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Abstract

One of the biggest challenges of histopathology image processing is to preserve structural
similarity while processing for further research. Color normalization algorithms can play a
significant role in preserving the structure of histopathology images from various standpoints.
In this research, we provide a comparative analysis of seven distinct color normalization
algorithms by evaluating three state-of-the-art structural similarity index metrics often
employed in image processing. 100 malignant prostate cancer histopathology tissue images
(256 x 256) from various grading (Gleason score 3, 4, and 5) have been utilized here. The
structure similarity index matrix (SSIM), quaternion structure similarity index matrix
(QSSIM), and multi-scale structure similarity index matrix (MS-SSIM) are three state-of-the-
art quality evaluation metrics used in this research. Also, by computing the mean standard
deviation (SD) of the grayscale images to determine the noise level and signal-to-noise ratio
(SNR), respectively, we examined six denoising algorithms with various parameters to
improve the efficacy of this analysis. This study provides a higher value for each of the three-
similarity metrics, indicating a relatively superior performance for the Blind Color
Decomposition algorithm. Furthermore, the Gaussian algorithm outperforms the six denoising
techniques in terms of SNR and SD. When we integrated the Blind Color Decomposition and
Gaussian algorithm with our experimented specific parameters, we were able to obtain the
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ultimate higher value for all three structural similarity index metrics. We anticipate that this
analysis will have a substantial impact on various aspects of histopathology image processing,
including segmentation, classification, feature extraction, and the creation of novel algorithms.

Keywords: Color normalization, Denoising, Histopathology, Structural similarity,
Image analysis.

1. Introduction

Color variation in histopathology images gives histopathologists various advantages when

analyzing critical information for further diagnosis of cancerous tissue. Color diversity in
histopathology images occurs because of the use of various microscopic scanners, staining
solutions, and staining techniques, which is a broad area of research nowadays for both
pathologists and researchers to aim for early and accurate diagnosis [1]. One of the most
frequently used techniques in histopathology image processing is to utilize various color-
normalizing algorithms to assess these color variations. Researchers have created various color
normalization techniques over the years, each with unique advantages and drawbacks, but one
of the most difficult issues is preserving the fine details and structural similarity of
histopathological images after normalization. Even so, due to these various recording devices,
images contain some random noise during image acquisition which tends to introduce artifacts
and eliminate small features from the histopathological image [2]. To lessen noise from images
while improving image quality and maintaining fine structure features, several denoising
techniques have also been introduced in the field of histopathology image analysis. While it
has been suggested that converting RGB to grayscale can reduce color variance, doing so also
results in information loss [3-5]. Therefore, it may be more efficient to use color normalization
and denoising algorithms to lessen noise and color variations. We implemented seven color
normalization algorithms, including histogram specification [6], min-max normalization [7],
complete color normalization [8], blind color decomposition [9], contrast enhancement
(CLAHE) [10, 11], color deconvolution [12], and macenko [ 13] to make a comparative quality
assessment of histopathology images, with a primary concern of analyzing the structural
similarity from various aspects of a histopathology image. Also, we implemented six image-
denoising techniques including a median [14], gaussian [14, 15], bilateral [15], wavelet [16],
non-local means [17], and mean filter [ 14] as well. The standard quality evaluation matrix has
been utilized to assess the structural similarity of all the approaches employed in our study
using images with varying Gleason scores from a prostate cancer dataset [18]. The following
is a summary of the key findings and contributions of this paper.

(1) Implement seven different color normalization techniques to lower color variation
and improve quality to analyze the structural similarity of the histopathological
prostate cancer images. Additionally, apply six distinct image-denoising techniques
to lower the noise level while maintaining the images' fine features. We also outline
each method's primary benefits and drawbacks.
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(2) We employ three state-of-the-art structural similarity evaluation metrics, namely the
structure similarity index matrix (SSIM), the quaternion structure similarity index
matrix (QSSIM), and the multi-scale structure similarity index matrix (MS-SSIM),
to perform a comparative analysis of the qualitative effects of each color
normalization method on our dataset.

(3) Six distinct denoising methods from linear and non-linear categories were used to
reduce the amount of noise in histopathology images. These methods were assessed
based on the amount of noise levels they produced and the ratio of signal to noise in
the filtered image compared to the original. We provide several statistical analyses
and comparisons of algorithm complexity which justify our goal and objective.

