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Abstract: Background and Objectives: Degenerative cervical myelopathy (DCM), a major sub-
type of degenerative cervical disorders, presents with diverse sagittal alignment patterns.
However, radiography-based phenotyping remains underexplored. This study aimed to
identify distinct cervical alignment subgroups using unsupervised clustering analysis and
to explore their potential clinical relevance. Materials and Methods: We analyzed 1371 lateral
cervical radiographs of patients with DCM. C3–C7 sagittal vertical axis (SVA), lordosis, ver-
tical length, and curved length were determined. K-means clustering was applied, and the
optimal cluster number was determined using the elbow method and silhouette analysis.
Clustering validity was assessed using the Calinski–Harabasz and Davies–Bouldin indices.
Results: The final clustering solution was validated with a high Calinski–Harabasz index
(1171.70) and an acceptable Davies–Bouldin index (0.99) at k = 3, confirming the stability
and robustness of the classification. Cluster 1 (forward-head type) exhibited low lordosis
(8.3◦ ± 4.7◦), moderate SVA (95.9 ± 60.2 mm), and a compact cervical structure, consistent
with kyphotic alignment and forward-head displacement. Cluster 2 (normal) showed the
highest lordosis (24.1◦ ± 6.8◦), moderate SVA (70.6 ± 50.2 mm), and balanced sagittal
alignment, indicating a biomechanically stable cervical posture. Cluster 3 (long-neck type)
displayed the highest SVA (135.6 ± 76.7 mm), the longest vertical and curved lengths, and
moderate lordosis, suggesting a structurally elongated cervical spine with anterior head
displacement. Significant differences (p < 0.01) were observed across all clusters, confirming
distinct phenotypic patterns in cervical sagittal alignment. Conclusions: This exploratory
clustering analysis identified three distinct radiographic phenotypes of DCM, reflecting
biomechanical heterogeneity. Although prospective studies linking these phenotypes to
clinical outcomes are warranted, our findings provide a framework for personalized spinal
care in the future.

Keywords: degenerative cervical disorder; cervical sagittal alignment; clustering analysis;
phenotyping; k-means clustering; cervical spine morphology; sagittal vertical axis; cervical
lordosis; forward-head posture; long-neck type

1. Introduction
Degenerative cervical disorders refer to various conditions that affect the cervical

spine, including disk degeneration, spinal stenosis, and cervical spondylosis. Among
these, degenerative cervical myelopathy (DCM) specifically involves spinal cord compres-
sion, leading to neurological impairment, and is the most common cause of spinal cord
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dysfunction in adults [1]. Although imaging findings suggestive of cervical myelopa-
thy are occasionally observed in asymptomatic individuals, the clinical presentation of
DCM remains highly variable [2]. This heterogeneity complicates prognosis and treatment
decision-making, highlighting the need for improved stratification methods.

Recent studies have used machine learning-based cluster analyses to identify distinct
DCM phenotypes using patient-reported outcome measures (PROMs) [1,3,4]. A large-scale
study that applied unsupervised clustering algorithms identified four clinically distinct
DCM phenotypes based on the Nurick score, Neck Disability Index, pain scales, and motor
and sensory function scores [4]. These phenotypes exhibit unique symptom distributions
and distinct long-term functional trajectories, reinforcing the role of symptom-based classi-
fications in predicting postoperative outcomes [2,3,5]. However, Martin et al. reported that
using only PROMs, such as the modified Japanese Orthopedic Association score, has low
sensitivity (33%) for detecting symptom progression, suggesting the need for additional
clinical data to improve monitoring accuracy [5]. Additionally, a recent systematic review
reported that generic PROMs assess overall health but lack sensitivity to disease-specific
factors [6]. Therefore, while PROM-based classifications can capture symptom severity,
they do not account for non-biomechanical factors such as environmental conditions [7],
and biomechanical factors, such as cervical sagittal alignment.

