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Abstract 
 

One of the biggest challenges of histopathology image processing is to preserve structural 
similarity while processing for further research. Color normalization algorithms can play a 
significant role in preserving the structure of histopathology images from various standpoints. 
In this research, we provide a comparative analysis of seven distinct color normalization 
algorithms by evaluating three state-of-the-art structural similarity index metrics often 
employed in image processing. 100 malignant prostate cancer histopathology tissue images 
(256 × 256) from various grading (Gleason score 3, 4, and 5) have been utilized here. The 
structure similarity index matrix (SSIM), quaternion structure similarity index matrix 
(QSSIM), and multi-scale structure similarity index matrix (MS-SSIM) are three state-of-the-
art quality evaluation metrics used in this research. Also, by computing the mean standard 
deviation (SD) of the grayscale images to determine the noise level and signal-to-noise ratio 
(SNR), respectively, we examined six denoising algorithms with various parameters to 
improve the efficacy of this analysis. This study provides a higher value for each of the three-
similarity metrics, indicating a relatively superior performance for the Blind Color 
Decomposition algorithm. Furthermore, the Gaussian algorithm outperforms the six denoising 
techniques in terms of SNR and SD. When we integrated the Blind Color Decomposition and 
Gaussian algorithm with our experimented specific parameters, we were able to obtain the 
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ultimate higher value for all three structural similarity index metrics. We anticipate that this 
analysis will have a substantial impact on various aspects of histopathology image processing, 
including segmentation, classification, feature extraction, and the creation of novel algorithms. 
 
Keywords: Color normalization, Denoising, Histopathology, Structural similarity,  

Image analysis. 
 
 
 
 

 

1. Introduction 

Color variation in histopathology images gives histopathologists various advantages when 
analyzing critical information for further diagnosis of cancerous tissue. Color diversity in 
histopathology images occurs because of the use of various microscopic scanners, staining 
solutions, and staining techniques, which is a broad area of research nowadays for both 
pathologists and researchers to aim for early and accurate diagnosis [1]. One of the most 
frequently used techniques in histopathology image processing is to utilize various color-
normalizing algorithms to assess these color variations. Researchers have created various color 
normalization techniques over the years, each with unique advantages and drawbacks, but one 
of the most difficult issues is preserving the fine details and structural similarity of 
histopathological images after normalization. Even so, due to these various recording devices, 
images contain some random noise during image acquisition which tends to introduce artifacts 
and eliminate small features from the histopathological image [2]. To lessen noise from images 
while improving image quality and maintaining fine structure features, several denoising 
techniques have also been introduced in the field of histopathology image analysis. While it 
has been suggested that converting RGB to grayscale can reduce color variance, doing so also 
results in information loss [3-5]. Therefore, it may be more efficient to use color normalization 
and denoising algorithms to lessen noise and color variations. We implemented seven color 
normalization algorithms, including histogram specification [6], min-max normalization [7], 
complete color normalization [8], blind color decomposition [9], contrast enhancement 
(CLAHE) [10, 11], color deconvolution [12], and macenko [13] to make a comparative quality 
assessment of histopathology images, with a primary concern of analyzing the structural 
similarity from various aspects of a histopathology image. Also, we implemented six image-
denoising techniques including a median [14], gaussian [14, 15], bilateral [15], wavelet [16], 
non-local means [17], and mean filter [14] as well. The standard quality evaluation matrix has 
been utilized to assess the structural similarity of all the approaches employed in our study 
using images with varying Gleason scores from a prostate cancer dataset [18]. The following 
is a summary of the key findings and contributions of this paper. 

 
(1) Implement seven different color normalization techniques to lower color variation 

and improve quality to analyze the structural similarity of the histopathological 
prostate cancer images. Additionally, apply six distinct image-denoising techniques 
to lower the noise level while maintaining the images' fine features. We also outline 
each method's primary benefits and drawbacks. 
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(2) We employ three state-of-the-art structural similarity evaluation metrics, namely the 
structure similarity index matrix (SSIM), the quaternion structure similarity index 
matrix (QSSIM), and the multi-scale structure similarity index matrix (MS-SSIM), 
to perform a comparative analysis of the qualitative effects of each color 
normalization method on our dataset. 

(3) Six distinct denoising methods from linear and non-linear categories were used to 
reduce the amount of noise in histopathology images. These methods were assessed 
based on the amount of noise levels they produced and the ratio of signal to noise in 
the filtered image compared to the original. We provide several statistical analyses 
and comparisons of algorithm complexity which justify our goal and objective.   

(4) Lastly, we combine the best result-giving color normalization and denoising 
techniques to investigate the combined effect. We also evaluate each color 
normalization and denoising method's output using the chosen quality evaluation 
metrics. 