(4) Lastly, we combine the best result-giving color normalization and denoising
techniques to investigate the combined effect. We also evaluate each color
normalization and denoising method's output using the chosen quality evaluation
metrics.

This is how the rest of the article is organized. In section 2, a review of the literature is
provided on the benefits and drawbacks of each color normalization and denoising technique
used in this comparative analysis. The supplies and methods used in this study are presented
in Section 3. To demonstrate the performance differences based on the structural similarity
evaluation metrics using illustrative graphics, we conduct a comparative quality analysis of all
the current algorithms in section 4. In section 5, results and discussion are displayed. Lastly,
section 6 presents the conclusions of our research.

Our work broadens the scope by incorporating a thorough comparative analysis of seven
color normalization methods and six denoising techniques, in contrast to other research that
mostly concentrated on SSIM-based evaluations of color normalization methods. To provide
a more thorough and reliable assessment, we also use three sophisticated similarity evaluation
metrics (SSIM, QSSIM, and MS-SSIM) to evaluate quality preservation at various scales.
While several studies research foundational knowledge and methodologies for color
normalization and denoising methods [1-5], our research explicitly combines structural
similarity assessment with multi-scale denoising techniques for histopathology images.

2. Literature Review

To examine the structural similarity of histopathology tissue images, we select various color
normalization techniques from various categories, including intensity normalization, global
color normalization, color normalization following stain separation by unsupervised
techniques, color decomposition, and statistical techniques. Numerous studies demonstrate
that, by considering various factors, normalization techniques from different categories have
diverse impacts on tissue images related to histopathology [3-5]. Histogram specification, like
global color normalization techniques, can be accomplished by splitting color appearance and
intensity information across multiple color spaces (RGB, HSV, and LAB) [3]. This approach
methodically changes the pixel intensity value, reducing color differences while maintaining
consistent color distribution. Conversely, with intensity normalization, such as min-max, we
can scale the histopathological image pixel value to a particular range, like [0 to 1] or [0 to
255]. When morphological traits are preserved, min-max normalization can improve the
comparability of tissue structures between different samples [7]. More influence is exerted by
the color decomposition algorithms, which efficiently divide the overlap of chromogenic
signals into comprehensible color channels.
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Techniques for color decomposition can maintain the histopathological tissue samples'
contextual and structural integrity [9]. The image can be divided into smaller blocks for
statistical approaches such as CLAHE [19], and each block can then have its histogram
equalization done independently [10, 11]. To separate stain color components, Macenko et al.
presented one of the most used color normalizing methods based on singular value
decomposition (SVD) [13]. In addition to bringing histopathology images' color variation back
to normal, removing superfluous noise from the images is crucial to protecting vital cellular
structures. Denoising techniques can minimize noise introduced during formation and
recording, hence improving the quality of the histopathological image [ 14]. Several denoising
techniques from several filtering categories, including multiscale, non-linear, and linear
filtering, were employed in this study to enhance the comparative analysis of our prostate
cancer dataset. A linear relationship between pixel values throughout the image is used in
linear denoising techniques. Conversely, non-linear denoising techniques maintain the
important structural elements and edges by considering the surrounding pixels' context [13-
17]. A small amount of research has systematically analyzed the combined effects of color
normalization and denoising techniques on histopathology images using sophisticated
similarity measures like QSSIM and MS-SSIM. In contrast, earlier studies have assessed these
techniques independently. Additionally, existing methods often lack statistical validation and
do not incorporate multi-scale evaluation. In order to provide a thorough evaluation framework,
this study fills this gap by combining several normalization and denoising algorithms,
evaluating their efficacy using SSIM-based metrics, and performing statistical significance
analysis.

3. Materials and Method

This section includes the study's materials and methodology as well as an overview of each
color normalization, denoising, and similarity index metric that was chosen for the analysis of
histopathology prostate cancer images.