Considering the variability between radiographic findings and clinical presentations,
interest in exploring objective imaging-based phenotyping has grown. Photogrammetric
tools such as the Postural Assessment Software have been utilized to quantify cervical
alignment and postural deviations with high intra- and inter-rater reliability. These tools
have shown value in evaluating musculoskeletal dysfunctions and forward-head pos-
ture [8,9]. However, these methods primarily rely on external surface landmarks and
may not adequately reflect underlying vertebral alignment, especially in deeper spinal
structures. Studies have suggested that improper cervical pillow support can worsen
cervical alignment and contribute to chronic neck pain [10]. Optimizing sleeping posture to
preserve or restore physiological lordosis may theoretically reduce the mechanical stress on
the spine. Such biomechanical considerations, which are identifiable through radiographic
analysis but not captured by PROMs alone, present potential avenues for developing per-
sonalized conservative strategies. In particular, individualized cervical pillows and surgical
treatments tailored to specific cervical alignment profiles have shown promising results
in preliminary studies [11–14]. Although these approaches remain exploratory and re-
quire further validation, radiography-based phenotypes may help bridge the gap between
imaging features and the design of personalized non-surgical and surgical interventions.

To explore these possibilities, we propose an unsupervised clustering analysis using
sagittal radiographic parameters extracted from lateral cervical radiographs of patients
with DCM. We hypothesized that radiographic alignment patterns could be grouped into
distinct cervical phenotypes with biomechanical relevance using unsupervised clustering.
In this study, we focus on sagittal plane measurements because sagittal alignment and
canal compromise are known to influence clinical outcomes in DCM, whereas coronal
plane abnormalities are rare and less associated with neurological impairment [15]. The
primary aim of this study was to identify distinct radiographic phenotypes of cervical
sagittal alignment in patients with degenerative cervical disorders using unsupervised
clustering analysis. The secondary aim was to characterize the biomechanical features of
each phenotype and explore their potential clinical relevance.
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2. Materials and Methods
2.1. Study Design and Data Source

This retrospective study analyzed lateral cervical radiograph data obtained from a pub-
licly accessible dataset on the AI Hub, supported by the Ministry of Science and Information
and Communications Technology, South Korea (URL: https://aihub.or.kr/aihubdata/data/
view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=611 (accessed pe-
riod: 10 February 2025 ~ 11 March 2025). This study was approved by the Institutional
Review Board of the Samsung Medical Center (IRB No. 2025-01-017). The retrospective
nature of this study and the use of anonymized data waived the requirement for informed
consent. The dataset comprised anonymized X-ray images of patients diagnosed with
degenerative cervical myelopathy and included pre-labeled cervical lateral X-ray images
annotated by medical experts. Degenerative cervical myelopathy was diagnosed by experi-
enced spine specialists from three tertiary medical institutions (Samsung Medical Center,
Kyung Hee University Medical Center, and Catholic University Medical Center) based on
clinical symptoms, physical examinations, and imaging findings such as cervical radiogra-
phy, computed tomography, and magnetic resonance image scans. The diagnostic criteria
followed the standard clinical guidelines widely accepted in spinal care, including evidence
of spinal cord compression, neurological symptoms consistent with cervical myelopathy,
and relevant imaging abnormalities. Detailed information on the diagnostic protocols, par-
ticipating institutions, and labeling processes can be found in the Supplementary Materials.
Data were provided through a virtual computing environment for only one month due to
data security and privacy issues.

2.2. Patient Selection and Annotations

For this study, we included patients with labeled DCM and utilized pre-labeled
cervical lateral radiographs (Figure 1). Specifically, annotations included the following:
(1) Identification and marking of anatomical landmarks (key points) on the cervical ver-
tebral bodies (C3–C7). (2) Measurement of cervical sagittal parameters such as cervical
lordosis, sagittal vertical axis (SVA), vertical length, and curved length. (3) Calculation and
labeling of intervertebral angles and vertebral disk heights. (4) Polygon-based segmenta-
tion is used to accurately delineate the cervical vertebral region. All eligible lateral cervical
radiographs were included in this study. As unsupervised clustering does not require
predefined groupings, we used the full dataset to ensure the robustness and generalizability
of the clustering results.

 

Figure 1. Example of labeled lateral cervical spine radiographs used in this study. The dataset
includes segmentation and labeling of the vertebral bodies from C3 to C7.

