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Abstract 

Using dual-energy computed tomography (CT), this study aims to develop an algo-

rithm to identify the chemical constituents of an unknown material (compound or 

mixture) and improve the accuracy of material discrimination. The algorithm requires 

mass attenuation coefficients (MAC) that were obtained using a dual energy CT as 

an input, identifies the elemental composition, and then calculates its weight fraction. 

To evaluate the functionality of the developed algorithm, it was used to determine the 

chemical constituents for human tissues. Furthermore, the results were compared 

with those provided by the National Institute of Standards and Technology (NIST). We 

used dual energies 80/140 kVp for spectral CT scans, as inputs to the algorithm, in 

addition to a set of 50/80 and 80/100 keV for mono-energetic X-rays. The algorithm 

correctly determined the chemical constituent elements of unknown materials. Results 

were obtained for the fractional weights of each component for mono-energetic X-rays 

and spectral X-ray use. For mono-energetic X-rays, the differences were < 0.01% for 

compounds and 6.02% for mixture, respectively. For the spectral X-rays, the differ-

ences in 2.98% for compounds and 6.03% for mixtures, respectively. We developed 

an algorithm to determine the type and weight fraction of an element using the MAC 

of dual-energy CT. The algorithm can exclude the inherent uncertainty of SPR calcula-

tions and improve the accuracy of dose calculations in radiation therapy planning.

Introduction

In terms of physical and radiobiological properties, proton and heavy ion therapy 
have multiple advantages over photon therapy and thus have received considerable 
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attention in the field of radiation therapy [1]. The most distinguishing features of 
particle therapy are that the relative biological effectiveness (RBE) and linear energy 
transfer (LET) are sufficiently high that the absorbed dose is high in the tumor and 
decreases in the surrounding normal tissue [2]. However, efforts are required for 
reducing uncertainty in dose calculation; otherwise, the uncertainly delivered high 
dose to organs at risk (OARs) could cause side effects.

In general, the calculation of the physical dose of particle radiation in the treatment 
planning system (TPS) is based on the stopping power ratio (SPR) [3]. According 
to the Bethe–Bloch equation, electron density and mean excitation potential (I

m
) of 

materials play an important role for calculating SPR [3].
Recently, considerable efforts have been made to reduce the uncertainty of 

dose calculation using dual-energy computed tomography (DECT) [4,5,6]. As 
an extension of photon dose calculation, the method using electron density and 
effective atomic number can be employed to that of particles [7–12]. Zhu et al. 
estimated SPR using effective atomic number (Z

eff
) from DECT [7]. The difference 

reduced to 1.4% for DECT, compared to 5.7% for single-energy computed tomog-
raphy (SECT), demonstrated that the method using DECT resulted in improved 
material discrimination. Jung et al [11]. obtained Z

eff
 using two SECT scans that 

may be replaced with a single DECT. Sakata et al [12]. reported a study to improve 
accuracy by increasing the energy gap between two dual energy images using kV 
and MV images.

Furthermore, from DECT images, there are multiple studies of model-based SPR 
calculations. Yang et al. suggested a parameterized and approximated Bethe equa-
tion to calculate SPR by determining Z

eff
 and I

m
, both of which can be obtained from 

fitting the known material data [12]. Another method is known as the basis vector 
model wherein mass attenuation coefficient (MAC) can be spanned by those of two 
known materials as a linear combination [13]. By determining coefficients in the linear 
combination for multiple human tissues, the Z

eff
 of the material was estimated and 

used to compute the SPR.
Studies on improving SPR accuracy using DECT have also been conducted 

in tissue characterization methods. There are three major tissue characterization 
methods using DECT: (1) segmentation, (2) parametrization, and (3) decomposition. 
The segmentation method makes a list of materials in advance, assigns them to 
pixels, and accordingly determines the elemental composition. This method has the 
disadvantage that it is insensitive to changes in elemental composition from patient 
to patient [7]. The parametrization method has a database on the composition of 
human tissue; moreover, it expresses the weight fraction of an element as a func-
tion such as Hounsfield Units (HUs), electron density, and Z