3.1 Dataset

We used a carefully selected dataset of prostate cancer images for this study from Yonsei
University Severance Hospital, and the Institutional Review Board granted us access
(Approval No. 1-2018-0044). With an Aperio AT2 scanner, the tissue slides were scanned at
20x magnification, with a resolution of 0.25 um/pixel. Initially, all slides in the dataset were
classified as benign, with Gleason scores ranging from 3 to 5. To do a comprehensive analysis,
we used 100 histopathological images from each range separately.

3.2 Structural similarity evaluation matrix

To evaluate the quality of normalization methods, we focus on three state-of-the-art
structural similarity metrics including structural similarity index matrix (SSIM), quaternion
structural similarity index matrix (QSSIM), and multi-scale structural similarity index matrix
(MS-SSIM) of our histopathology prostate cancer image dataset.

3.2.1 SSIM

Luminance, contrast, and structure are the three major components of an image that are
combined to provide structural similarity by providing a number between 0 and 1, which
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represents the overall quality of the image. The normalized image and source are more
comparable when the numerical value is closer to 1, whereas less similarity is indicated by the
reverse |3, 20]. Both the local and global structural information of an image can be computed
by SSIM. The scalar cross correlation between the original and normalized images was the
only thing we considered when computing the SSIM.

Together, the three elements produced a mathematical formula that was,
SSIM(j, k) = [1G, )T - [, 1)1° - [s G, kO1* (1

Luminance, contrast, and structure are denoted by the terms 1(j, k), c(j, k), and s(j, k),
respectively.

. _2.uj.uk+Cy
l(]l k) - ﬂ2j+l~l'2k+cl (2)
. _ 2.0j.0k+C,
C(], k) - 0'2]'+0'2k+C2 (3)
. _ OjktCs
S(], k) - O'j.O'k+C3 (4)

SSIM can be expressed as follows when all the formulas (eq 2-4) for luminance, contrast, and
structure have been combined.

SSIM(j, k) = (2ujug+C1)(20j0,+Cz) (5)

(U2 j+pK?+C1 (0% j+02+C2)

The formula defines g; and o, as the standard deviations (SDs) of the original and normalized
images, respectively, with u; and y representing their respective mean intensities. When the
SSIM becomes close to zero, C;, C,, and C; make it stronger. The correlation coefficient
between the original and normalized images is defined as ;.. We calculate the SSIM value,
which is a number between 0 and 1, where a number closer to 1 indicates a significant
similarity and a value nearer 0 indicates a significant difference between the original and
normalized image.

3.2.2 QSSIM

We compute the quaternion structural similarity by focusing on both scalar and cross-
correlation to assess the detailed changes between the color vectors [21]. To illustrate the
quality difference between the source and processed images, QSSIM measures the size and
direction of a histopathological image whereas SSIM measures the size [3].

2Ugreflqd Ogref,qd
QSSIMref deg = quef g - zqrEfqzeg ) (6)
' Kgrefthqdeg” Oqreft9qdeg

Ugrer and fgqeq, Tespectively, represent the sample mean and processed images. Conversely,
the source and processed image standard deviations are denoted by dgrer and gggeq
respectively. The correlation coefficient 04 e gaeg Tepresents the relationship between the
original and normalized images.
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3.2.3 MS-SSIM

While single scale may be appropriate in some contexts, multi-scale methods provide a
practical approach to combine image information at varying resolutions. With greater
flexibility than single-scale, the multi-scale structural similarity index (MS-SSIM) breaks
down the source image into many scales and computes the SSIM scores at each scale to capture
both local and global similarities [22]. MS-SSIM offers a more thorough measure of similarity
by considering the many scales of image structure. To evaluate the preservation of textures
and fine features of our histopathology prostate cancer dataset, we apply the multi-scale
approach with SSIM and QSSIM to capture and analyze the image quality across several
spatial resolutions [20, 22].

The MS-SSIM formula used in our research is in conjunction with the preceding equations (eq.
1-4).
MS = SSIM(j, k) = [l G, I - [T, 6, ) - 5:G, k)P )

In this equation, I (j, k) is the luminance comparison at the contrast scale, and c;(j, k) and
s;(j, k) are the contrast and structure comparison at scale i. The weights a,, and f3; are used
to evaluate image quality by comparing luminance, contrast, and structure at different scales.

3.3 Noise level evaluation matrix

We calculate the mean noise level by calculating the standard deviation (SD) and signal-to-
noise ratio (SNR) to assess the image-denoising techniques.

