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Abstract: Hair luster, a key component of visual hair quality, depends largely on the in-
tegrity of the cuticle. While cosmetic products offer temporarily enhanced luster, their
effects are limited due to a poor understanding of the underlying molecular mechanisms.
In this study, we employed a UVB-induced mouse model of hair luster loss to identify
differentially expressed genes via quantitative real-time reverse transcription PCR. Key
candidate genes were subsequently validated in vitro using human hair follicle dermal
papilla cells and in ex vivo human scalp hair follicle tissue models. Subsequently, we evalu-
ated the effects of minoxidil, caffeine, and biotin on gene expression and luster restoration.
UVB exposure suppressed several luster-related genes, with COL7A1 consistently down-
regulated across all models. Treatment with minoxidil, caffeine, and biotin restored the
expression of COL7A1 along with KRTAP5-5, KRTAP5-4, TGM3, and PTK7. These findings
highlight COL7A1 as a novel molecular marker for hair luster and support its modulation
as a potential therapeutic strategy.

Keywords: COL7A1; hair luster; KRTAP; minoxidil; biotin; caffeine

1. Introduction
Hair plays a vital role in both personal appearance and dermatological assessment,

reflecting an individual’s overall health and grooming. Clinicians often evaluate character-
istics such as shaft diameter, elasticity, and scalp conditions—like pH and erythema—to
assess hair integrity [1,2]. Among these features, hair luster, defined as the ability of
hair fibers to reflect light, stands out as a key determinant of visual appeal [3]. It is
primarily influenced by the structural quality and smoothness of the cuticle, the hair’s
outermost layer [4]. The cuticle comprises overlapping flattened cells, each of which pos-
sesses multiple layers, namely the epicuticle, A-layer, exocuticle, endocuticle, and cell
membrane complex (CMC) [5]. The rich cysteine component in the A-layer and exocuticle
contributes to the mechanical resilience of the hair fiber via abundant disulfide bonds. The
CMC, meanwhile, links individual cuticle cells together [5]. The outermost membrane,
known as the epicuticle, is structurally constituted by keratin-associated proteins (KRTAP),
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a family of high-sulfur proteins cross-linked together, promoting cuticle cohesion and
smoothness [6–8]. In addition, 18-methyleicosanoic acid (18-MEA), the predominant lipid
component of the epicuticle covalently bound to the cuticle by thioester linkages, covers
the entirety of this layer [9]. This fatty acid offers the first protective hydrophobic barrier
for hair luster against external insults and reduces friction between hair fibers to prevent
physical wear [9]. However, hair luster is still highly susceptible to damage from envi-
ronmental and lifestyle factors, including ultraviolet (UV) radiation, chemical exposure,
mechanical trauma, and nutritional deficiencies [10]. Ultraviolet B (UVB) radiation, in
particular, causes major morphological alterations to the cuticle compared to UVA, due
to its concentrated impact on more superficial levels [11,12]. UVB disrupts the protein
architecture of the cuticle via rupture of disulfide bonds, leading to surface irregularities
and porosity that reduce light reflectivity and luster [9,12,13]. UVB-induced loss of the
18-MEA layer is also attributable to this consequence [14].

To counteract the detrimental effects on hair luster, numerous cosmetic treatments,
mainly shampoos and conditioners, have been developed and commercialized on the
market as solutions. However, their effects are often temporary, resulting from the filling of
surface fractures or chemically flattening the cuticle, and do not address the underlying
biological mechanisms [9,15]. Thus, there is an unmet need to develop lasting treatments
that restore luster through molecular-level repair and regulation. Yet, the molecular basis
of hair luster remains poorly understood, with few validated genetic targets. This limits
the development of durable, targeted therapies.

To address this gap, we designed a comprehensive study employing in vitro, ex
vivo, and in vivo models to identify and validate novel molecular factors involved in hair
luster regulation. Using our previously described UVB-induced hair luster loss mouse
model [6], we identified candidate genes that were further validated in human hair follicle
dermal papilla cells (HFDPCs) and human scalp hair follicle tissues. Additionally, this
study investigated whether minoxidil, biotin, and caffeine—compounds commonly used in
dermatology—could restore luster at the gene expression level. We hypothesize that these
treatments may reverse UVB-induced changes and upregulate key genes contributing to
cuticle integrity and light reflectivity.

