1.192 1.681 ± 0.847 2.141 ± 0.877 2.140 ± 0.726 1.912 ± 0.825 2.198 ± 0.845

CTV MSD
(mm)

2nd 0.782 ± 0.133 0.782 ± 0.133

3rd 0.669 ± 0.118 0.612 ± 0.080 0.669 ± 0.118 0.730 ± 0.158

4th 0.693 ± 0.091 0.657 ± 0.098 0.631 ± 0.066 0.693 ± 0.091 0.768 ± 0.080 0.687 ± 0.095

5th 0.678 ± 0.090 0.613 ± 0.058 0.570 ± 0.055 0.510 ± 0.035 0.678 ± 0.090 0.680 ± 0.109 0.601 ± 0.065 0.546 ± 0.070

https://doi.org/10.1371/journal.pone.0332603.t002

https://doi.org/10.1371/journal.pone.0332603.t001
https://doi.org/10.1371/journal.pone.0332603.t002
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Fig 3.  Average DSC, HD, and MSD values (± standard deviation) for prostate CTV segmentation. Results are shown for the deformable registra-
tion method (ETHOS), pre-trained model (Swin UNETR), PSN

adaptive
 (Fig 2(a)), and PSN

sequence
 (Fig 2(b)).

https://doi.org/10.1371/journal.pone.0332603.g003

https://doi.org/10.1371/journal.pone.0332603.g003
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fractions. These findings validate the PSN framework’s potential as a robust and reliable tool for personalized treatment 
planning, with its ability to adapt to patient-specific CBCT data and achieve clinically accurate segmentation.

Moreover, the computational efficiency of the framework supports its clinical feasibility. The generalized model required 
approximately 24 hours for pre-training, while the PSN

adaptive
 training time increased linearly with the number of input frac-

tions, ranging from 104 seconds (one fraction) to approximately 420 seconds (four fractions). The PSN
sequence

 framework 
maintained a constant per-fraction training time of ~100 seconds due to its stepwise sequential update strategy. Inference 
time for all methods averaged 110 seconds, including preprocessing and postprocessing steps, supporting potential inte-
gration into time-sensitive ART workflows.

The statistical analyses further supported these findings. For DSC the two-sided Wilcoxon signed-rank test comparing 
the pre-trained model with PSN

adaptive
 yielded W = 0, p = 0.0625 (Holm-adjusted p = 0.125, n = 5) in each of fractions 3–5; 

the pre-trained versus PSN
sequence

 contrast produced the same values. The corresponding contrasts for HD and MSD also 
returned p = 0.0625 (Holm p = 0.125). No statistically significant differences were detected between the deformable- 
registration method and any PSN variant (e.g., DSC, fraction 5, deform vs PSN

adaptive
: W = 6, p = 0.8125, p

Holm
 = 1.000; 

MSD, fraction 4: W = 5, p = 0.625, p
Holm

 = 1.000). Likewise, PSN
adaptive

 and PSN
sequence

 were indistinguishable across all 
metrics (largest observed difference: DSC, fraction 5, W = 3, p = 0.125, p

Holm
 = 0.313; MSD, fraction 5, W = 6, p = 0.3125, 

p
Holm

 = 0.625). All pre-train vs PSN contrasts exhibited very large effect sizes (|r| ≥ 0.8), confirming a substantial benefit from 
patient-specific fine-tuning despite the limited sample size (n = 5).

To further illustrate the consistency of the improvements at the individual-patient level, we provide per-patient DSC 
trajectories across fractions in S1 Fig; DSC was selected for this visualization because it clearly illustrates the patient-wise 
trends of adaptation between the pre-trained baseline and the PSN variants.

To complement the geometric evaluation, we compared dose–volume metrics against the physician‑defined CTV. Four 
absolute errors |ΔD

95
|, |ΔD

98
|, |ΔD

mean
| and |ΔD

2
| were computed for each fraction (Table 3; representative DVHs in S2 Fig). 

Paired two‑sided Wilcoxon signed‑rank tests (α = 0.05) with Holm adjustment and rank‑biserial effect sizes (95% bootstrap 
CI, 10 000 resamples) were applied across the five patients.

Table 3.  Absolute deviations from physician-defined CTV dose (|ΔD95|, |ΔD98|, |ΔDmean|, |ΔD2|) across fractions.