3.3.18D

Images are first converted to a grayscale image, and the standard deviation (SD) of the pixel
intensities in each grayscale image is then calculated to determine the noise level in the prostate
cancer histopathology images [23, 24]. In grayscale images, I; is regarded as the pixel value
at the location j. N and u are the total number of pixels in the grayscale images and the mean
pixel intensity, respectively. The equation that's applied is,

1
b=y ®)

The standard deviation (SD) can be calculated using the following mathematical formula,

o= o -w ©)

To determine the amount of noise removed from the original images, we compute the mean
noise level (SD) for both the original and processed images.

3.3.2SNR

Images with a stronger signal are thought to be of higher quality. The signal-to-noise ratio
compares the desired signal to the amount of background noise in the image [25, 26]. SNR is
used in this study to compare the signal of the prostate cancer histopathology images to the
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image's background noise. The mean pixel value and the noise level are used to calculate the
SNR. The equation is,

SNR = 1010g10(§) (10)

In this formula, o is the mean noise level, which was determined using the standard deviation,
and u denotes the mean pixel intensities.

3.4 Color Normalization Methods

Normalization is defined as producing an image description that is independent of the
illumination circumstances under which the image was captured [27]. Our experimental
methods for processing and analyzing the histopathology of prostate cancer images are derived
from many normalization categories. To maintain the most significant information, these
normalization techniques can improve the structural similarity between the original and
normalized images. The process of histogram equalization is applied while converting an
image from RGB to laf8 space, as stated in the histogram specification [6, 28]. The normalized
images retain most of the brightness and color characteristics of the original images, even
though the overall source information cannot be retained. Pixel values in each color channel
are scaled in the min-max color normalization process so that they fall within the range. After
deducting the least value from each pixel, this is accomplished by dividing each pixel by the
highest value. The IRIS dataset was used in a 2017 study by Pandey and Jain to investigate
data-normalizing approaches using the min-max methods. They discovered that the min-max
normalization method produced 100% accuracy atk =1 [7].

Complete color normalization can identify the source of color variation, including the
illuminant and stain variance, as treating the color variation in histopathology images is an
important task [8]. It can use structured weight (SW) statistics to utilize an intensity-matching
technique and spectral normalization module to decrease the NMF solution space. The original
image can be transformed into a saturated image by using the structured weight [8, 3]. By
converting the images from RGB to Maxwellian color space, blind color decomposition helps
to extract the intensity information from the color information. From the perspective of color
theory, this transformation makes it possible to characterize an ideal stain and quantify stain
quality [9]. Despite offering the color distribution of individual stains, this approach has the
potential to create artifacts in the normalized image during processing. Using a contrast-
limited adaptive histogram equalization algorithm is a well-known technique to improve the
contrast of histopathological images. By clipping the contrast enhancement to a limit, this
approach specifically increases the contrast of three channels (R, G, and B) in sequential order
[10]. Through the process of clipping the histogram on each block, CLAHE can improve the
contrast by dividing the input image into multiple equal-sized blocks [11]. The orthonormal
transformation of the original RGB image to optical density—which makes staining densities
possible—is typically the basis for the color deconvolution technique. This conversion
facilitates the acquisition of independent data regarding the contribution of each stain to an
image of histopathology. Higher computational complexity is a drawback, but it also has a
benefit in that each stain's image can be rebuilt independently for densitometry and texture
analysis [3, 12]. Macenko et al. proposed one of the most widely used color normalization
techniques based on singular value decomposition (SVD) to separate stain color components.
We include the Macenko method as a baseline in our experiments to ensure a more
comprehensive comparison.
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3.5 Denoising Methods