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=611
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=611
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2.3. Radiographic Measurements

Owing to the limitations of conducting this study within a virtual computing environ-
ment and strictly using the provided dataset, we could not add labeling for C2. Therefore,
all radiographic measurements were referred to as C3. A structured processing pipeline
was developed to facilitate the automated extraction of sagittal alignment parameters from
lateral cervical radiographs. Although this deviates from conventional C2–C7 metrics, we
developed a reproducible automated pipeline to ensure internal consistency. Interpretation
of the results should take this methodological adjustment into account, particularly when
comparing across studies.

Annotation data, originally stored in JSON format, were converted into binary masks
to delineate the vertebral structures. The original image dimensions were dynamically
retrieved, and annotated regions were transformed into polygon masks, with white-filled
areas representing segmented vertebrae. The contours of the vertebrae were then extracted
from these masks for subsequent landmark detection.

Key vertebral landmarks, including centroids and endplate points, were identified
using the generated masks. The centroid of each vertebra was calculated using the polygon
centroid formula to ensure accurate positional representation. For lordosis measurement,
the inferior endplate of C3 and superior endplate of C7 were detected by systematically
analyzing their respective vertebral contours. Specifically, the inferior endplate of C3
was identified by selecting the lowest boundary point within the leftmost 25% of its
contour to ensure a representative point along the anatomical structure. Similarly, the
superior endplate of C7 was determined by selecting the highest boundary point within
the rightmost 25% of its contour. These boundary points were extracted by sorting the
vertebral contour coordinates by the x-axis to establish the left and right regions and
then identifying the lowest or highest y-coordinates within the designated regions. This
structured approach minimized the influence of outlier points and improved measurement
reliability. Additionally, the posterior superior aspect of C7 was localized to establish a
vertical reference line for sagittal vertical axis (SVA) computation.

Using the extracted vertebral landmarks, four key sagittal alignment parameters were
computed: (1) C3 sagittal vertical axis (C3 SVA), defined as the horizontal offset between
the centroid of C3 and a vertical plumb line extending from the posterosuperior aspect of
C7. This metric quantifies the sagittal alignment deviations. (2) C3-7 lordosis was measured
using the Cobb angle calculated between the inferior endplate of C3 and superior endplate
of C7. The angle was obtained by identifying the lines tangential to the endplates and
computing the angle between them. (3) C3–C7 vertebral body centroid distance, determined
as the curved path length connecting the centroids of the C3–C7 vertebral bodies. This
was computed by using the sum of the Euclidean distances between consecutive vertebral
centroids, approximating the cervical curvature. (4) C3–C7 vertical distance, measured as
the absolute vertical displacement between the centroids of C3 and C7, representing the
longitudinal span of the cervical segment.

The proposed method ensures consistent and reproducible sagittal alignment mea-
surements by leveraging polygonal segmentation and landmark-based feature extraction.
Furthermore, the automated contour analysis minimized the observer variability and en-
hanced the measurement accuracy. Error-handling mechanisms have been implemented to
address missing or ambiguous vertebral structures, improving pipeline robustness.



Medicina 2025, 61, 916 5 of 13

2.4. Phenotypic Classification

Unsupervised machine learning techniques were applied to classify patients into
distinct phenotypic subgroups based on the sagittal alignment parameters. The clustering
process began with data preprocessing in which all of the radiographic parameters were
z-score standardized to ensure comparability.

Next, a principal component analysis (PCA) was performed to reduce dimensionality
and enhance visualization. The first two principal components were plotted to assess the
separation between the clusters. The number of principal components was determined
based on the cumulative explained variance ratio to ensure that the selected components
adequately represented the primary variance in the data. Subsequently, K-means clustering
was applied to the transformed principal component values, reducing the effects of the curse
of dimensionality and facilitating clearer cluster separation in the high-dimensional space.

To determine the optimal number of clusters, the elbow method was applied by
evaluating the within-cluster sum of squares and identifying the inflection points on
the curve. Additionally, silhouette analysis was conducted to assess cluster cohesion
and separation.