Fraction Method | ΔD95| | ΔD98| |ΔDmean| |ΔD2|

2nd fraction DIR 0.841 ± 0.386 0.842 ± 0.436 0.295 ± 0.258 0.018 ± 0.015

Pre-train 1.992 ± 2.688‡ 2.396 ± 3.162‡ 0.646 ± 0.848‡ 0.020 ± 0.012

PSNadaptive 0.370 ± 0.373 †‡ 0.360 ± 0.230 †‡ 0.083 ± 0.136 †‡ 0.003 ± 0.004†

PSNsequence 0.370 ± 0.373 †‡ 0.360 ± 0.230 †‡ 0.083 ± 0.136 †‡ 0.003 ± 0.004†

3rd fraction DIR 0.817 ± 0.660 0.749 ± 0.359 0.286 ± 0.416 0.016 ± 0.011

Pre-train 2.586 ± 4.156‡ 3.247 ± 5.037‡ 0.717 ± 1.180‡ 0.039 ± 0.035

PSNadaptive 0.227 ± 0.212† 0.283 ± 0.169† 0.031 ± 0.024† 0.004 ± 0.003

PSNsequence 0.439 ± 0.229 †‡ 0.504 ± 0.439 †‡ 0.089 ± 0.080 †‡ 0.003 ± 0.003

4th fraction DIR 0.498 ± 0.285 0.462 ± 0.429 0.135 ± 0.166 0.014 ± 0.016

Pre-train 2.408 ± 2.908‡ 3.098 ± 3.844‡ 0.651 ± 0.881‡ 0.032 ± 0.042‡

PSNadaptive 0.351 ± 0.239† 0.348 ± 0.235† 0.100 ± 0.108† 0.006 ± 0.008

PSNsequence 0.278 ± 0.246† 0.294 ± 0.214† 0.089 ± 0.138† 0.003 ± 0.003

5th fraction DIR 0.589 ± 0.566 0.887 ± 0.364 0.215 ± 0.321 0.006 ± 0.006

Pre-train 1.911 ± 2.496‡ 2.607 ± 3.025‡ 0.559 ± 0.655‡ 0.037 ± 0.034‡

PSNadaptive 0.274 ± 0.173† 0.389 ± 0.282† 0.074 ± 0.041† 0.012 ± 0.009

PSNsequence 0.279 ± 0.338† 0.399 ± 0.596† 0.079 ± 0.069† 0.013 ± 0.014

Values are mean ± standard deviation over the five patients. †pHolm < 0.05 vs DIR; ‡pHolm < 0.05 vs Pre-train (Wilcoxon signed-rank).

https://doi.org/10.1371/journal.pone.0332603.t003

https://doi.org/10.1371/journal.pone.0332603.t003
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Both PSN
adaptive

 and PSN
sequence

 yielded large, statistically significant improvements over the Pre‑train network for nearly 
all indices. For example, mean |ΔD

mean
| and |ΔD

2
| fell by ≥ 70% (adjusted p < 0.001, |r| ≥ 0.7), indicating better overall 

coverage and suppression of high‑dose hot spots. Coverage errors |ΔD
95

| and |ΔD
98

| were likewise reduced (adjusted 
p ≤ 0.0002).

When compared with DIR, improvements were more selective. PSN
adaptive

 significantly lowered |ΔD
95

| and |ΔD
98

| 
(adjusted p ≈ 0.0115), whereas changes in D

mean
 and D

2
 did not reach significance, suggesting DIR already captures bulk 

dose reasonably well. PSN
sequence

 showed a significant advantage over DIR mainly in |ΔD
98

|, reflecting its strength in repro-
ducing the high‑dose tail. Direct PSN

adaptive
 vs PSN

sequence
 contrasts revealed no consistent significant differences, confirm-

ing comparable dosimetric performance.
Overall, these results mirror the geometric gains: patient‑specific fine‑tuning with the PSN framework produces dose 

distributions that are markedly closer to the physician reference than those from the generic model and, in selected met-
rics, than DIR, supporting the clinical value of both PSN approaches for adaptive, personalized radiotherapy planning.

Visual evaluation of CTV segmentation results

Fig 4(a) and (b) present visual comparisons of CTV segmentation results against reference contours manually anno-
tated by a physician. The evaluated methods include the pre-trained model, deformed planning CT, and the PSN

adaptive
 

framework.
In Fig 4 (a), the axial view demonstrates that contours generated by the pre-trained model (green) deviate notably from 

the reference, especially in regions with complex anatomical boundaries. The deformed planning CT (yellow) exhibits 
better conformity than the pre-trained model but still demonstrates inaccuracies in critical anatomical areas. Conversely, 
the PSN framework (blue) closely aligns with the physician-drawn contours (red), substantially reducing boundary discrep-
ancies and enhancing the segmentation accuracy.