This study aims to broaden our understanding of the genetic regulation of hair lus-
ter and provide a molecular framework for future interventions targeting both cosmetic
outcomes and follicular health.

2. Materials and Methods
2.1. In Vivo UVB-Induced Hair Luster Loss Mouse Model

Our previously established mouse model demonstrated a significant reduction in
hair luster after UVB irradiation and its restoration after oral treatment with minoxidil [6].
Regarding the assessment of hair luster, we utilized the Investigator’s Global Assessment
(IGA) scale and computer-based quantification of luminous pixels on photographs [6].
Specifically, the IGA scale consisted of 5 categories: −2, extremely rough; −1, rough; 0,
normal; 1, lustrous; and 2, extremely lustrous. For photographs, we used a dedicated light
source with an intensity of 650 lux to illuminate the skin sample mounted on a rod. We
took photos with a camera strategically placed 40 cm away from the sample, forming a
70-degree angle with the light source for optimal lighting. Additionally, photographic
parameters were rigorously controlled: the camera’s shutter speed was 1/125, with an
aperture of f/5.6, International Organization for Standardization sensitivity of 200, and an
F-number of 10. We then used the I-MAXPLUS software (v1.0) to measure hair luster by
detecting shiny regions in photographs, quantifying both their area and brightness, and
expressing the results in pixel values. Based on these methods and findings, our study
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utilized a similar protocol to induce hair luster loss. Five-week-old male C57BL/6 mice
(Orient Bio, Seongnam, Republic of Korea) were used to establish a UVB-induced model
of hair luster loss. We randomly assigned 15 mice to 3 groups (n = 5 per group): control,
UVB-irradiated, and UVB-irradiated with minoxidil treatment. We grouped 3 to 5 mice
per cage under a controlled 12 h light/dark cycle, with unrestricted access to standard
chow and water. All procedures followed the guidelines established by the Association
for Assessment and Accreditation of Laboratory Animal Care International. Prior to the
start of the experiment, the animals were given a 7-day acclimation period to adjust to the
housing conditions. When necessary (during hair shaving or UVB exposure), we sedated
mice using inhalational anesthesia with isoflurane (1.5–2%) (N01AB06, Hana Pharm, Seoul,
Republic of Korea).

One day before starting the experiments, the dorsal hair of mice was shaved with hair
clippers to limit trauma. At the start of the experiment, UVB irradiation was performed to
induce hair luster loss, using a 312 nm UV lamp (BLX312 UV Cross-linker, Vilber Lourmat,
Marne-la-Vallée, Paris, France) at a dose of 60 mJ/cm2 per day for 7 consecutive days,
yielding a cumulative dose of 420 mJ/cm2. In the treatment group, minoxidil (Sigma-
Aldrich, St. Louis, MO, USA) was administered orally via gavage at a dose of 0.5 mg/kg
once daily for 3 weeks. Fourteen days after the final UVB exposure, we collected 5 mm
punch biopsies of skin samples. Next, we homogenized the tissues using a TissueLyser
(Qiagen, Hilden, Germany), then extracted RNA and synthesized complementary DNA
(cDNA). Finally, we performed quantitative real-time reverse transcription polymerase
chain reaction (qRT-PCR) to quantify the expression levels of 10 hair luster–associated
genes (Table 1). The procedure is summarized in Figure 1.

Table 1. List of primers.

Species Primer Name Cat. No

Human

PTK7 Hs00897151_m1

TGM3 Hs00897151_m1

KRTAP4-4 Hs00540375_s1

COL7A1 Hs00164310_m1

KRTAP5-5 Hs03037438_s1

KRTAP5-4 Hs04195613_s1

GAPDH Hs02786624_g1

Mouse

PTK7 Mm00613362_m1

ZTBT16 Mm01176868_m1

TGM3 Mm01268669_m1

TMEM79 Mm00470361_m1

KRTAP4-13 Mm00471879_s1

KRT77 Mm02343482_m1

COL7A1 Mm01227938_m1

KRTAP5-5 Mm03015615_s1

KRTAP9-1 Mm00497172_s1

231006N02Rik Mm03991538_s1

GAPDH Mm99999915_g1
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Figure 1. The procedure and timeline of the UVB-induced hair luster loss in an in vivo mouse model
and minoxidil treatment. D, day; UVB, ultraviolet B.