This is how the rest of the article is organized. In section 2, a review of the literature is 
provided on the benefits and drawbacks of each color normalization and denoising technique 
used in this comparative analysis. The supplies and methods used in this study are presented 
in Section 3. To demonstrate the performance differences based on the structural similarity 
evaluation metrics using illustrative graphics, we conduct a comparative quality analysis of all 
the current algorithms in section 4. In section 5, results and discussion are displayed. Lastly, 
section 6 presents the conclusions of our research. 

Our work broadens the scope by incorporating a thorough comparative analysis of seven 
color normalization methods and six denoising techniques, in contrast to other research that 
mostly concentrated on SSIM-based evaluations of color normalization methods. To provide 
a more thorough and reliable assessment, we also use three sophisticated similarity evaluation 
metrics (SSIM, QSSIM, and MS-SSIM) to evaluate quality preservation at various scales. 
While several studies research foundational knowledge and methodologies for color 
normalization and denoising methods [1-5], our research explicitly combines structural 
similarity assessment with multi-scale denoising techniques for histopathology images. 

2. Literature Review  

To examine the structural similarity of histopathology tissue images, we select various color 
normalization techniques from various categories, including intensity normalization, global 
color normalization, color normalization following stain separation by unsupervised 
techniques, color decomposition, and statistical techniques. Numerous studies demonstrate 
that, by considering various factors, normalization techniques from different categories have 
diverse impacts on tissue images related to histopathology [3-5]. Histogram specification, like 
global color normalization techniques, can be accomplished by splitting color appearance and 
intensity information across multiple color spaces (RGB, HSV, and LAB) [3]. This approach 
methodically changes the pixel intensity value, reducing color differences while maintaining 
consistent color distribution. Conversely, with intensity normalization, such as min-max, we 
can scale the histopathological image pixel value to a particular range, like [0 to 1] or [0 to 
255]. When morphological traits are preserved, min-max normalization can improve the 
comparability of tissue structures between different samples [7]. More influence is exerted by 
the color decomposition algorithms, which efficiently divide the overlap of chromogenic 
signals into comprehensible color channels. 
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Techniques for color decomposition can maintain the histopathological tissue samples' 
contextual and structural integrity [9]. The image can be divided into smaller blocks for 
statistical approaches such as CLAHE [19], and each block can then have its histogram 
equalization done independently [10, 11]. To separate stain color components, Macenko et al. 
presented one of the most used color normalizing methods based on singular value 
decomposition (SVD) [13]. In addition to bringing histopathology images' color variation back 
to normal, removing superfluous noise from the images is crucial to protecting vital cellular 
structures. Denoising techniques can minimize noise introduced during formation and 
recording, hence improving the quality of the histopathological image [14]. Several denoising 
techniques from several filtering categories, including multiscale, non-linear, and linear 
filtering, were employed in this study to enhance the comparative analysis of our prostate 
cancer dataset. A linear relationship between pixel values throughout the image is used in 
linear denoising techniques. Conversely, non-linear denoising techniques maintain the 
important structural elements and edges by considering the surrounding pixels' context [13-
17]. A small amount of research has systematically analyzed the combined effects of color 
normalization and denoising techniques on histopathology images using sophisticated 
similarity measures like QSSIM and MS-SSIM. In contrast, earlier studies have assessed these 
techniques independently. Additionally, existing methods often lack statistical validation and 
do not incorporate multi-scale evaluation. In order to provide a thorough evaluation framework, 
this study fills this gap by combining several normalization and denoising algorithms, 
evaluating their efficacy using SSIM-based metrics, and performing statistical significance 
analysis. 

3. Materials and Method  

This section includes the study's materials and methodology as well as an overview of each 
color normalization, denoising, and similarity index metric that was chosen for the analysis of 
histopathology prostate cancer images. 

3.1 Dataset 

We used a carefully selected dataset of prostate cancer images for this study from Yonsei 
University Severance Hospital, and the Institutional Review Board granted us access 
(Approval No. 1-2018-0044). With an Aperio AT2 scanner, the tissue slides were scanned at 
20× magnification, with a resolution of 0.25 μm/pixel. Initially, all slides in the dataset were 
classified as benign, with Gleason scores ranging from 3 to 5. To do a comprehensive analysis, 
we used 100 histopathological images from each range separately. 

3.2 Structural similarity evaluation matrix 
To evaluate the quality of normalization methods, we focus on three state-of-the-art 

structural similarity metrics including structural similarity index matrix (SSIM), quaternion 
structural similarity index matrix (QSSIM), and multi-scale structural similarity index matrix 
(MS-SSIM) of our histopathology prostate cancer image dataset.  