Based on these results, the k-means clustering algorithm was implemented using the
optimal number of clusters determined by the elbow method and silhouette analysis. To
validate the clustering structure, the Calinski–Harabasz and Davies–Bouldin indices were
calculated to confirm the robustness of the classification. After clustering, the mean and
standard deviation (mean ± SD) of each radiographic parameter within the clusters were
computed, and their standardized feature profiles were visualized to highlight distinct
sagittal alignment patterns.

2.5. Statistical Analysis

Descriptive statistics were used to summarize patient characteristics. Differences be-
tween clusters were assessed using one-way analysis of variance (ANOVA) for continuous
variables. Post hoc Bonferroni tests were used to identify significant pairwise differences.
Statistical significance was set at p < 0.05. All statistical analyses were performed using
Python (Scikit-learn v1.2.2, SciPy 1.10.1, Statsmodels 0.13.5).

3. Results
A total of 1371 patients with degenerative cervical myelopathy were included in the

analysis.

3.1. Clustering Results

Unsupervised k-means clustering was used to classify the patients based on radio-
graphic parameters. The elbow method was used to determine the optimal number of
clusters with a visible inflection point between k = 3 and 4 in the within-cluster sum of
the squares plot, indicating that both values were potential candidates. However, further
evaluation using PCA-based visualizations revealed that the clustering results at k = 4
showed considerable overlap between clusters, leading to poor separation. In contrast,
clustering at k = 3 demonstrated better boundary clarity and spatial separation among the
groups. Therefore, k = 3 was selected as the most appropriate value (Figure 2).
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Figure 2. Determination of the optimal number of clusters using the elbow method and silhouette
analysis. (Top left) Elbow method using the within-cluster sum of squares for determining the optimal
number of clusters (k). (Bottom left and right panels) PCA plots showing clustering results for k = 2,
3, and 4. Each point represents a single case, projected onto the first two principal components (Dim1
and Dim2). Colors indicate cluster assignments. The shaded areas represent the convex hulls of each
cluster in PCA space.

The final clustering solution at k = 3 showed good validity, with a high Calinski–
Harabasz index (1171.70) and an acceptable Davies–Bouldin index (0.99), confirming the
stability and robustness of the classification (Figure 3).

Figure 3. Clustering validation using the Calinski–Harabasz (left) and Davies–Bouldin (right) indices.
The Calinski–Harabasz index decreases sharply up to k = 5 and stabilizes, while the Davies–Bouldin
index peaks at k = 4, indicating excessive cluster overlap.
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3.2. Cluster Profiles

Table 1 summarizes the distinct sagittal alignment characteristics observed across the
three identified phenotypic clusters.

Table 1. Comparison of radiographic parameters across phenotypic clusters.

Parameters
Cluster 1

(Mean ± SD)
(N = 703)

Cluster 2
(Mean ± SD)

(N = 387)

Cluster 3
(Mean ± SD)

(N = 228)

ANOVA Post Hoc Pairwise
Comparison

F
Statistic p 1 vs. 2 1 vs. 3 2 vs. 3

C3–C7 SVA (mm) 95.9 ± 60.2 70.6 ± 50.2 135.6 ± 76.7 82.4 <0.01 <0.01 <0.01 <0.01
C3–C7 Lordosis (◦) 8.3 ± 4.7 24.1 ± 6.8 13.9 ± 9.4 755.5 <0.01 <0.01 <0.01 <0.01

C3–C7 Vertical Length (mm) 457.7 ± 53.8 465.5 ± 56.0 648.0 ± 95.1 825.0 <0.01 0.08 <0.01 <0.01
C3–C7 Curved Length (mm) 550.6 ± 67.0 559.8 ± 74.8 841.5 ± 151.3 977.9 <0.01 0.14 <0.01 <0.01

SD, standard deviation; SVA, sagittal vertical axis.

Cluster 3 showed the highest C3–C7 SVA (135.6 ± 76.7 mm), which was significantly
greater than Cluster 1 (95.9 ± 60.2 mm, p < 0.01) and Cluster 2 (70.6 ± 50.2 mm, p < 0.01).
This indicates that Cluster 3 had the most anterior cervical alignment. In contrast, Cluster
2 had the lowest SVA, representing a more neutral alignment. The difference between
Clusters 1 and 2 was also significant (p < 0.01), showing a gradual increase in the SVA from
Cluster 2 to Cluster 3.