2.2. In Vitro and Ex Vivo Experiments
2.2.1. In Vitro Human Hair Follicle Dermal Papilla Cell Culture

We cultured HFDPCs (ATCC, Manassas, VA, USA) in Human Follicle Dermal Papilla
Cell Growth Medium (Promocell, Heidelberg, Germany), containing fetal calf serum, bovine
pituitary extract, basic fibroblast growth factor, insulin, and 1% penicillin-streptomycin
(Gibco, Waltham, MA, USA). We maintained cultures at 37 ◦C in a humidified 5% CO2

atmosphere. We then used the cells in passage 5.

2.2.2. Ex Vivo Human Hair Follicles Culture

We acquired post-surgical human scalp tissues from 5 donors and extracted 10 hair fol-
licles from each donor’s tissue. Specifically, we washed the tissues with phosphate-buffered
saline and dissected them under a stereomicroscope (Stemi 508, Zeiss, Oberkochen, Ger-
many) to isolate individual hair follicles. Then, we cultured the follicles in William’s
Medium E (Sigma-Aldrich) supplemented with 2 mM L-glutamine (Sigma-Aldrich),
10 µg/mL insulin (Sigma-Aldrich), 100 ng/mL hydrocortisone (Sigma-Aldrich), 0.1% fun-
gizone (Gibco), 1% antibiotic-antimycotic (Gibco), and 1% penicillin-streptavidin (Gibco).
Finally, we incubated the cultures at 37 ◦C in a 5% CO2 environment.

2.2.3. UVB Irradiation and Treatment

For the in vitro study, we seeded HFDPCs at a density of 5 × 104 cells per well in
6-well plates and cultured until 80% confluence. We irradiated the cells with 60 mJ/cm2

UVB using the UV-crosslinker (Vilber Lourmat) to induce luster loss and subsequently
treated them with minoxidil (5 µM), caffeine (40 ppm), or biotin (30 µg/mL) in a serum-
free medium. We then collected the cells and supernatants after 24 h. For the ex vivo
study, we irradiated isolated hair follicles with 60 mJ/cm2 UVB and treated them with the
same compounds in the same doses. We refreshed the culture medium every 2 days and
harvested the follicles after 12 days.

2.3. RNA Extraction and qRT-PCR

We extracted total RNA from HFDPCs and human hair follicles using TRIzol reagent
(Invitrogen, Waltham, MA, USA), and reverse-transcribed into cDNA using the RNA to
cDNA EcoDry™ Premix (Clontech, Mountain View, CA, USA). qRT-PCR was performed
using the TaqMan Fast Advanced Master Mix (Applied Biosystems, Carlsbad, CA, USA).
The primers used in the experiments are listed in Table 1. Relative quantification of gene
expression levels was calculated using the 2−∆∆CT method, based on the cycle threshold
(CT) values obtained from qRT-PCR. We independently performed each cell experiment at
least three times.

2.4. Ethics

The procedures used and the care of animals were approved by the Institutional
Animal Care and Use Committee at Yonsei University (IACUC No. 2022-0267).
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Human scalp tissue experiments were approved by the Global Medical Research
Center Institutional Review Board (approval No. GIRB-24912-FW).

2.5. Statistical Analysis

All results obtained from the experiment were analyzed as the mean and standard
error of at least 3 independent experiments and were verified using the IBM SPSS Statistics
25.0 program. The significance of the experimental group and the control group was
determined through an independent samples t-test without multiple-comparison correction.
The significance level was set at p < 0.05.