Due to sensor malfunctions, inadequate brightness, or incorrect correspondence during
picture capture, medical images frequently contain noise [14]. In this case, denoising the
images is essential to enhance the histopathological image quality for subsequent analysis,
including segmentation, classification, and other medical image processing domains. In this
study, we have assessed the denoising techniques we select from the linear and non-linear filter
classes by calculating the prostate cancer image dataset's mean noise level and signal-to-noise
ratio. The median filter, which retains edges and other crucial features [29, 30], effectively
eliminates the noise present in histopathological images. Every pixel in the image should have
its median value replaced by that of its neighbor [13, 14]. This technique locates the
neighborhood for each pixel in the input image, after which it calculates the median value of
the neighborhood. Using a Gaussian kernel that can retain the important characteristics to
create a smooth image, the Gaussian filter mixes the images [14]. The weighted average of the
neighborhood is calculated by the Gaussian kernel, which subsequently assigns the appropriate
pixel to it. On the other hand, a bilateral filter convolves the image using a Gaussian kernel in
both the spatial and intensity domains to preserve the discontinuities while blurring the image
and maintaining the borders and edges [15]. However, the size of the neighborhood employed
by the mean filter technique is controlled by a hyperparameter called kernel size. Every pixel
in an image is replaced with the average of its neighbors using this denoising technique. In our
dataset, we have opted to employ several kernel sizes for testing since it might be more
appropriate to use a larger kernel size when denoising an image that is hazy and a smaller
kernel size when denoising an image that is noisy but has distinct edges [ 14].

This technique reduces image noise by using wavelet transforms. Following the division of
the image into a group of frequency subbands, thresholding is done to reduce noise in the high
frequency subbands. The inverse wavelet transform should then be used to recreate the
denoised image [16]. The non-local means denoising approach compares every pixel in an
image inside a dataset. The filter computes the weighted average by the similarity of the pixels
that are closest to the current pixel to do this comparison. First, we set up an initial filtered
image with the same dimensions as the input image [17]. We analyze multiple parameters for
each denoising method and change the optimal values of sigma value, threshold value, and
kernel size to minimize noise while maintaining important details.

3.6 Integrating Normalization Method with Denoising Techniques

By integrating color normalization and image denoising methods, the most desired
performance giver from both sections, we extend our comparative study based on the
comparative result. We want to further investigate the structural similarity index metrics by
combining these two approaches in our experiments.
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Fig. 1. Flow chart for the implementation of blind color decomposition and gaussian filter together.

Fig. 1 shows the sequential combination implementation of the Gaussian algorithm [14]
and blind color decomposition [3] for our prostate cancer histopathology image dataset, which
performs better than other presented methods. To implement the gaussian algorithm, we
experimented with several kernel sizes (3 x 3,5 x 5, 7 x 7), with kernel size 7 x 7 yielding the
best results. In contrast, to identify patterns in images, we employ blind color decomposition,
which divides an image into three color components (red, green, and blue) using the non-
negative matrix factorization (NMF) [3, 9]. Additionally, to improve the separation of spectral
components and the classification and analysis task for the histopathological medical images,
we transform the images to Maxwellian color space.

4. Comparative Analysis

The impact of the color normalization and denoising methods on tissue images from prostate
cancer histopathology is assessed in the following section through a comparative quality study.

Table 1. Comparison of seven color normalization methods based on SSIM, QSSIM, and MS-SSIM
metrics for the prostate cancer dataset. Higher values indicate better similarity preservation.

Method SSIM QSSIM MS-SSIM
Histogram Specification 0.773 0.814 0.639
Min-max Normalization 0.831 0.861 0.977

Complete Color Normalization 0.828 0.850 0.969
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Blind Color Decomposition 0.834 0.864 0.989
Contrast Enhancement (CLAHE) 0.797 0.833 0.781
Color Deconvolution 0.817 0.851 0.903
Macenko 0.830 0.861 0.981

Based on a comparative study of seven color normalization methods applied to one hundred
histopathological prostate cancer images (Gleason scores of 3, 4, and 5) we observed that the
blind color decomposition method outperforms the other methods (Table 1). In both SSIM,
QSSIM, and MS-SSIM this method gives a value of 0.834, 0.864, and 0.989 respectively. We
employ a non-negative matrix factorization (NMF) with three components, initialized via Non-
negative Double Singular Value Decomposition (NNDSVD), and confined to 500 iterations
to develop the blind color decomposition approach. This ensures reproducibility with a fixed
random state. On our dataset, the min-max, macenko, complete color, and color deconvolution
algorithms also exhibit a stronger influence. Since the purpose of our study is to evaluate the
structural similarity of color normalization methods on histopathology images, we selected
three methods: MS-SSIM to analyze the images at different resolutions and scales, QSSIM to
enhance the power of SSIM by adding perceptual quality factors, and SSIM to measure the
similarity in structure, luminance, and contrast between the original and normalized images.
QSSIM can improve the accuracy of diagnosis in the field of medical imaging by offering a
sophisticated assessment of image quality that closely matches expert human evaluations [20,
21].