Fig 4.  (a–b) Visual comparisons of CTV segmentation against reference contours (red), including outputs from the deformed planning CT 
(yellow), pre-trained model (green), and PSN

adaptive
 (blue).  (a) Axial slice; (b) magnified view in a complex region. (c–e) 3D deviation maps between 

reference contours and segmentation results from the pre-trained model (c), deformed CT (d), and PSN
adaptive

 model trained on the 1st fraction (e).

https://doi.org/10.1371/journal.pone.0332603.g004

https://doi.org/10.1371/journal.pone.0332603.g004
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Notably, the PSN framework showed marked improvements in specific anatomical subregions, such as the apex and 
base of the prostate, where inter-fractional variability is typically higher and soft-tissue contrast is limited on CBCT. In the 
seminal vesicle region, especially in cases where it was partially included in the CTV, the PSN-based contours captured 
the elongated and variable shape more faithfully than both the pre-trained model and the deformed planning CT. These 
improvements were visually consistent across multiple test cases.

Fig 4(c-e) show the 3D deviation maps between the physician-drawn reference contours and segmentation results 
from each method. The deviation maps utilize color coding, with red and blue indicating positive and negative deviations, 
respectively.

(Fig 4 (c)) Pre-trained model vs. label: The map reveals considerable deviations throughout, underscoring the general-
ized model’s limitations in adapting to patient-specific anatomy. (Fig 4 (d)) Deformed planning CT vs. label: This method 
demonstrates improved alignment compared to the pre-trained model, but notable discrepancies persist, particularly at the 
boundary regions. (Fig 4 (e)) PSN framework vs. label: The deviation map displays minimal deviations, reflecting superior 
conformity with the reference contours and validating the effectiveness of the patient-specific PSN framework in achieving 
high segmentation accuracy

In particular, the deviation maps show that the largest improvements from PSN occurred at the anterior base and pos-
terior apex, where CBCT quality often degrades and inter-observer variability is highest. The model’s ability to consistently 
match physician contours in these anatomically challenging regions underscores its clinical utility in adaptive radiotherapy.

Discussion

This study significantly advances prostate CTV segmentation by integrating the Swin UNETR model within the PSN 
framework, a patient‑specific deep‑learning approach. Unlike generalized models, which often struggle to delineate indi-
vidual patient anatomy accurately due to inter‑patient variability and limited adaptability to daily anatomical changes, PSN 
dynamically fine‑tunes segmentation using sequential CBCT data. Generalized deep‑learning models typically achieve 
suboptimal accuracy because of their fixed parameters and inability to incorporate sequential, patient‑specific data. Sim-
ilarly, deformable registration methods, despite wide clinical use, frequently yield suboptimal contours owing to inherent 
inaccuracies in handling significant anatomical variations, as reported extensively in the radiotherapy literature.

Compared with previous studies on CBCT‑based online adaptive radiotherapy (oART), which primarily evaluated 
dosimetric improvements and workflow feasibility using the Ethos system but highlighted persistent limitations in contour-
ing accuracy that required manual physician intervention, our study contributes a novel solution by directly addressing 
the challenge of precise auto‑segmentation in daily ART [3,25]. By integrating PSN with transformer‑based architectures, 
our approach demonstrates significant improvements in segmentation precision and establishes a robust foundation for 
efficient and reliable adaptive planning without frequent manual corrections. Visual assessments by experienced clinicians 
confirmed clinically plausible segmentation, showing improvements over both Ethos‑generated deformation‑based con-
tours and baseline Swin UNETR segmentations.

In this study, we quantitatively evaluated PSN
adaptive

 and PSN
sequence

 using DSC, HD, and MSD standard segmentation 
metrics that, although not directly used in clinical decision‑making, serve as important indicators of technical accuracy. 
The achieved DSCs exceeded 0.97, well above the commonly cited clinical acceptability threshold of 0.90 for prostate 
targets [26] and surpassing the 0.95 level often interpreted as highly reliable [26,27]. Regarding HD, values below 3 mm 
have been suggested as a spatial‑accuracy requirement for clinical prostate contouring [28], and both PSN variants con-
sistently met this benchmark. Similarly, MSD values remained below 1 mm, with values under 0.6 mm reflecting excellent 
conformity with expert contours [29]. These results not only indicate technical excellence but also point to strong potential 
for clinical adoption with minimal adaptation.