3.2.1 SSIM 
Luminance, contrast, and structure are the three major components of an image that are 

combined to provide structural similarity by providing a number between 0 and 1, which 
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represents the overall quality of the image. The normalized image and source are more 
comparable when the numerical value is closer to 1, whereas less similarity is indicated by the 
reverse [3, 20]. Both the local and global structural information of an image can be computed 
by SSIM. The scalar cross correlation between the original and normalized images was the 
only thing we considered when computing the SSIM.  

Together, the three elements produced a mathematical formula that was, 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑗𝑗, 𝑘𝑘) = [𝑙𝑙(𝑗𝑗, 𝑘𝑘)]𝛾𝛾 . [𝑐𝑐(𝑗𝑗, 𝑘𝑘)]𝛿𝛿 . [𝑠𝑠(𝑗𝑗, 𝑘𝑘)]𝜆𝜆                                                    (1) 
 

Luminance, contrast, and structure are denoted by the terms l(j, k), c(j, k), and s(j, k), 
respectively.  
 

𝑙𝑙(𝑗𝑗,𝑘𝑘) = 2.𝜇𝜇𝜇𝜇.𝜇𝜇𝜇𝜇+𝐶𝐶1
𝜇𝜇2𝑗𝑗+𝜇𝜇2𝑘𝑘+𝐶𝐶1

                                                                   (2) 

𝑐𝑐(𝑗𝑗,𝑘𝑘) = 2.𝜎𝜎𝜎𝜎.𝜎𝜎𝜎𝜎+𝐶𝐶2
𝜎𝜎2𝑗𝑗+𝜎𝜎2𝑘𝑘+𝐶𝐶2

                                                                   (3) 

𝑠𝑠(𝑗𝑗,𝑘𝑘) = 𝜎𝜎𝑗𝑗𝑗𝑗+𝐶𝐶3
𝜎𝜎𝑗𝑗.𝜎𝜎𝑘𝑘+𝐶𝐶3

                                                                      (4) 

 
SSIM can be expressed as follows when all the formulas (eq 2-4) for luminance, contrast, and 
structure have been combined.  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑗𝑗,𝑘𝑘) = (2𝜇𝜇𝑗𝑗𝜇𝜇𝑘𝑘+𝐶𝐶1)(2𝜎𝜎𝑗𝑗𝜎𝜎𝑘𝑘+𝐶𝐶2)
(𝜇𝜇2𝑗𝑗+𝜇𝜇𝑘𝑘

2+𝐶𝐶1(𝜎𝜎2𝑗𝑗+𝜎𝜎2𝑘𝑘+𝐶𝐶2)
                                                  (5) 

 
The formula defines 𝜎𝜎𝑗𝑗 and 𝜎𝜎𝑘𝑘 as the standard deviations (SDs) of the original and normalized 
images, respectively, with 𝜇𝜇𝑗𝑗 and 𝜇𝜇𝑘𝑘 representing their respective mean intensities. When the 
SSIM becomes close to zero, 𝐶𝐶1 , 𝐶𝐶2 , and 𝐶𝐶3  make it stronger. The correlation coefficient 
between the original and normalized images is defined as 𝜎𝜎𝑗𝑗𝑗𝑗. We calculate the SSIM value, 
which is a number between 0 and 1, where a number closer to 1 indicates a significant 
similarity and a value nearer 0 indicates a significant difference between the original and 
normalized image. 

3.2.2 QSSIM 
We compute the quaternion structural similarity by focusing on both scalar and cross-

correlation to assess the detailed changes between the color vectors [21]. To illustrate the 
quality difference between the source and processed images, QSSIM measures the size and 
direction of a histopathological image whereas SSIM measures the size [3].  

 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟,𝑑𝑑𝑑𝑑𝑑𝑑 = �(2𝜇𝜇𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝜇𝜇𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝜇𝜇𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
2 +𝜇𝜇𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

2 )( 𝜎𝜎𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝜎𝜎𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
2 +𝜎𝜎𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

2 )�                                              (6) 

 
𝜇𝜇𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 and 𝜇𝜇𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞, respectively, represent the sample mean and processed images. Conversely, 
the source and processed image standard deviations are denoted by 𝜎𝜎𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞  and 𝜎𝜎𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 , 
respectively. The correlation coefficient 𝜎𝜎𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞,𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞  represents the relationship between the 
original and normalized images. 
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3.2.3 MS-SSIM 
While single scale may be appropriate in some contexts, multi-scale methods provide a 

practical approach to combine image information at varying resolutions. With greater 
flexibility than single-scale, the multi-scale structural similarity index (MS-SSIM) breaks 
down the source image into many scales and computes the SSIM scores at each scale to capture 
both local and global similarities [22]. MS-SSIM offers a more thorough measure of similarity 
by considering the many scales of image structure. To evaluate the preservation of textures 
and fine features of our histopathology prostate cancer dataset, we apply the multi-scale 
approach with SSIM and QSSIM to capture and analyze the image quality across several 
spatial resolutions [20, 22]. 