Histogram Min-Max  Complete Color Blind Color Contrast Color Macenko
Specification Normalization Normalization Decomposition Enhancement Deconvolution

Source Image

Gleason
score-3

Gleason
score-4

Gleason
score-5

Fig. 2. Visualization of seven different color-normalized images from different Gleason scores for the
prostate cancer image dataset. The first column is the original images while the rest of the columns
represent the normalized images.

The visual contrasts between the original and normalized images from various color
normalization methods are shown in Fig. 2. Three source images were selected from among
100 malignant images based on three distinct Gleason scores to present a more useful
assessment of the entire prostate cancer dataset in this figure. The original/source images from
Gleason scores 3, 4, and 5 are displayed in the first column.



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 19, NO. 5, May 2025 1677

Table 2. ANOVA (Analysis of Variance) statistical analysis for similarity metrics.

. Significance
Metric Anova F-Value p-Value (p<0.05)
SSIM 11.85 0.0027 Significant
QSSIM 9.94 0.0071 Significant
MS-SSIM 13.62 0.0014 Significant

ANOVA (Analysis of Variance) determines whether the means of multiple groups—in
this case, the SSIM, QSSIM, and MS-SSIM scores across different color normalization
methods—are significantly different. It does this by comparing the variance between groups
(differences in mean values of methods) with the variance within groups (variations within
each technique). The ratio of these variances is known as the F-value, and a higher F-value
shows that at least one strategy is significantly different from the others. We apply a p-value
significance test and reject the null hypothesis if p < 0.05, showing a statistically significant
difference between normalization methods. This statistical validation confirms that the
differences in similarity scores are not random, supporting the conclusion that Blind Color
Decomposition outperforms other methods (Table 2). Since all p-values are below 0.05, the
observed improvements are statistically significant, strengthening the study’s claims and
providing justification for performance differences.

Table 3. Computational Complexity Table (Big-O Analysis) for the normalization methods.

Normalization Method Computational Co.mplexity (Big-O

Notation)

Histogram Specification O(nlogn)
Min-max Normalization o)
Complete Color Normalization 0(n?)

Blind Color Decomposition O(nlogn)
Contrast Enhancement (CLAHE) om)
Color Deconvolution 0(n?)

Macenko Normalization O(nlogn)

The computational complexity of each color normalization approach was determined by
the underlying algorithmic procedures. The key operation of histogram-based transformation
processes (histogram specification, blind color decomposition, and macenko) is sorting
intensity values, which has an O(n log n) complexity. Methods utilizing pixel-wise
transformations (Min-Max Normalization, CLAHE) involve direct intensity mapping,
resulting in a more efficient O(n) complexity. Color Deconvolution which uses matrix
factorization or eigenvalue decomposition, has quadratic computational complexity (O(n?)).



1678 Rubina Akter Rabeya et al.: Quality Assessment of Color Normalization Method by Similarity Index Metrics-
A Comparative Study for Histopathology Images

These complexity values were derived from algorithmic analysis rather than empirical
execution times, ensuring a theoretical justification of computational feasibility for each
method.

In order to balance computing efficiency with performance accuracy and to meet the
paper's goal of determining the best normalization technique, it is imperative that
computational complexity be taken into account in the study. Despite having the highest
similarity scores, Blind Color Decomposition is a strong contender for practical
implementation because of its (O(n log n)) trade-off between performance and efficiency
(Table 3). By presenting both accuracy metrics (SSIM, QSSIM, MS-SSIM) and computational
feasibility (Big-O complexity), the study provides a holistic evaluation that helps researchers
choose a method suited for scalable and high-quality histopathology image analysis.

Table 4. Comparison of six image denoising methods based on mean noise level, standard deviation,
and signal-to-noise ratio (SNR) for the prostate cancer dataset. Higher SNR values indicate better
noise reduction, with the best-performing method in bold.