To further validate the consistency and generalizability of our findings, we additionally evaluated PSN using Dynamic 
UNet, a widely used, publicly benchmarked segmentation backbone [30,31]. Results (S2 and S3 Table in S1 File) 
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paralleled those obtained with Swin UNETR across all metrics, reinforcing the architecture‑independent benefits of PSN in 
adaptive prostate segmentation.

Notably, recent studies employing personalized deep‑learning strategies akin to PSN have consistently shown supe-
rior segmentation accuracy versus generalized methods and deformable registration in prostate cancer radiotherapy 
[13,32,33]. While earlier work relied mainly on MRI‑based ART data, our study demonstrates that accurate patient‑specific 
segmentation is also achievable in CBCT workflows despite the modality’s lower soft‑tissue contrast. A key distinguish-
ing feature of PSN is its formalization of continuous, sequential adaptation: unlike static patient‑specific models, PSN 
is updated using the complete series of daily CBCTs, making it uniquely suited for online ART workflows and marking a 
conceptual advance over previous personalization strategies [34].

Clinically, PSN offers substantial workflow benefits by automating adaptive segmentation, reducing physician work-
load, and improving reproducibility. Its fast incremental training enables integration into routine practice without disrupting 
ART schedules. Similar to the Ethos intelligent‑optimization engine (IOE) that has demonstrated planning efficiency in 
real‑world ART [35], PSN facilitates rapid adaptation and enhances confidence in daily contours, particularly in anatomi-
cally complex regions where deformable registration struggles.

Although Wilcoxon tests did not show statistical significance (adjusted p > 0.05) for most metrics, particularly in terms 
of DSC, PSN offers practical and conceptual advantages that extend beyond mean segmentation accuracy. DIR relies 
on predefined deformation fields and may produce spatially inconsistent errors in anatomically irregular or low-contrast 
regions. In contrast, PSN enables dynamic, patient-specific adaptation without manual tuning or reliance on registration 
assumptions. By operating in an end-to-end fashion and directly optimizing ground-truth masks, PSN avoids potential 
image-warping artifacts and reduces error propagation. The consistency and reduced inter-fraction variability observed 
across patients (S1 Fig) further support its robustness, indicating stable improvements rather than outlier-driven gains. 
Moreover, PSN

sequence
 offers constant and predictable per-step training time, while PSN

adaptive
 enables deeper personal-

ization as more fractions are assimilated, providing clinicians with control over the latency–performance trade-off. These 
properties collectively position PSN as a reliable and efficient alternative, or complement, to DIR-based workflows, espe-
cially in anatomically complex or time-constrained adaptive radiotherapy settings.

Beyond target‑volume segmentation, the PSN framework also shows a promise for OARs such as bladder and rec-
tum, which typically exhibit substantial inter-fraction anatomical and volumetric variation during prostate radiotherapy. 
These variations are often driven by physiological factors, for example, variable bladder filling or rectal gas, rather than 
stable patient-specific anatomy, and they frequently challenge the accuracy of deformable registration. In contrast, PSN’s 
sequential learning mechanism enables dynamic adaptation by leveraging daily CBCT data, allowing it to model evolving 
organ shapes over time and potentially improving robustness in regions where registration often fails. Recent CBCT-
based studies have demonstrated that deep learning can achieve accurate segmentation of these OARs despite the high 
variability of the organs: Fu et al. reported mean DSCs of 0.96 and 0.93 for the bladder and the rectum, respectively, using 
CBCT and synthetic MR [7]; Léger et al. achieved 0.874 and 0.814 with cross-domain augmentation [36]; and Radici et 
al. confirmed that deep learning-generated contours are clinically acceptable and require minimal manual revision [37]. 
Based on these findings, PSN may further enhance OAR segmentation by learning patient-specific physiological patterns 
rather than relying on the static anatomical assumptions, offering the potential to reduce manual contour edits and stream-
line adaptive workflows in online ART.

Despite these encouraging results, our study has several limitations that inform future directions. First, the analysis 
relied on a relatively small, single‑institution cohort (26 patients, 119 fractions in total; evaluations on five patients, 25 
fractions) acquired on one CBCT platform (Ethos), which may restrict generalizability. Second, PSN performance depends 
on stable CBCT image quality and introduces additional computational overhead that could challenge clinical throughput. 
To address these issues, we are (i) forming multi‑institutional collaborations to enlarge and diversify the dataset, (ii) testing 
PSN robustness under variable imaging protocols and scanner types, (iii) optimizing code and hardware for real‑time 
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execution, and (iv) exploring reinforcement‑learning‑based online adaptation. Prospective studies will also measure 
contour‑editing time savings and dosimetry impact to establish clinically meaningful end‑points, paving the way for PSN 
deployment across diverse adaptive‑radiotherapy platforms and anatomical sites [25,32–35,38–40].