Regarding C3–C7 lordosis, Cluster 2 showed the greatest C3–C7 lordosis (24.1 ± 6.8◦),
which was significantly higher than Cluster 1 (8.3 ± 4.7◦, p < 0.01) and Cluster 3 (13.9 ± 9.4◦,
p < 0.01). Cluster 1 exhibited the lowest lordosis, indicating the highest kyphotic alignment.
The difference between Clusters 1 and 3 was also significant (p < 0.01).

For C3–C7 length, Cluster 3 demonstrated a markedly longer C3–C7 vertical length
(648.0 ± 95.1 mm) than Cluster 1 (457.7 ± 53.8 mm, p < 0.01) and Cluster 2 (465.5 ± 56.0 mm,
p < 0.01). The absence of a significant difference between Clusters 1 and 2 (p = 0.079)
indicated that vertical elongation was a distinctive feature of Cluster 3. A similar
trend was observed in C3–C7 curved length, which was significantly greater in Clus-
ter 3 (841.5 ± 151.3 mm) than in Cluster 1 (550.6 ± 67.0 mm, p < 0.01) and Cluster 2
(559.8 ± 74.8 mm, p < 0.01). No significant difference was observed between Clusters 1 and
2 (p = 0.135).

3.3. Formatting of Mathematical Components

The three identified clusters represented distinct cervical sagittal alignment patterns,
each with unique biomechanical characteristics. Cluster 1 showed the lowest degree of
lordosis and a moderate SVA, consistent with kyphotic alignment and anterior head dis-
placement (Figure 4A). Cluster 2 exhibited the greatest lordosis and a well-balanced cervical
posture (Figure 4B). Cluster 3 was characterized by the most anteriorly displaced cervical
alignment (highest SVA) along with the longest vertical and curved lengths, indicating an
elongated cervical spine morphology (Figure 4C).

The standardized feature profile analysis (Figure 5) further supported these classifi-
cations, highlighting distinct sagittal alignment variations. Cluster 1 (forward-head type)
demonstrated reduced lordosis and moderate SVA, suggesting a kyphotic cervical curve
and anterior head posture. Cluster 2 (normal) showed the highest lordosis. Cluster 3
(long-neck type) exhibited the highest SVA and the longest cervical spine.
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Figure 4. Representative lateral cervical radiographs of each cluster: (A) Cluster 1, (B) Cluster 2, and
(C) Cluster 3.

Figure 5. Z-score standardized profiles of the sagittal alignment parameters across the three identified
clusters.

4. Discussion
We identified three distinct phenotypic subgroups of degenerative cervical myelopathy

based on the sagittal alignment parameters. The forward-head type exhibited reduced
lordosis and moderate sagittal vertical axis, indicating kyphotic cervical alignment and
anterior head displacement. The normal type had the highest lordosis and balanced
sagittal alignment, indicating a stable cervical posture. The long-neck type demonstrated
the highest sagittal vertical axis and the longest cervical spine dimensions, suggesting
a structurally elongated cervical morphology. These phenotypic classifications suggest
biomechanical differences that warrant further investigation regarding their potential
relevance in degenerative cervical myelopathy management.

Cluster 1 was classified as the forward-head type, showing the lowest degree of
lordosis and a moderate SVA, consistent with kyphotic alignment and anterior head dis-
placement (Figure 4A). Cluster 2 was considered the normal type, exhibiting the greatest
lordosis and a well-balanced cervical posture (Figure 4B). Cluster 3 was defined as the
long-neck type, characterized by the most anteriorly displaced cervical alignment (highest
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SVA) along with the longest vertical and curved lengths, indicating an elongated cervical
spine morphology (Figure 4C).