Original Processed | Percentage of | Original | Processed
Method noise image's noise SNR SNR
level noise level reduction (dB) (dB)
Median 25.844 33.67% 8.39
Gaussian 25.542 34.44% 8.46
Bilateral 33.205 14.7% 7.22
Mean 38.961 29.824 23.45% 6.50 7.68

Wavelet

Transform-based 34.793 10.70% 3.33
Non-local Means 35.364 9.23% 6.95

In this work, we assess both linear and non-linear denoising techniques to provide a
thorough analysis and comparative assessment of the effects of denoising techniques on
histopathological images. Table 4 demonstrates that the Gaussian filter outperforms the others
in terms of noise reduction, with a reduction of 34.44%. The noise level in the original and
filtered images is 38.961 and 25.542, respectively. Conversely, the SNR value obtained from
this approach is 8.46 dB, while the SNR value from the original image was 6.50 dB. The
percentage indicates that compared to the original and other filtered images from different
techniques, the Gaussian-filtered images have substantially less noise. Additionally,
considering the signal-to-noise ratio, the growing SNR value demonstrates that the Gaussian-
filtered images are 8.46 dB stronger than the original images. After examining several factors
and parameters, we decided on the kernel size (7 x 7) to achieve the best results when
implementing the Gaussian filter. Additionally, the standard deviation in the x direction
(sigma_x = 0), where the function can compute the standard deviation automatically based on
the kernel size when the sigma value is zero. The median and mean filter also have a closer
impact on our dataset according to their percentage of noise reduction and signal-to-noise ratio.

In Fig. 3, the signal-to-noise ratio and noise level are shown using three distinct dimensions
for easier comprehension. The evaluation metrics (SNR and standard deviation), the denoising
techniques, and the value are stored on these three axes. This figure clearly illustrates how the
highest degree of SNR is increased, and the highest level of noise is reduced when using a
Gaussian filter. Even the Gaussian filter reduces the highest percentage of noise compared to
other methods. To achieve the best result for noise reduction in each denoising approach, we
look at every conceivable parameter. The rationale behind selecting the linear, non-linear, and
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multi-scale denoising approaches to optimally evaluate the prostate cancer dataset.
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Fig. 3. A three-dimensional graph showing, for the selected image denoising techniques, the relative

differences between the original and filtered images based on their mean noise level, signal-to-noise
ratio, and percentage of noise reduction.

The precise parameters and values that we used to apply the chosen denoising techniques are
listed in Table 5. We examined various kernel widths, sigma values, threshold values, and
other factors to apply these algorithms in a way that would minimize potential noise and
enhance the image based on the signal-to-noise ratio. Ultimately, the quantities listed in Table
5 provide the best outcome that is both desired and feasible. We also experimented with these
denoising methods with specific parameters with all the present color normalization methods

to see the differences in structural similarity index metrics.

Table S. Specific parameters with their specific values to implement the selected denoising techniques
after analyzing several values to get the desired outcome.

Method Parameter Range
Median kernel size 5x5
. Kernel size 7 %7
Gaussian -
sigma 0
diameter 9
Bilateral sigma Color 75
sigma Space 75
Mean Kernel size 3x3
kernel size 5x5
Wavelet Transform-based Treshold value 200
luminance component 10
color components 10
Non-local Means template Window 7 x7
Search Window 21 x 21
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5. Result and Discussion

In this section, we performed a combination of color normalization and denoising
methods for our prostate cancer dataset to see whether any changes happened or not in the
three structural similarity metrics of our histopathology prostate cancer dataset. The
quantitative results of color normalization and image denoising from Table 1 and Table 4
show that the blind color decomposition and Gaussian methods have a greater impact
compared to other methods.

Comparison of Color Normalization Methods

— S5IM
— QSSIM
— MS-SSIM

Fig. 4. Three-dimensional (3D) colormap to visualize the impact of color normalization methods
based on the structural similarity indices.