Conclusion

This study demonstrates that the PSN framework enables highly accurate, patient-specific segmentation for CBCT-guided 
adaptive radiotherapy in prostate cancer, achieving clinically acceptable performance (mean DSC > 0.97, HD < 3 mm) and 
substantially reducing manual contour-editing requirements compared with both generalized deep learning models and 
deformable image registration. By supporting rapid, incremental model updates using daily imaging data, PSN integrates 
seamlessly into online adaptive workflows and offers a scalable foundation for broader deployment across diverse ana-
tomical sites and imaging platforms.

Supporting information

S1 File.  Supporting information. This file includes S1 Appendix (Equations for evaluation metrics), S1 Table (Patient 
Characteristics), S2 Table (Average DSC, HD, and MSD for the PSNadaptive approach using Dynamic Unet), and S3 
Table (Average DSC, HD, and MSD for the PSNsequence approach using Dynamic Unet).
(PDF)

S2 File.  Minimal data set. This file contains the underlying raw data for the five patients evaluated in this study. It 
includes the individual values for all geometric metrics (DSC, HD, MSD) and dosimetric metrics (|ΔD

95
|, |ΔD

98
|, |ΔD

mean
|, 

|ΔD
2
|) which were used to calculate the summary statistics presented in the manuscript’s tables.

(XLSX)

S1 Fig.  Patient-wise DSC across fractions. This figure illustrates the per-patient DSC trajectory, comparing the pre-
trained model with the PSN

adaptive
 and PSN

sequence
 variants over five treatment fractions.

(JPG)

S2 Fig.  DVH for a representative patient. This figure shows a representative DVH for the fifth treatment fraction of 
a single patient, comparing the dose distribution for contours generated by the physician (reference), DIR, pre-trained 
model, PSN

adaptive
, and PSN

sequence
 methods.

(JPG)

Author contributions

Conceptualization: Byung-Hee Kang, Jin Sung Kim.

Data curation: Byung-Hee Kang, Younghee Park, Eungman Lee.

Formal analysis: Joonil Hwang.

Investigation: Joonil Hwang, Dong Hyeok Choi.

Methodology: Joonil Hwang, Dong Hyeok Choi.

Project administration: Jin Sung Kim, Seungryong Cho, Eungman Lee.

Resources: Jin Sung Kim.

Software: Joonil Hwang.

Validation: Byung-Hee Kang, Younghee Park.

Visualization: Joonil Hwang.

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0332603.s001
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0332603.s002
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0332603.s003
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0332603.s004


PLOS One | https://doi.org/10.1371/journal.pone.0332603  September 19, 2025 16 / 17

Writing – original draft: Joonil Hwang, Byung-Hee Kang.

Writing – review & editing: Joonil Hwang, Byung-Hee Kang, Jin Sung Kim, Seungryong Cho, Eungman Lee.

References
	 1.	 van As N, Griffin C, Tree A, Patel J, Ostler P, van der Voet H, et al. Phase 3 trial of stereotactic body radiotherapy in localized prostate cancer. N 

Engl J Med. 2024;391(15):1413–25. https://doi.org/10.1056/NEJMoa2403365 PMID: 39413377

	 2.	 Christiansen RL, Dysager L, Hansen CR, Jensen HR, Schytte T, Nyborg CJ. Online adaptive radiotherapy potentially reduces toxicity for high-risk 
prostate cancer treatment. Radiother Oncol. 2022;167:165–71.

	 3.	 Byrne M, Archibald-Heeren B, Hu Y, Teh A, Beserminji R, Cai E, et al. Varian ethos online adaptive radiotherapy for prostate cancer: early results 
of contouring accuracy, treatment plan quality, and treatment time. J Appl Clin Med Phys. 2022;23(1):e13479. https://doi.org/10.1002/acm2.13479 
PMID: 34846098

	 4.	 Langen KM, Willoughby TR, Meeks SL, Santhanam A, Cunningham A, Levine L, et al. Observations on real-time prostate gland motion using elec-
tromagnetic tracking. Int J Radiat Oncol Biol Phys. 2008;71(4):1084–90. https://doi.org/10.1016/j.ijrobp.2007.11.054 PMID: 18280057