 
The MS-SSIM formula used in our research is in conjunction with the preceding equations (eq. 
1–4). 

𝑀𝑀𝑀𝑀 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑗𝑗,𝑘𝑘) = [𝑙𝑙𝑀𝑀(𝑗𝑗,𝑘𝑘)]𝛼𝛼𝑀𝑀 ∙ ∏ [𝑐𝑐𝑖𝑖(𝑗𝑗,𝑘𝑘) ∙ 𝑠𝑠𝑖𝑖(𝑗𝑗,𝑘𝑘)]𝛽𝛽𝑖𝑖𝑀𝑀
𝑖𝑖=1                         (7) 

 
In this equation, 𝑙𝑙𝑀𝑀(𝑗𝑗,𝑘𝑘) is the luminance comparison at the contrast scale, and 𝑐𝑐𝑖𝑖(𝑗𝑗,𝑘𝑘) and  
𝑠𝑠𝑖𝑖(𝑗𝑗,𝑘𝑘) are the contrast and structure comparison at scale 𝑖𝑖. The weights 𝛼𝛼𝑀𝑀 and 𝛽𝛽𝑖𝑖 are used 
to evaluate image quality by comparing luminance, contrast, and structure at different scales. 

3.3 Noise level evaluation matrix  
We calculate the mean noise level by calculating the standard deviation (SD) and signal-to-
noise ratio (SNR) to assess the image-denoising techniques. 

3.3.1 SD 

Images are first converted to a grayscale image, and the standard deviation (SD) of the pixel 
intensities in each grayscale image is then calculated to determine the noise level in the prostate 
cancer histopathology images [23, 24]. In grayscale images, 𝐼𝐼𝑗𝑗 is regarded as the pixel value 
at the location 𝑗𝑗. 𝑁𝑁 and 𝜇𝜇 are the total number of pixels in the grayscale images and the mean 
pixel intensity, respectively. The equation that's applied is, 

 
𝜇𝜇 = 1

𝑁𝑁
∑ 𝐼𝐼𝑗𝑗𝑁𝑁
𝑗𝑗=1                                                         (8) 

 
The standard deviation (SD) can be calculated using the following mathematical formula, 
 

𝜎𝜎 = �1
𝑁𝑁
∑ (𝐼𝐼𝑗𝑗𝑁𝑁
𝑗𝑗=1 − 𝜇𝜇)2                                                     (9) 

 
To determine the amount of noise removed from the original images, we compute the mean 
noise level (SD) for both the original and processed images.  

3.3.2 SNR 

Images with a stronger signal are thought to be of higher quality. The signal-to-noise ratio 
compares the desired signal to the amount of background noise in the image [25, 26]. SNR is 
used in this study to compare the signal of the prostate cancer histopathology images to the 
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image's background noise. The mean pixel value and the noise level are used to calculate the 
SNR. The equation is,  

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙10(𝜇𝜇
𝜎𝜎

)                                                         (10) 
 

In this formula, 𝜎𝜎 is the mean noise level, which was determined using the standard deviation, 
and 𝜇𝜇 denotes the mean pixel intensities.  

3.4 Color Normalization Methods 
Normalization is defined as producing an image description that is independent of the 

illumination circumstances under which the image was captured [27]. Our experimental 
methods for processing and analyzing the histopathology of prostate cancer images are derived 
from many normalization categories. To maintain the most significant information, these 
normalization techniques can improve the structural similarity between the original and 
normalized images. The process of histogram equalization is applied while converting an 
image from RGB to 𝑙𝑙𝑙𝑙𝑙𝑙 space, as stated in the histogram specification [6, 28]. The normalized 
images retain most of the brightness and color characteristics of the original images, even 
though the overall source information cannot be retained. Pixel values in each color channel 
are scaled in the min-max color normalization process so that they fall within the range. After 
deducting the least value from each pixel, this is accomplished by dividing each pixel by the 
highest value. The IRIS dataset was used in a 2017 study by Pandey and Jain to investigate 
data-normalizing approaches using the min-max methods. They discovered that the min-max 
normalization method produced 100% accuracy at k = 1 [7]. 