eff
. If the HU difference 

between human tissues in the database is not large, this method may be sensitive to 
noise and artifacts [14]. The decomposition method assumes that the human body 
is composed of substances such as water, lipid, and protein; moreover, it estimates 
the weight fraction of each of these base elements from electron density, and Z

eff
 

obtained from dual- or multiple-energy images [15,16]. The abovementioned meth-
ods have achieved remarkable development for calculating SPR and absorbed dose 
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calculation in particle therapy; however, when calculating the mean excitation energy, there is inevitably uncertainty when 
using Z

eff
 compared to using the atomic number of each element.

Unlike the method of determining Z
eff

, we attempted to determine exact chemical composition of unknown materials 
using the dual-energy CT, which would enable application for calculating SPR. To establish the concept of the method to 
determine constituent elements, the theory and algorithm of computation is demonstrated. Moreover, the results for the 
estimation of the chemical composition of unknown materials and their fractional weights are presented.

Materials and methods

Prerequisite of the algorithm

Built-in data: mass attenuation coefficients (MACs).  The algorithm is working with MACs as a function of atomic 
number for dual (low and high) energy in the look-up table, built-in data, with an atomic number of 1–20. Two sets of 
MACs used were made as built-in data: the value provided by National Institute of Standards and Technology (NIST) and 
the Geant4 simulation. The two sets of built-in data comprise MACs for a ranging from 1 keV to 6 MV. NIST built-in data 
provides MACs to four decimal places, but Geant4 built-in data provides MACs to ten decimal places. Geant4 built-in data 
is expected to have the advantage of deriving additional accurate results when a CT image comprising multiple voxels is 
applied to the algorithm.

Geant4 modeling.  For the MC simulation using Geant4, we set the model as follows (Fig 1):

• A point source of photon

• Narrow beam

• Number of photons: 108

• Cylindrical gamma detector: radius of 0.1 mm × height of 0.1 mm

• Box-shaped material: 5 × 5 × 1 cm3

For using DECT, the American Association of Physicists in Medicine (AAPM) Task Group 291 Report (TG 291) sug-
gested that the peak energies of spectral X-ray are 80 and 140 kVp to be sufficiently different to take advantage of 
the energy-dependent nature of MAC [17]. In this study, CT images based both on full energy spectra simulations and 

Fig 1.  (a) Geant4 modeling for calculating mass attenuation coefficients. The blue box is the object for obtaining mass attenuation coefficient and 
has a thickness of 1 cm. (b) The tracks of X-rays in a simulation.

https://doi.org/10.1371/journal.pone.0322805.g001

https://doi.org/10.1371/journal.pone.0322805.g001
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mono-energic beams were simulated. The peak energies of the energy spectra are 80/140 kVp, whereas the mono-
energies are 50/80 and 80/100 keV, respectively. To confirm the built-in data, we compared the result of our simulations 
with NIST data for MACs for atomic numbers from 1 to 20.

Identifying representative energy for spectral X-rays

In principle, applying the algorithm for identifying chemical constituent from spectral energy, we should integrate over the 
complete energy spectrum. However, to save computational time and load, using mono energy representing the energy 
spectrum is considerably more efficient as long as the uncertainty remains sufficiently small. For the easy and efficient 
application for clinical use, the representative energy was defined as the energy at which the MAC of specific material 
(i.e., H2O) was the same as when integrated over the full energy spectrum. In this study, to confirm the feasibility for 
clinical use, representative energy was determined using MC simulation rather than measurement. The MAC obtained by 
performing Geant4 simulation again with the representative energy obtained in this way was compared and evaluated with 
the MAC obtained by the Geant4 simulation for the full energy spectrum.