	 5.	 Ghilezan MJ, Jaffray DA, Siewerdsen JH, Van Herk M, Shetty A, Sharpe MB, et al. Prostate gland motion assessed with cine-magnetic resonance 
imaging (cine-MRI). Int J Radiat Oncol Biol Phys. 2005;62(2):406–17. https://doi.org/10.1016/j.ijrobp.2003.10.017 PMID: 15890582

	 6.	 Brand VJ, Milder MTW, Christianen MEMC, Hoogeman MS, Incrocci L. Seminal vesicle inter- and intra-fraction motion during radiotherapy for 
prostate cancer: A review. Radiother Oncol. 2022;169:15–24. https://doi.org/10.1016/j.radonc.2022.02.002 PMID: 35157975

	 7.	 Fu Y, Lei Y, Wang T, Tian S, Patel P, Jani AB, et al. Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy. Med 
Phys. 2020;47(8):3415–22. https://doi.org/10.1002/mp.14196 PMID: 32323330

	 8.	 Leeman JE, Shin KY, Chen YH, Mak RH, Nguyen PL, D’Amico AV, et al. Acute toxicity comparison of magnetic resonance‐guided adaptive versus 
fiducial or computed tomography‐guided non‐adaptive prostate stereotactic body radiotherapy: a systematic review and meta‐analysis. Cancer. 
2023;129(19):3044–52.

	 9.	 Galand A, Prunaretty J, Mir N, Morel A, Bourgier C, Aillères N, et al. Feasibility study of adaptive radiotherapy with Ethos for breast cancer. Front 
Oncol. 2023;13:1274082. https://doi.org/10.3389/fonc.2023.1274082 PMID: 38023141

	10.	 Prunaretty J, Lopez L, Cabaille M, Bourgier C, Morel A, Azria D. Evaluation of Ethos intelligent optimization engine for left locally advanced breast 
cancer. Front Oncol. 2024;14:1399978.

	11.	 Matoska T, Patel M, Liu H, Beriwal S. Review of deep learning based autosegmentation for clinical target volume: current status and future direc-
tions. Adv Radiat Oncol. 2024;9(5):101470. https://doi.org/10.1016/j.adro.2024.101470 PMID: 38550365

	12.	 Cha E, Elguindi S, Onochie I, Gorovets D, Deasy JO, Zelefsky M, et al. Clinical implementation of deep learning contour autosegmentation for 
prostate radiotherapy. Radiother Oncol. 2021;159:1–7. https://doi.org/10.1016/j.radonc.2021.02.040 PMID: 33667591

	13.	 Kawula M, Hadi I, Nierer L, Vagni M, Cusumano D, Boldrini L, et al. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T 
MRgRT of prostate cancer: a bi-centric evaluation. Med Phys. 2023;50(3):1573–85. https://doi.org/10.1002/mp.16056 PMID: 36259384

	14.	 Duan J, Bernard M, Downes L, Willows B, Feng X, Mourad WF, et al. Evaluating the clinical acceptability of deep learning contours of prostate 
and organs-at-risk in an automated prostate treatment planning process. Med Phys. 2022;49(4):2570–81. https://doi.org/10.1002/mp.15525 PMID: 
35147216

	15.	 Balagopal A, Nguyen D, Morgan H, Weng Y, Dohopolski M, Lin M-H, et al. A deep learning-based framework for segmenting invisible clinical target 
volumes with estimated uncertainties for post-operative prostate cancer radiotherapy. Med Image Anal. 2021;72:102101. https://doi.org/10.1016/j.
media.2021.102101 PMID: 34111573

	16.	 Salembier C, Villeirs G, De Bari B, Hoskin P, Pieters BR, Van Vulpen M, et al. ESTRO ACROP consensus guideline on CT- and MRI-based target 
volume delineation for primary radiation therapy of localized prostate cancer. Radiother Oncol. 2018;127(1):49–61. https://doi.org/10.1016/j.
radonc.2018.01.014 PMID: 29496279

	17.	 Li G, Li Y, Wang J, Gao X, Zhong Q, He L. Guidelines for radiotherapy of prostate cancer (2020 edition). Precision Radiat Oncol. 2021;5(3):160–82.

	18.	 Mitchell DM, Perry L, Smith S, Elliott T, Wylie JP, Cowan RA, et al. Assessing the effect of a contouring protocol on postprostatectomy radiotherapy 
clinical target volumes and interphysician variation. Int J Radiat Oncol Biol Phys. 2009;75(4):990–3. https://doi.org/10.1016/j.ijrobp.2008.12.042 
PMID: 19345515

	19.	 Lee E, Park W, Ahn SH, Cho JH, Kim JH, Cho KH, et al. Interobserver variation in target volume for salvage radiotherapy in recurrent prostate can-
cer patients after radical prostatectomy using CT versus combined CT and MRI: a multicenter study (KROG 13-11). Radiat Oncol J. 2018;36(1):11–
6. https://doi.org/10.3857/roj.2017.00080 PMID: 29207866

	20.	 Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D. Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. 
International MICCAI Brainlesion Workshop. Springer; 2021.