The efficacy of six distinct color normalizing techniques is compared in a 3D surface plot
shown in Fig. 4 based on the selected method, Histogram Specification, Min-max normalizing,
Complete Color Normalization, Blind Color Decomposition, Contrast Enhancement, Color
Deconvolution, and Macenko. The structural similarity index (SSIM), the multi-scale
structural similarity index (MS-SSIM), and the quaternion structural similarity index (QSSIM)
are the evaluation metrics that are employed. The color normalization techniques are
represented by the X-axis, while the similarity indices are categorized by the Y-axis. The
values of SSIM, QSSIM, and MS-SSIM are indicated on the Z-axis. The 'viridis' colormap
uses the SSIM data to show how well each method preserves image structure. Structural
similarity is quantitatively evaluated by the QSSIM values, which are displayed on the 'plasma’
colormap. The 'inferno' colormap represents the MS-SSIM values, which quantify the
structural similarity at various scales and offer a thorough assessment of the image quality
after normalization.

In the present study, Blind Color Decomposition exhibits the highest performance in
maintaining the structural similarity of the image, displaying the most significant values in
SSIM, QSSIM, and MS-SSIM. As shown by its high efficacy, particularly in the MS-SSIM
metric, min-max normalization, and macenko additionally shows potential for multi-scale
structure preservation. This three-dimensional map shows how different color normalizing
methods impact the image's structural similarity and allows for a clear and comprehensive
comparison of the methods using multiple similarity indexes. With different colormaps for
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each metric, the readability and distinction between the similarity indices are enhanced.

Table 6. Comparative analysis on the impact of denoising methods in combination with color
normalization method for the prostate cancer image dataset. Comparatively, the impact of combining
Gaussian denoising methods with the blind color decomposition method is shown in bold font.

Method SSIM QSSIM MS-SSIM
Blind Color
Decomposition 0.834 0.864 0.989

(without Gaussian)
Blind Color

Decomposition 0.857 0.884 0.998

(with Gaussian)

Table 6 provides a detailed comparison of the performance of Blind Color Decomposition
(BCD) in two different configurations: without Gaussian filtering and with Gaussian filtering.
Each indicator offers a unique perspective on how well the color normalization technique
preserves the images' structural and artistic integrity. The table clearly shows that an SSIM
value 0f 0.857 is obtained when Gaussian filtering is used in conjunction with BCD. This value
is higher than the 0.834 value obtained when filtering is not used. This implies that the
structural preservation including the luminance, contrast, and structure of the images is
enhanced using Gaussian filtering. The QSSIM value of 0.884 produced by blind color
decomposition with Gaussian filtering is greater than the 0.864 obtained in the absence of
Gaussian filtering. With this improvement, Gaussian filtering more effectively preserves the
color and structural integrity of the quaternion space, leading to a more accurate representation
of the image's similarity. The enhancement in MS-SSIM, with a 0.998 score, indicates how
effectively it maintains image characteristics across various scales, resulting in enhanced
overall image quality. Table 6 clearly shows that, for all three similarity standards, Blind Color
Decomposition performs significantly better when Gaussian filtering is applied with certain
parameters (Table 5). These results show the value of Gaussian filtering in color normalization
and its capacity to maintain the aesthetic and structural integrity of normalized images.

6. Conclusion

This study uses various color-normalizing methods to provide a comparative evaluation
of the structural similarity of prostate cancer histopathology images. Three distinct similarity
metrics are used to evaluate structural similarity: the multi-scale structural similarity index
matrix (MS-SSIM), the quaternion structural similarity index matrix (QSSIM), and the
structural similarity index matrix (SSIM). The objective of our analysis was to examine the
overall structural similarity of histopathological images from all angles, including the structure,
size, direction, brightness, contrast, and numerous scales of an image by implementing
different types of color normalization methods. To minimize potential noise in histopathology
images, we also examine various linear, non-linear, and multi-scale filtering algorithms.
Throughout the experiment, it becomes evident that the Gaussian filter and blind color
decomposition have a significant impact on our prostate cancer dataset, providing the largest
percentage of noise reduction and the highest similarity for all similarity metrics, respectively.
When we combine the blind color decomposition with a Gaussian filter that has characteristics,
this experimental comparison even works better. With this combined implementation, our
prostate cancer images' structural similarity increases significantly across all structural
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similarity evaluation parameters. This study demonstrates the significant influence of color
decomposition techniques on histopathology image processing, particularly on images of
prostate cancer. By comparing color normalization and denoising techniques, we want to
advance the fields of medical image analysis and computer-aided clinical diagnosis.
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