Theory

This algorithm can identify both the atomic number of the elements and their weight fractions for unknown mixtures or 
compounds. The algorithm can be defined as follows. The MAC of a material x  comprising N  chemical constituents can 
be spanned as a linear combination:

	

(
µ
ρ

)
x
=

∑N
i=1 wi

(
µ
ρ

)
i
, with fractional weight, wi =

niAi∑
j njAj 	 (1)

where wi and Ai are the weight fraction and atomic weight of element i  in the unknown material, ni  is the number of atoms 
in molar amount, x . Assuming that MAC is obtained for a material composed of two unknown elements using two ener-
gies of high and low, Eq 1 can be expressed as Eq 2.

	 µx,L = w · µ1,L + (1 – w) · µ2,L	

	 µx,H = w · µ1,H + (1 – w) · µ2,H	 (2)

For simplicity, 
(

µ
ρ

)
set to be µ. Moreover, w  should sum to 1 over the elements; therefore, w  should reside in the range of 

[0,1]. Solving the system of Equations of Eq 2 for w  yields the following:

	
0 ≤ w =

∆µ2 –∆µx
∆µ2 –∆µ1

≤ 1
	 (3)

where the mass difference in attenuation coefficient is ∆µ = µL – µH. Substituting Eq 3 in Eq 2 provides

	

α ·∆µ2 + β · µ2,L + γ = 0, with





α = µx,L – µ1,L

β = ∆µ1 –∆µx
γ = ∆µx · µ1,L –∆µ1 · µx,L	 (4)

We solve Eq 4 for the MACs of material 2 (µ2L,H) with given unknown material’s µx,L,H  and test chemical constituent’s 
µ1,L,H. Note that α, β, and γ  are constants for a given input material x . The algorithm starts by assuming that hydrogen, 
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atomic number 1, is material 1. The overall process of determining atomic numbers and weight fractions based on the 
MAC information is depicted in Fig 2.

Minimization

The system of equations, Eq 2, is not solvable because there are three unknowns with two equations. Thus, we should 
conditionally solve equations. Let us define Eq 4 to be an objective function (f):

	 f(z) = (α ·∆µ2 + β · µ2 + γ)
2
	 (5)

Where z denotes the atomic number. The reason for using a squared term in Eq 5, unlike Eq 4, is to prevent negative val-
ues and to facilitate the identification of the minimum value. Ideally, as expressed in Eq 4, f(z) should vanish. However, the 
noise in the image and uncertainty in measurement, f(z) would not vanish but become close to 0. Therefore, to determine 
material 2, f(z) might be an objective function for minimization. For robustness against noise, we consider multiple local 
extrema during the process of minimization (green arrows in Fig 4). Note that the determination of trial material 1 is under 
the condition that material 2 exists.

Fig 2.  The method for determining the chemical constituents of unknown materials in the algorithm. x is unknown material, xr1 is all elements in 
the unknown material except the first element, n is total number of elements in the unknown material.

https://doi.org/10.1371/journal.pone.0322805.g002

https://doi.org/10.1371/journal.pone.0322805.g002
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Integer condition

The minimization of objective function yields multiple solutions with fractional weights as in Eq 3 and chemical constituent. 
Using these results, the chemical expression can be determined from each number of atoms. In general, the expressed 
number of each constituent is

	
ni =

µi

(1–
∑N–1

j µj)Ai
nN ∈ I

	 (6)

where I is a positive integer group with the material comprising N constituents (i = 1, 2, …, N − 1, N), ni  is number of ith constit-
uent and nN is the number of Nth constituent. The program determines the termination time by designating the current number 
of elements in the algorithm. Moreover, there is an integer condition for the atomic number (Z); however, if it is found in ±0.1 
of an arbitrary atomic number (Z) and it is terminated. This integer condition is extremely strict and rejects multiple solutions 
that do not meet most conditions in identifying compound materials. For this computation, based on these integer numbers 
of chemical constituents, MACs (A) are recalculated based on the material composition in the algorithm to compare the input 
MACs (B). If differences between (A) and (B) falls within the acceptance range (e.g., 5%), it is output as a result, otherwise it is 
excluded. The algorithm allows you to set the acceptance range for uncertainty from 1% to 10%.