Complete color normalization can identify the source of color variation, including the 
illuminant and stain variance, as treating the color variation in histopathology images is an 
important task [8]. It can use structured weight (SW) statistics to utilize an intensity-matching 
technique and spectral normalization module to decrease the NMF solution space. The original 
image can be transformed into a saturated image by using the structured weight [8, 3]. By 
converting the images from RGB to Maxwellian color space, blind color decomposition helps 
to extract the intensity information from the color information. From the perspective of color 
theory, this transformation makes it possible to characterize an ideal stain and quantify stain 
quality [9]. Despite offering the color distribution of individual stains, this approach has the 
potential to create artifacts in the normalized image during processing. Using a contrast-
limited adaptive histogram equalization algorithm is a well-known technique to improve the 
contrast of histopathological images. By clipping the contrast enhancement to a limit, this 
approach specifically increases the contrast of three channels (R, G, and B) in sequential order 
[10]. Through the process of clipping the histogram on each block, CLAHE can improve the 
contrast by dividing the input image into multiple equal-sized blocks [11]. The orthonormal 
transformation of the original RGB image to optical density—which makes staining densities 
possible—is typically the basis for the color deconvolution technique. This conversion 
facilitates the acquisition of independent data regarding the contribution of each stain to an 
image of histopathology. Higher computational complexity is a drawback, but it also has a 
benefit in that each stain's image can be rebuilt independently for densitometry and texture 
analysis [3, 12]. Macenko et al. proposed one of the most widely used color normalization 
techniques based on singular value decomposition (SVD) to separate stain color components. 
We include the Macenko method as a baseline in our experiments to ensure a more 
comprehensive comparison. 
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3.5 Denoising Methods 
Due to sensor malfunctions, inadequate brightness, or incorrect correspondence during 

picture capture, medical images frequently contain noise [14]. In this case, denoising the 
images is essential to enhance the histopathological image quality for subsequent analysis, 
including segmentation, classification, and other medical image processing domains. In this 
study, we have assessed the denoising techniques we select from the linear and non-linear filter 
classes by calculating the prostate cancer image dataset's mean noise level and signal-to-noise 
ratio. The median filter, which retains edges and other crucial features [29, 30], effectively 
eliminates the noise present in histopathological images. Every pixel in the image should have 
its median value replaced by that of its neighbor [13, 14]. This technique locates the 
neighborhood for each pixel in the input image, after which it calculates the median value of 
the neighborhood. Using a Gaussian kernel that can retain the important characteristics to 
create a smooth image, the Gaussian filter mixes the images [14]. The weighted average of the 
neighborhood is calculated by the Gaussian kernel, which subsequently assigns the appropriate 
pixel to it. On the other hand, a bilateral filter convolves the image using a Gaussian kernel in 
both the spatial and intensity domains to preserve the discontinuities while blurring the image 
and maintaining the borders and edges [15]. However, the size of the neighborhood employed 
by the mean filter technique is controlled by a hyperparameter called kernel size. Every pixel 
in an image is replaced with the average of its neighbors using this denoising technique. In our 
dataset, we have opted to employ several kernel sizes for testing since it might be more 
appropriate to use a larger kernel size when denoising an image that is hazy and a smaller 
kernel size when denoising an image that is noisy but has distinct edges [14]. 

This technique reduces image noise by using wavelet transforms. Following the division of 
the image into a group of frequency subbands, thresholding is done to reduce noise in the high 
frequency subbands. The inverse wavelet transform should then be used to recreate the 
denoised image [16]. The non-local means denoising approach compares every pixel in an 
image inside a dataset. The filter computes the weighted average by the similarity of the pixels 
that are closest to the current pixel to do this comparison. First, we set up an initial filtered 
image with the same dimensions as the input image [17]. We analyze multiple parameters for 
each denoising method and change the optimal values of sigma value, threshold value, and 
kernel size to minimize noise while maintaining important details.  

3.6 Integrating Normalization Method with Denoising Techniques 
By integrating color normalization and image denoising methods, the most desired 

performance giver from both sections, we extend our comparative study based on the 
comparative result. We want to further investigate the structural similarity index metrics by 
combining these two approaches in our experiments. 
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Fig. 1. Flow chart for the implementation of blind color decomposition and gaussian filter together. 

Fig. 1 shows the sequential combination implementation of the Gaussian algorithm [14] 
and blind color decomposition [3] for our prostate cancer histopathology image dataset, which 
performs better than other presented methods. To implement the gaussian algorithm, we 
experimented with several kernel sizes (3 × 3, 5 × 5, 7 × 7), with kernel size 7 × 7 yielding the 
best results. In contrast, to identify patterns in images, we employ blind color decomposition, 
which divides an image into three color components (red, green, and blue) using the non-
negative matrix factorization (NMF) [3, 9]. Additionally, to improve the separation of spectral 
components and the classification and analysis task for the histopathological medical images, 
we transform the images to Maxwellian color space. 

4. Comparative Analysis  

The impact of the color normalization and denoising methods on tissue images from prostate 
cancer histopathology is assessed in the following section through a comparative quality study.  
 
Table 1. Comparison of seven color normalization methods based on SSIM, QSSIM, and MS-SSIM 

metrics for the prostate cancer dataset. Higher values indicate better similarity preservation. 
 