	21.	 Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, et al. Monai: An open-source framework for deep learning in healthcare. arXiv preprint 
arXiv:221102701. 2022.

https://doi.org/10.1056/NEJMoa2403365
http://www.ncbi.nlm.nih.gov/pubmed/39413377
https://doi.org/10.1002/acm2.13479
http://www.ncbi.nlm.nih.gov/pubmed/34846098
https://doi.org/10.1016/j.ijrobp.2007.11.054
http://www.ncbi.nlm.nih.gov/pubmed/18280057
https://doi.org/10.1016/j.ijrobp.2003.10.017
http://www.ncbi.nlm.nih.gov/pubmed/15890582
https://doi.org/10.1016/j.radonc.2022.02.002
http://www.ncbi.nlm.nih.gov/pubmed/35157975
https://doi.org/10.1002/mp.14196
http://www.ncbi.nlm.nih.gov/pubmed/32323330
https://doi.org/10.3389/fonc.2023.1274082
http://www.ncbi.nlm.nih.gov/pubmed/38023141
https://doi.org/10.1016/j.adro.2024.101470
http://www.ncbi.nlm.nih.gov/pubmed/38550365
https://doi.org/10.1016/j.radonc.2021.02.040
http://www.ncbi.nlm.nih.gov/pubmed/33667591
https://doi.org/10.1002/mp.16056
http://www.ncbi.nlm.nih.gov/pubmed/36259384
https://doi.org/10.1002/mp.15525
http://www.ncbi.nlm.nih.gov/pubmed/35147216
https://doi.org/10.1016/j.media.2021.102101
https://doi.org/10.1016/j.media.2021.102101
http://www.ncbi.nlm.nih.gov/pubmed/34111573
https://doi.org/10.1016/j.radonc.2018.01.014
https://doi.org/10.1016/j.radonc.2018.01.014
http://www.ncbi.nlm.nih.gov/pubmed/29496279
https://doi.org/10.1016/j.ijrobp.2008.12.042
http://www.ncbi.nlm.nih.gov/pubmed/19345515
https://doi.org/10.3857/roj.2017.00080
http://www.ncbi.nlm.nih.gov/pubmed/29207866


PLOS One | https://doi.org/10.1371/journal.pone.0332603  September 19, 2025 17 / 17

	22.	 Tang Y, Yang D, Li W, Roth HR, Landman B, Xu D, et al. Self-supervised pre-training of swin transformers for 3d medical image analysis. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022.

	23.	 Liu Z, Hu H, Lin Y, Yao Z, Xie Z, Wei Y, et al. Swin transformer v2: Scaling up capacity and resolution. Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. 2022.

	24.	 Prescribing, recording and reporting Intensity Modulated Photon Beam Therapy (IMRT)(ICRU report 83). Washington, DC; International Commis-
sion on Radiation Units and Measurements; 2010.

	25.	 Fischer J, Fischer L, Bensberg J, Bojko N, Bouabdallaoui M, Frohn J, et al. CBCT-based online adaptive radiotherapy of the prostate bed: first 
clinical experience and comparison to nonadaptive conventional IGRT. Strahlentherapie und Onkologie. 2024;1–12.

	26.	 Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. 2015;15:29. https://
doi.org/10.1186/s12880-015-0068-x PMID: 26263899

	27.	 Montazerolghaem M, Sun Y, Sasso G, Haworth A. U-Net architecture for prostate segmentation: the impact of loss function on system perfor-
mance. Bioengineering (Basel). 2023;10(4):412. https://doi.org/10.3390/bioengineering10040412 PMID: 37106600

	28.	 Miura H, Ishihara S, Kenjo M, Nakao M, Ozawa S, Kagemoto M. Evaluation of the accuracy of automated segmentation based on deep learning 
for prostate cancer patients. Med Dosim. 2025;50(1):91–5. https://doi.org/10.1016/j.meddos.2024.09.002 PMID: 39384488

	29.	 Lei Y, Tian S, He X, Wang T, Wang B, Patel P, et al. Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net. Med 
Phys. 2019;46(7):3194–206. https://doi.org/10.1002/mp.13577 PMID: 31074513

	30.	 Isensee F, Jäger PF, Kohl SA, Petersen J, Maier-Hein KH. Automated design of deep learning methods for biomedical image segmentation. arXiv 
preprint arXiv:190408128. 2019.