Previous phenotyping studies on DCM have mainly used PROMs for classification.
Khan et al. applied machine learning algorithms to predict postoperative health-related
quality of life [1], whereas Badhiwala et al. explored how different phenotypes relate to
surgical outcomes [2]. Recently, Pedro et al. identified four distinct DCM phenotypes
using cluster analysis, each with unique clinical characteristics and long-term neurological
outcomes [4]. These findings support the potential of phenotyping to improve our under-
standing of DCM pathophysiology and promote more personalized treatment strategies,
which may be difficult to achieve using symptom-based methods alone. However, because
these studies relied on subjective symptom reports, their findings may have been affected by
non-biomechanical factors. In contrast, our radiographic-based phenotyping provides an
objective classification that reflects the underlying structural and biomechanical differences,
thus complementing existing approaches.

The choice of surgical approach for DCM varies according to the cervical alignment
type. This exploratory analysis provides structural observations that can support future
objective classifications. Identifying forward-head, normal, and long-neck phenotypes may
help generate hypotheses for tailoring surgical strategies for specific sagittal alignment
types. The forward-head type (Cluster 1), characterized by reduced lordosis and kyphotic
alignment, shares biomechanical similarities with K-line-negative DCM patients [16]. The
K-line is defined as the line connecting the midpoints of the spinal canal at C2 and C7
on lateral radiographs. Patients classified as K-line-negative have pathologies such as
ossification of the posterior longitudinal ligament (OPLL) extending posteriorly to this
line, indicating a need for more complex or combined surgical approaches to achieve
adequate spinal cord decompression and stability [13]. Several studies have reported
that K-line-negative patients have poor neurological recovery after laminoplasty due to
restricted spinal cord mobility [16,17]. The long-neck type (Cluster 3), with its elongated
cervical structure and highest SVA, shares biomechanical similarities with patients with
increased K-line tilt in the DCM [16,18]. The K-line tilt, defined as the angle between
the K-line and the vertical line, is positively correlated with the C2–C7 SVA [16]. Studies
have shown that a K-line tilt > 10◦ independently predicts poor patient outcomes and
postoperative kyphosis after laminoplasty in multilevel DCM [19,20]. Furthermore, Sakai
et al. recently reported that a K-line tilt >20◦ increased the risk of kyphotic deformity even
in patients with K-line positive cervical OPLL, making laminoplasty alone insufficient in
such cases [21]. Therefore, our identification of these two phenotypes raises the hypothesis
that surgical strategies targeting anterior compressive lesions may be beneficial, given
their higher risk of postoperative kyphosis; however, this hypothesis requires further
validation. Further studies are needed to confirm whether alignment-based classifications
can be directly applied in surgical decision-making. The normal type (Cluster 2) represents
a biomechanically optimal alignment pattern and may serve as a therapeutic target for
interventions aimed at restoring cervical alignment in other phenotypes.

The identification of distinct cervical alignment phenotypes raises the possibility of
informing the future development of customized conservative treatments, particularly
cervical pillows, which are widely used in the management of neurological symptoms and
axial neck pain in DCM. Haoxin et al. reported that a 3D-printed, patient-specific cervical
correction pillow effectively restored cervical lordosis with 88% clinical improvement after
24 weeks, reduced neck and shoulder pain, and improved sleep quality [11]. Türkmen et al.
reported that the effects of pillow materials on comfort and spinal support vary depending
on spinal alignment, such as forward-head posture [12]. Lavin et al. demonstrated that
semi-customized cervical pillows that provided firm lordotic curvature support effectively
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managed neck pain [22]. Yamada et al. indicated that careful pillow height adjustments
significantly improved neck pain and related physical symptoms [10]. Current recommen-
dations typically overlook the variations in individual cervical alignments. Our findings
may inform the design of future customized pillow strategies, although further clinical
validation is required. It is important to note that in patients with DCM, symptoms may
arise from the spinal cord compression itself, whereas others may experience mechanical
axial neck pain not directly related to cord compression. Customized pillows based on
cervical alignment phenotypes may be more applicable to mechanical neck pain than to
myelopathy-related deficits. Additionally, in patients with cervical cord compression or
neurological symptoms that worsen with flexion or extension postures compared to neu-
tral postures, adjusting the sleeping cervical curvature and height to reduce compression
may help minimize cord compression during sleep and alleviate sleep-related cervical
discomfort. Therefore, designing a pillow support to maintain a spinal position that avoids
pathological flexion or extension might provide therapeutic benefits for select patients with
cervical myelopathy. Regarding mechanical neck pain, forward-head type patients may
benefit from pillows with suitable heights to restore lordosis, prevent excessive lordotic
curvature, and minimize discomfort. Normal type patients require pillows that preserve
their naturally balanced cervical alignment. For long-neck type patients (Cluster 3), pillows
should offer extended curve lengths and structural support to maintain cervical lordosis. Of
the three phenotypes, the long-neck type patients had the longest cervical alignment, with
mean C3–C7 vertical and curved lengths of 648.0 mm and 841.5 mm, respectively. Pillows
for this group should include an extended neck support that matches these dimensions. In
addition, since this group also demonstrated the highest SVA of 135.6 mm, the occipital
portion of the pillow may need to be elevated higher than that of other clusters to provide
appropriate support based on each individual’s SVA. Although further studies are needed
to determine whether personalized pillows could affect symptoms or functional outcomes
in DCM, our findings provide preliminary structural insights that could contribute to future
strategies targeting biomechanical factors associated with axial neck pain. Surface-based
photogrammetric tools, which enable the non-invasive assessment of cervical alignment
in functional and sleep-related postures, may complement radiographic phenotyping and
support the development of personalized pillow designs tailored to each alignment type.