Method SSIM QSSIM MS-SSIM 
Histogram Specification 0.773 0.814 0.639 
Min-max Normalization 0.831 0.861 0.977 

Complete Color Normalization 0.828 0.850 0.969 
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Blind Color Decomposition 0.834 0.864 0.989 
Contrast Enhancement (CLAHE) 0.797 0.833 0.781 

Color Deconvolution 0.817 0.851 0.903 
Macenko 0.830 0.861 0.981 

 
Based on a comparative study of seven color normalization methods applied to one hundred 
histopathological prostate cancer images (Gleason scores of 3, 4, and 5) we observed that the 
blind color decomposition method outperforms the other methods (Table 1). In both SSIM, 
QSSIM, and MS-SSIM this method gives a value of 0.834, 0.864, and 0.989 respectively. We 
employ a non-negative matrix factorization (NMF) with three components, initialized via Non-
negative Double Singular Value Decomposition (NNDSVD), and confined to 500 iterations 
to develop the blind color decomposition approach. This ensures reproducibility with a fixed 
random state. On our dataset, the min-max, macenko, complete color, and color deconvolution 
algorithms also exhibit a stronger influence. Since the purpose of our study is to evaluate the 
structural similarity of color normalization methods on histopathology images, we selected 
three methods: MS-SSIM to analyze the images at different resolutions and scales, QSSIM to 
enhance the power of SSIM by adding perceptual quality factors, and SSIM to measure the 
similarity in structure, luminance, and contrast between the original and normalized images. 
QSSIM can improve the accuracy of diagnosis in the field of medical imaging by offering a 
sophisticated assessment of image quality that closely matches expert human evaluations [20, 
21]. 
 

 
Fig. 2. Visualization of seven different color-normalized images from different Gleason scores for the 

prostate cancer image dataset. The first column is the original images while the rest of the columns 
represent the normalized images.  

The visual contrasts between the original and normalized images from various color 
normalization methods are shown in Fig. 2. Three source images were selected from among 
100 malignant images based on three distinct Gleason scores to present a more useful 
assessment of the entire prostate cancer dataset in this figure. The original/source images from 
Gleason scores 3, 4, and 5 are displayed in the first column. 
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Table 2. ANOVA (Analysis of Variance) statistical analysis for similarity metrics. 
 

Metric Anova F-Value p-Value Significance 
(p<0.05) 

SSIM 11.85 0.0027 Significant 

QSSIM 9.94 0.0071 Significant 

MS-SSIM 13.62 0.0014 Significant 

 
ANOVA (Analysis of Variance) determines whether the means of multiple groups—in 

this case, the SSIM, QSSIM, and MS-SSIM scores across different color normalization 
methods—are significantly different. It does this by comparing the variance between groups 
(differences in mean values of methods) with the variance within groups (variations within 
each technique). The ratio of these variances is known as the F-value, and a higher F-value 
shows that at least one strategy is significantly different from the others. We apply a p-value 
significance test and reject the null hypothesis if p < 0.05, showing a statistically significant 
difference between normalization methods. This statistical validation confirms that the 
differences in similarity scores are not random, supporting the conclusion that Blind Color 
Decomposition outperforms other methods (Table 2). Since all p-values are below 0.05, the 
observed improvements are statistically significant, strengthening the study’s claims and 
providing justification for performance differences.   
 

Table 3. Computational Complexity Table (Big-O Analysis) for the normalization methods. 
 

Normalization Method Computational Complexity (Big-O 
Notation) 

Histogram Specification 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) 

Min-max Normalization 𝑂𝑂(𝑛𝑛) 

Complete Color Normalization 𝑂𝑂(𝑛𝑛2) 

Blind Color Decomposition 𝑶𝑶(𝒏𝒏 𝒍𝒍𝒍𝒍𝒍𝒍 𝒏𝒏) 

Contrast Enhancement (CLAHE) 𝑂𝑂(𝑛𝑛) 

Color Deconvolution 𝑂𝑂(𝑛𝑛2) 

Macenko Normalization 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) 

 
The computational complexity of each color normalization approach was determined by 

the underlying algorithmic procedures. The key operation of histogram-based transformation 
processes (histogram specification, blind color decomposition, and macenko) is sorting 
intensity values, which has an O(n log n) complexity. Methods utilizing pixel-wise 
transformations (Min-Max Normalization, CLAHE) involve direct intensity mapping, 
resulting in a more efficient O(n) complexity. Color Deconvolution which uses matrix 
factorization or eigenvalue decomposition, has quadratic computational complexity (O(n²)). 
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These complexity values were derived from algorithmic analysis rather than empirical 
execution times, ensuring a theoretical justification of computational feasibility for each 
method.  