3. Results
3.1. Gene Expression Analysis in Skin Tissue of the UVB-Induced Hair Luster Mouse Model

A previous next-generation sequencing (NGS) analysis identified 10 genes associated
with hair luster that were differentially expressed following UVB irradiation (Table S1) [6]:
PTK7, ZBTB16, KRTAP4-13, KRTAP5-5, TGM3, TMEM79, KRT77, COL7A1, KRTAP9-1, and
2310061N02Rik. To validate these findings, we performed qRT-PCR on skin tissue samples
from the mouse model. The expression levels of PTK7, ZBTB16, TGM3, and TMEM79
were significantly elevated in the UVB-irradiated group compared to controls, with sub-
sequent minoxidil treatment (UVB-MNX group) resulting in marked reductions (p < 0.05,
Figure 2A–D). Conversely, KRT77, COL7A1, KRTAP5-5, KRTAP9-1, and 2310061N02Rik
expression levels were significantly decreased in the UVB-irradiated group relative to
controls, but restored in the UVB-MNX group (p < 0.05, Figure 2E–I). KRTAP4-13 expression
remained unchanged (p > 0.05, Figure 2J). Based on these results, six genes (PTK7, TGM3,
COL7A1, KRTAP5-5, KRTAP5-4, and KRTAP4-4) were selected for further investigation in
human in vitro and ex vivo models.

Figure 2. Gene expression analysis results via qRT-PCR in the hair luster mouse model. (A–J) Relative
mRNA expression levels of hair luster-related genes PTK7, ZTBT16, TGM3, TMEM79, KRT77, COL7A1,



Curr. Issues Mol. Biol. 2025, 47, 468 6 of 12

KRTAP5-5, KRTAP9-1, 231006N02Rik, and KRTAP4-13 were measured in a hair luster mouse model.
All experimental groups were conducted with n = 5. * p < 0.05, ** p <0.01 vs. CON. # p < 0.05,
## p < 0.01, ### p < 0.001 vs. UVB. CON, control group; UVB, ultraviolet B 60 mJ/cm2 irradiated
group; MNX, minoxidil 5 mg/kg/day treated group.

3.2. Gene Expression Analysis in Human Hair Follicle Dermal Papilla Cells

In HFDPCs, UVB irradiation significantly upregulated PTK7 expression, which was
subsequently reversed with minoxidil treatment (p < 0.05, Figure 3A). The expression
of TGM3 and KRTAP4-4 was unaffected by UVB exposure (p > 0.05, Figure 3B,C). In
contrast, COL7A1, KRTAP5-5, and KRTAP5-4 were significantly downregulated in the UVB-
irradiated group and restored with minoxidil treatment (p < 0.05, Figure 3D–F). Additional
experiments evaluated the effects of caffeine (UVB-CFN group) and biotin (UVB-Biotin
group). PTK7 expression, elevated by UVB, was significantly reduced with both treatments
(p < 0.05, Figure 4A). Conversely, COL7A1 expression, suppressed by UVB, was significantly
increased following caffeine and biotin treatment (p < 0.05, Figure 4B).

Figure 3. Gene expression analysis results via qRT-PCR in hair follicle dermal papilla cells. (A–F) Rel-
ative mRNA expression levels of selected hair luster-related genes, including PTK7, TGM3, KRTAP4-4,
COL7A1, KRTAP5-5, and KRTAP5-4, were measured in HFDPCs. All experimental groups were
conducted with n = 3. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. CON. ## p < 0.01, ### p < 0.001 vs.
UVB. CON, control group; UVB, ultraviolet B 60 mJ/cm2 irradiated group; MNX, minoxidil 5 µM
treated group.

Figure 4. Confirmation of PTK7 and COL7A1 gene expression level via qRT-PCR in hair follicle
dermal papilla cells (A,B). All experimental groups were conducted with n = 3. * p < 0.05, ** p < 0.01,
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*** p < 0.001 vs. CON. # p < 0.05, ## p < 0.01, ### p < 0.001 vs. UVB. CON, control group; UVB,
ultraviolet B 60 mJ/cm2 irradiated group; MNX, minoxidil 5 µM treated group; CFN, caffeine 40 ppm
treated group; Biotin, biotin 30 µg/mL treated group.