Nevertheless, it is important to emphasize that our results are preliminary and
hypothesis-generating. Based on this observational analysis, we cannot conclude cau-
sation or recommend changes in clinical practice. While these radiographic phenotypes
may hypothetically support personalized treatment strategies, our findings do not justify
any changes in current practice. The association between these phenotypes and clinical
outcomes requires confirmation in future prospective studies to determine their prognostic
or therapeutic significance.

This study has several limitations. Firstly, the cross-sectional nature of this study lim-
ited the ability to determine whether the identified radiographic phenotypes are predictive
of clinical outcomes. Longitudinal studies are required to examine how these phenotypes
relate to disease progression and treatment outcomes over time. Secondly, because the
dataset did not include labeled C2 and considerable time was consumed in preparing the
virtual environment and installing the necessary packages after approval, the actual analy-
sis time was reduced to approximately two weeks. Consequently, all measurements used
C3 as the reference, potentially affecting clinical applicability and generalizability. Future
research using C2 lordosis and C2 SVA could better evaluate clinical relevance. Thirdly,
although the annotation quality was indirectly supported by the reported performance
metrics of the AI model used by the dataset provider—specifically, a correlation coefficient
of 0.71 for intervertebral disk height measurement, which is relevant to our study—we were
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unable to independently verify the accuracy of landmark labeling due to the limited access
period and the absence of raw images or manual labeling tools. Future studies should aim
to directly validate landmark accuracy and ensure inter-rater reliability by using datasets
with full access to annotation procedures or by implementing independent manual labeling
protocols. Fourth, this study did not include clinical outcome data; therefore, we could
not assess whether the identified radiographic phenotypes had a prognostic value. Fu-
ture studies that combine radiographic and clinical datasets are required to evaluate their
roles in treatment planning and outcome prediction. Fifth, the use of a dataset composed
exclusively of Korean patients may limit the generalizability of our findings to other pop-
ulations. Finally, although PCA was primarily used to visualize cluster separation, the
selection of principal components was based on the cumulative explained variance. Two
components were selected to sufficiently capture key variations in the data. However, the
PCA-transformed features were not used as direct inputs for clustering. Future studies
should evaluate the potential benefits of integrating PCA into the clustering process.

5. Conclusions
This exploratory study identified three distinct radiographic phenotypes of degenera-

tive cervical myelopathy based on sagittal alignment: forward-head, normal, and long-neck
type. These phenotypes exhibited consistent differences in cervical alignment parame-
ters, suggesting underlying biomechanical diversity among patients. However, owing to
the cross-sectional and observational nature of this study, these findings are hypothesis-
generating and should not be directly extrapolated to clinical practice. Further prospective
studies integrating longitudinal clinical outcomes are necessary to validate the prognostic
and therapeutic significance of these radiographic phenotypes. In the future, radiography-
based phenotyping may complement patient-reported outcomes and contribute to a more
comprehensive approach to personalized spinal care, pending further validation.
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