In order to balance computing efficiency with performance accuracy and to meet the 
paper's goal of determining the best normalization technique, it is imperative that 
computational complexity be taken into account in the study. Despite having the highest 
similarity scores, Blind Color Decomposition is a strong contender for practical 
implementation because of its (O(n log n)) trade-off between performance and efficiency 
(Table 3). By presenting both accuracy metrics (SSIM, QSSIM, MS-SSIM) and computational 
feasibility (Big-O complexity), the study provides a holistic evaluation that helps researchers 
choose a method suited for scalable and high-quality histopathology image analysis. 
 
Table 4. Comparison of six image denoising methods based on mean noise level, standard deviation, 

and signal-to-noise ratio (SNR) for the prostate cancer dataset. Higher SNR values indicate better 
noise reduction, with the best-performing method in bold. 

 

Method 
Original 

noise 
level 

Processed 
image's 

noise level 

Percentage of 
noise 

reduction 

Original 
SNR 
(dB) 

Processed 
SNR 
(dB) 

Median 

38.961 

25.844 33.67% 

6.50 

8.39 
Gaussian 25.542 34.44% 8.46 
Bilateral 33.205 14.7% 7.22 

Mean 29.824 23.45% 7.68 
Wavelet 

Transform-based 34.793 10.70% 3.33 

Non-local Means 35.364 9.23% 6.95 
 

In this work, we assess both linear and non-linear denoising techniques to provide a 
thorough analysis and comparative assessment of the effects of denoising techniques on 
histopathological images. Table 4 demonstrates that the Gaussian filter outperforms the others 
in terms of noise reduction, with a reduction of 34.44%. The noise level in the original and 
filtered images is 38.961 and 25.542, respectively. Conversely, the SNR value obtained from 
this approach is 8.46 dB, while the SNR value from the original image was 6.50 dB. The 
percentage indicates that compared to the original and other filtered images from different 
techniques, the Gaussian-filtered images have substantially less noise. Additionally, 
considering the signal-to-noise ratio, the growing SNR value demonstrates that the Gaussian-
filtered images are 8.46 dB stronger than the original images. After examining several factors 
and parameters, we decided on the kernel size (7 × 7) to achieve the best results when 
implementing the Gaussian filter. Additionally, the standard deviation in the x direction 
(sigma_x = 0), where the function can compute the standard deviation automatically based on 
the kernel size when the sigma value is zero. The median and mean filter also have a closer 
impact on our dataset according to their percentage of noise reduction and signal-to-noise ratio. 

In Fig. 3, the signal-to-noise ratio and noise level are shown using three distinct dimensions 
for easier comprehension. The evaluation metrics (SNR and standard deviation), the denoising 
techniques, and the value are stored on these three axes. This figure clearly illustrates how the 
highest degree of SNR is increased, and the highest level of noise is reduced when using a 
Gaussian filter. Even the Gaussian filter reduces the highest percentage of noise compared to 
other methods. To achieve the best result for noise reduction in each denoising approach, we 
look at every conceivable parameter. The rationale behind selecting the linear, non-linear, and 
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multi-scale denoising approaches to optimally evaluate the prostate cancer dataset. 
 

 
Fig. 3. A three-dimensional graph showing, for the selected image denoising techniques, the relative 
differences between the original and filtered images based on their mean noise level, signal-to-noise 

ratio, and percentage of noise reduction. 

The precise parameters and values that we used to apply the chosen denoising techniques are 
listed in Table 5. We examined various kernel widths, sigma values, threshold values, and 
other factors to apply these algorithms in a way that would minimize potential noise and 
enhance the image based on the signal-to-noise ratio. Ultimately, the quantities listed in Table 
5 provide the best outcome that is both desired and feasible. We also experimented with these 
denoising methods with specific parameters with all the present color normalization methods 
to see the differences in structural similarity index metrics.  
 
Table 5. Specific parameters with their specific values to implement the selected denoising techniques 

after analyzing several values to get the desired outcome. 
 

Method Parameter Range 
Median kernel size 5 × 5 

Gaussian 
Kernel size 7 × 7 

sigma 0 

Bilateral 
diameter 9 

sigma Color 75 
sigma Space 75 

Mean Kernel size 3 × 3 

Wavelet Transform-based 
kernel size 5 × 5 

threshold value 200 

Non-local Means 

luminance component 10 
color components 10 
template Window 7 × 7 
Search Window 21 × 21 
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5. Result and Discussion 

In this section, we performed a combination of color normalization and denoising 
methods for our prostate cancer dataset to see whether any changes happened or not in the 
three structural similarity metrics of our histopathology prostate cancer dataset. The 
quantitative results of color normalization and image denoising from Table 1 and Table 4 
show that the blind color decomposition and Gaussian methods have a greater impact 
compared to other methods. 
 

 
Fig. 4. Three-dimensional (3D) colormap to visualize the impact of color normalization methods 

based on the structural similarity indices. 