	31.	 Yang J, Marcus DS, Sotiras A. Dynamic U-Net: adaptively calibrate features for abdominal multiorgan segmentation. Medical Imaging 2025:  
Computer-Aided Diagnosis. SPIE; 2025.

	32.	 Li Z, Zhang W, Li B, Zhu J, Peng Y, Li C, et al. Patient-specific daily updated deep learning auto-segmentation for MRI-guided adaptive radiother-
apy. Radiother Oncol. 2022;177:222–30. https://doi.org/10.1016/j.radonc.2022.11.004 PMID: 36375561

	33.	 Chen X, Ma X, Yan X, Luo F, Yang S, Wang Z, et al. Personalized auto-segmentation for magnetic resonance imaging-guided adaptive radiother-
apy of prostate cancer. Med Phys. 2022;49(8):4971–9. https://doi.org/10.1002/mp.15793 PMID: 35670079

	34.	 Jeong S, Cheon W, Kim S, Park W, Han Y. Deep-learning-based segmentation using individual patient data on prostate cancer radiation therapy. 
PLoS One. 2024;19(7):e0308181.

	35.	 Prunaretty J, Mekki F, Laurent P-I, Morel A, Hinault P, Bourgier C, et al. Clinical feasibility of Ethos auto-segmentation for adaptive whole-breast 
cancer treatment. Front Oncol. 2024;14:1507806. https://doi.org/10.3389/fonc.2024.1507806 PMID: 39720564

	36.	 Léger J, Brion E, Desbordes P, De Vleeschouwer C, Lee JA, Macq B. Cross-domain data augmentation for deep-learning-based male pelvic organ 
segmentation in cone beam CT. Appl Sci. 2020;10(3):1154.

	37.	 Radici L, Piva C, Casanova Borca V, Cante D, Ferrario S, Paolini M, et al. Clinical evaluation of a deep learning CBCT auto-segmentation software 
for prostate adaptive radiation therapy. Clin Transl Radiat Oncol. 2024;47:100796. https://doi.org/10.1016/j.ctro.2024.100796 PMID: 38884004

	38.	 Issa T, Angel E, Zehraoui F. Biobjective gradient descent for feature selection on high dimension, low sample size data. PLoS One. 
2024;19(7):e0305654. https://doi.org/10.1371/journal.pone.0305654 PMID: 39024199

	39.	 Wang H, Liu X, Song Y, Yin P, Zou J, Shi X, et al. Feasibility study of adaptive radiotherapy for esophageal cancer using artificial intelligence 
autosegmentation based on MR-Linac. Front Oncol. 2023;13:1172135. https://doi.org/10.3389/fonc.2023.1172135 PMID: 37361583

	40.	 Pang EPP, Tan HQ, Wang F, Niemelä J, Bolard G, Ramadan S, et al. Multicentre evaluation of deep learning CT autosegmentation of the head and 
neck region for radiotherapy. NPJ Digit Med. 2025;8(1):312. https://doi.org/10.1038/s41746-025-01624-z PMID: 40419731

https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
http://www.ncbi.nlm.nih.gov/pubmed/26263899
https://doi.org/10.3390/bioengineering10040412
http://www.ncbi.nlm.nih.gov/pubmed/37106600
https://doi.org/10.1016/j.meddos.2024.09.002
http://www.ncbi.nlm.nih.gov/pubmed/39384488
https://doi.org/10.1002/mp.13577
http://www.ncbi.nlm.nih.gov/pubmed/31074513
https://doi.org/10.1016/j.radonc.2022.11.004
http://www.ncbi.nlm.nih.gov/pubmed/36375561
https://doi.org/10.1002/mp.15793
http://www.ncbi.nlm.nih.gov/pubmed/35670079
https://doi.org/10.3389/fonc.2024.1507806
http://www.ncbi.nlm.nih.gov/pubmed/39720564
https://doi.org/10.1016/j.ctro.2024.100796
http://www.ncbi.nlm.nih.gov/pubmed/38884004
https://doi.org/10.1371/journal.pone.0305654
http://www.ncbi.nlm.nih.gov/pubmed/39024199
https://doi.org/10.3389/fonc.2023.1172135
http://www.ncbi.nlm.nih.gov/pubmed/37361583
https://doi.org/10.1038/s41746-025-01624-z
http://www.ncbi.nlm.nih.gov/pubmed/40419731