3.3. Gene Expression Analysis in Human Hair Follicle Tissue

In the human hair follicle tissue model, UVB irradiation resulted in a significant
increase in TGM3 expression, which was reversed by minoxidil (p < 0.05, Figure 5A).
COL7A1 expression was markedly reduced by UVB irradiation and restored in the UVB-
MNX group (p < 0.05, Figure 5B). PTK7 did not show significant changes in this model
(p > 0.05, Figure 5C). Further analysis revealed that both caffeine and biotin treatments
significantly decreased TGM3 expression and increased COL7A1 expression compared to
the UVB-irradiated group (p < 0.05, Figure 6A,B).

Figure 5. Gene expression analysis results via qRT-PCR in human hair follicle tissue. (A–C) Relative
RNA expression levels of selected hair luster-related genes, including TGM3, COL7A1, and PTK7,
were measured in human hair follicle tissues. All experimental groups were conducted with n = 3.
* p < 0.05, ** p < 0.01 vs. CON. # p < 0.05 vs. UVB. CON, control group; UVB, ultraviolet B 60 mJ/cm2

irradiated group; MNX, minoxidil 5 µM treated group.

Figure 6. Confirmation of TGM3 and COL7A1 gene expression levels via qRT-PCR in human hair
follicle tissues (A,B). All experimental groups were conducted with n = 3. * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. CON. # p < 0.05, ## p < 0.01 vs. UVB. CON, control group; UVB, ultraviolet B
60 mJ/cm2 irradiated group; MNX, minoxidil 5µM treated group; CFN, caffeine 40 ppm treated
group; Biotin, biotin 30 µg/mL treated group.

4. Discussion
To investigate molecular regulators of hair luster, this study used our previously

described UVB-induced luster loss model [6] and validated gene expression changes in mice,
human hair follicle dermal papilla cells, and human scalp hair follicle tissue. This multi-
model approach enabled cross-species comparison of UVB effects and treatment responses.
Mechanistically, UVB radiation is known to degrade the 18-MEA layer of the epicuticle
and create microscopic cuticle pits on the hair fiber surface, which leads to increased
light scattering and a reduction in hair luster [9,12–14]. As shown in our study, UVB
exposure disrupted the expression of most target genes. Similar downregulation patterns
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were observed in human models, particularly for COL7A1. In subsequent experiments,
treatment with minoxidil, caffeine, or biotin restored expression levels of COL7A1, PTK7,
TGM3, and KRTAP family genes. These treatment effects suggest a conserved mechanism
of gene modulation across models.

The consistent downregulation of COL7A1 after UVB exposure underscores its impor-
tance in maintaining hair luster. This gene encodes type VII collagen, a key extracellular
matrix protein that anchors the epidermal–dermal junction through interactions with
laminins and integrins [16,17]. Within hair follicles, these anchoring fibrils form part of the
basement membrane zone (BMZ) between the dermal papilla and hair matrix. This zone
supports cell communication and nutrient exchange between dermal fibroblasts and matrix
epithelial cells [18–20]. These cells later differentiate into the cuticle and cortex, which
determine hair strength and luster [18–20]. Additionally, clinical conditions, namely dys-
trophic epidermolysis bullosa and epidermolysis bullosa acquisita, which involve COL7A1
mutations or autoantibodies, often manifest as alopecia and brittle hair [21–23]. Therefore,
replenishing type VII collagen may strengthen the connection between the cuticle and the
follicle base, helping to stabilize the hair shaft and enhance its smoothness as well as light
reflectivity. Additionally, one other possible mechanism by which collagen may restore
hair luster is by enhancing the disulfide bonds to reduce hair structure disruption [24].
Several studies have shown that oral collagen supplementation improves hair luster in
aged mice and human subjects [25,26]. As a whole, these associations further highlight
COL7A′s role in hair fiber integrity through BMZ regulation and restoration of protein
linkage. Nevertheless, additional mechanistic studies are needed to fully explore COL7A1’s
function and therapeutic potential in hair luster restoration.