The efficacy of six distinct color normalizing techniques is compared in a 3D surface plot 
shown in Fig. 4 based on the selected method, Histogram Specification, Min-max normalizing, 
Complete Color Normalization, Blind Color Decomposition, Contrast Enhancement, Color 
Deconvolution, and Macenko. The structural similarity index (SSIM), the multi-scale 
structural similarity index (MS-SSIM), and the quaternion structural similarity index (QSSIM) 
are the evaluation metrics that are employed. The color normalization techniques are 
represented by the X-axis, while the similarity indices are categorized by the Y-axis. The 
values of SSIM, QSSIM, and MS-SSIM are indicated on the Z-axis. The 'viridis' colormap 
uses the SSIM data to show how well each method preserves image structure. Structural 
similarity is quantitatively evaluated by the QSSIM values, which are displayed on the 'plasma' 
colormap. The 'inferno' colormap represents the MS-SSIM values, which quantify the 
structural similarity at various scales and offer a thorough assessment of the image quality 
after normalization. 

In the present study, Blind Color Decomposition exhibits the highest performance in 
maintaining the structural similarity of the image, displaying the most significant values in 
SSIM, QSSIM, and MS-SSIM. As shown by its high efficacy, particularly in the MS-SSIM 
metric, min-max normalization, and macenko additionally shows potential for multi-scale 
structure preservation. This three-dimensional map shows how different color normalizing 
methods impact the image's structural similarity and allows for a clear and comprehensive 
comparison of the methods using multiple similarity indexes. With different colormaps for 
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each metric, the readability and distinction between the similarity indices are enhanced.  
 

Table 6. Comparative analysis on the impact of denoising methods in combination with color 
normalization method for the prostate cancer image dataset. Comparatively, the impact of combining 

Gaussian denoising methods with the blind color decomposition method is shown in bold font. 
 

Method SSIM QSSIM MS-SSIM 
Blind Color 

Decomposition 
(without Gaussian) 

0.834 0.864 0.989 

Blind Color 
Decomposition 
(with Gaussian) 

0.857 0.884 0.998 

 
Table 6 provides a detailed comparison of the performance of Blind Color Decomposition 
(BCD) in two different configurations: without Gaussian filtering and with Gaussian filtering.  
Each indicator offers a unique perspective on how well the color normalization technique 
preserves the images' structural and artistic integrity. The table clearly shows that an SSIM 
value of 0.857 is obtained when Gaussian filtering is used in conjunction with BCD. This value 
is higher than the 0.834 value obtained when filtering is not used. This implies that the 
structural preservation including the luminance, contrast, and structure of the images is 
enhanced using Gaussian filtering. The QSSIM value of 0.884 produced by blind color 
decomposition with Gaussian filtering is greater than the 0.864 obtained in the absence of 
Gaussian filtering. With this improvement, Gaussian filtering more effectively preserves the 
color and structural integrity of the quaternion space, leading to a more accurate representation 
of the image's similarity. The enhancement in MS-SSIM, with a 0.998 score, indicates how 
effectively it maintains image characteristics across various scales, resulting in enhanced 
overall image quality. Table 6 clearly shows that, for all three similarity standards, Blind Color 
Decomposition performs significantly better when Gaussian filtering is applied with certain 
parameters (Table 5). These results show the value of Gaussian filtering in color normalization 
and its capacity to maintain the aesthetic and structural integrity of normalized images. 

6. Conclusion 

This study uses various color-normalizing methods to provide a comparative evaluation 
of the structural similarity of prostate cancer histopathology images. Three distinct similarity 
metrics are used to evaluate structural similarity: the multi-scale structural similarity index 
matrix (MS-SSIM), the quaternion structural similarity index matrix (QSSIM), and the 
structural similarity index matrix (SSIM). The objective of our analysis was to examine the 
overall structural similarity of histopathological images from all angles, including the structure, 
size, direction, brightness, contrast, and numerous scales of an image by implementing 
different types of color normalization methods. To minimize potential noise in histopathology 
images, we also examine various linear, non-linear, and multi-scale filtering algorithms. 
Throughout the experiment, it becomes evident that the Gaussian filter and blind color 
decomposition have a significant impact on our prostate cancer dataset, providing the largest 
percentage of noise reduction and the highest similarity for all similarity metrics, respectively. 
When we combine the blind color decomposition with a Gaussian filter that has characteristics, 
this experimental comparison even works better. With this combined implementation, our 
prostate cancer images' structural similarity increases significantly across all structural 
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similarity evaluation parameters. This study demonstrates the significant influence of color 
decomposition techniques on histopathology image processing, particularly on images of 
prostate cancer. By comparing color normalization and denoising techniques, we want to 
advance the fields of medical image analysis and computer-aided clinical diagnosis. 
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