The altered expression of KRTAP genes in HFDPCs suggests that these proteins also
contribute to hair luster regulation. The hair shaft consists of an outer cuticle, a keratin-
rich cortex, and a central medulla [27,28]. Members of the KRTAP5 family are primarily
expressed in the epicuticle and promote structural integrity and surface smoothness by
forming disulfide bonds with keratin filaments [7,8]. In contrast, KRTAP4, KRTAP9, and
KRTAP13 are localized to the cortex [27]. The UVB-induced downregulation of KRTAP5
genes without significant changes in cortical KRTAPs is consistent with their localization and
specific roles in maintaining cuticle structure and luster. Furthermore, its post-treatment
restoration suggests that KRTAP5 is a possible molecular treatment target for future hair
care formulations.

TGM3, an enzyme that cross-links keratin filaments and proteins like trichohyalin,
showed increased expression in response to UVB-induced damage in our ex vivo model [29].
Interestingly, loss-of-function mutations in TGM3 are linked to uncombable hair syndrome,
a condition characterized by unruly yet lustrous hair [29]. This contrast suggests that
excessive TGM3 expression may reduce luster, possibly by over-stabilizing structural
proteins. Additionally, PTK7, a regulator of the Wnt planar cell polarity pathway, also
showed altered expression after UVB irradiation. Although its role in scalp hair remains
unclear, the observed changes indicate a potential function in follicular regulation [30].

Our findings further clarify the molecular actions of minoxidil, caffeine, and biotin—
agents traditionally used to promote hair growth. These compounds reversed UVB-induced
influence of key structural genes, including COL7A1, KRTAP5-4, KRTAP5-5, TGM3, and
PTK7. While their known mechanisms involve anagen phase induction and metabolic stim-
ulation, our data indicate they may also enhance hair luster by restoring genes associated
with extracellular matrix integrity and cuticle cohesion [31–33]. These insights expand the
therapeutic relevance of these compounds beyond hair regeneration and into the domain of
aesthetic enhancement, suggesting translational opportunities for developing biologically
based cosmeceuticals that target hair quality at the molecular level.
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This study’s strength lies in its comprehensive use of in vitro, ex vivo, and in vivo
models, allowing for translational relevance. Moreover, the evaluation of widely used
therapeutic agents offers clinically applicable insights. However, while this study provides
compelling molecular evidence, it is subject to several limitations. Firstly, our conclusions
are based on mRNA expression levels. Corresponding changes in protein levels were
not confirmed. Future studies should incorporate proteomic analyses and immunohis-
tochemical validation to strengthen mechanistic insights. Secondly, although we used
human-derived dermal papilla cells and ex vivo follicles, these models do not fully recapit-
ulate the complexity of the human scalp environment. Clinical studies will be necessary
to assess the actual impact of these treatments on hair luster in diverse populations. Ad-
ditionally, although some findings showed statistical significance, we did not apply false
discovery rate correction due to the study’s exploratory nature and limited sample size.
Conducting such corrections in this context could be overly conservative, potentially ob-
scuring meaningful changes in gene expression. To validate these preliminary observations,
future studies involving larger cohorts or independent datasets are essential. Lastly, the
scope of compounds tested was limited to only three agents. Broader screening of addi-
tional compounds—including peptides, retinoids, and botanical extracts—may uncover
new candidates for targeted luster enhancement.

Despite limitations, by identifying COL7A1 as a molecular marker associated with
cuticle integrity, this study facilitates the development of targeted treatments aimed at
improving hair luster through biological repair rather than surface coating. This approach
may enable longer-lasting results than traditional cosmetic products, offering therapeutic
benefits for individuals with hair dullness due to environmental stress or aging. More-
over, COL7A1 and its related pathways could serve as biomarkers in future clinical trials
evaluating the efficacy of novel luster-enhancing formulations.

5. Conclusions
In conclusion, this study provides valuable insights into the genetic mechanisms

regulating hair luster by integrating in vitro, ex vivo, and in vivo models. By identifying
key genes such as KRTAP5, TGM3, PTK7, and particularly COL7A1, which are significantly
affected by UVB-induced damage and restored by minoxidil, caffeine, and biotin, this
research highlights potential molecular targets for enhancing hair luster. Further studies
involving clinical trials and broader genetic analyses will be essential to validate these
findings and explore their practical applications in dermatology and hair care.
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