Using the following mechanism, the algorithm identifies both atomic number and fractional weight; The identified atoms 
are numbered from 1 to N in descending order of fractional weight. That is, the atom with the highest fractional weight 
becomes 1st element, and the atom with the lowest fractional weight becomes Nth element.

Algorithm execution

For Fig 3, the overall flowchart and process in the algorithm are demonstrated where we considered the application to 
the clinical use by replacing input MAC converted from the DECT image. To execute the algorithm, two essential inputs 
are required: monoenergies and MACs. If the spectrum energy is utilized, representative monoenergies are identified, 
as shown in the blue box of Fig 3, and employed as input data for the algorithm. Subsequently, utilizing a lookup table 
of MACs and atomic numbers, the algorithm obtains the respective MACs for low energy and high energy. Based on the 
information provided in Methods section, the algorithm then proceeds to determine the element and fractional weight.

Example of identifying chemical constituents

The algorithm sequentially tests the atomic number starting with the atomic number 1, i.e., it is a method of identifying the next 
element assuming that the xth atomic number has been reported; if all of the specific x

i
 results fail, the x

i+1
 test is performed.

As an example of identifying the atomic number of an unknown material through the formulas mentioned in 2.2.1 and 
2.2.2, the unknown material’s MACs are 0.2074 and 0.1641 with mono energies of 50 and 100 keV, which were inputted 
for the algorithm. Fig 4 shows the process of identifying the next atomic number with the trial test element of C (Z = 6) after 
a first step to identify H (Z = 1). The objective function provides multiple solutions with fractional weight as local extrema 
in a log-scaled graph where the value of 8.00 among local extrema (green arrows in Fig 4) was determined as a third 
element; however, other singularities are rejected according to the condition that the fractional weight of each element 
must be within [0,1] (blue curve). Therefore, H-C-N and H-C-O were the possible combinations of chemical constituents. 
By applying Eq 6, the number of constituents can be obtained, followed by the determination of chemical formulae. Finally, 
the algorithm compares two MACs: acquired from chemical formulas using Eq 1 and provided as an input to determine 
the chemical constituent of an unknown material as polymethyl methacrylate (C

5
O

2
H

8
) which has less uncertainty.

The algorithm was tested on five compounds that combine C, H, O elements and nine mixtures of the body tissue 
materials mentioned [18,19]. In the case of body tissue materials, the fractional weight of some elements was slightly 
modified so that the sum of the fractional weights was 100%.
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Results

Prerequisite of the algorithm

Validation of Geant4 simulation.  As shown in Fig 5, MACs obtained using Geant4 simulation for every element were 
compared using NIST data and demonstrated that resultant percentage differences reside in the range of −1.30%–0.28% 
and −0.79%–0.08% for 50 and 80 keV.

Determination of representative energy.  Validating the method for the representative energy of spectral X-ray, 
the MAC of H

2
O, PMMA, and cortical bone (ICRP) [17] obtained through the energy spectrum comparing it with 

that from representative energy (Table 1). Consequently, the mono energies representing 80 and 140 kVp were 
40.13–44.29 and 49.50–53.31 keV for three materials. Furthermore, the difference in the absolute values of the MACs 
of spectrum energy (μ/ρ

spec E
) and representative energy (μ/ρ

rep E
) was 0.07–1.05%. To determine the representative 

energy for water (H₂O) from the 140 kVp X-ray spectrum, we employed SpekCalc software followed by Geant4 Monte 
Carlo simulation validation. The detailed methodology for this energy calculation process is provided in the Supporting 
Information (S1 File).

	
(C) =

∣∣∣∣
(B) – (A)

(A)

∣∣∣∣× 100(%)
	

Fig 3.  Depicts the schematic of the algorithm. The clinical use was considered and shown in the dashed line box as a replacement.

https://doi.org/10.1371/journal.pone.0322805.g003

https://doi.org/10.1371/journal.pone.0322805.g003
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Identifying chemical constituents

Compounds.  The results of the unknown material’s chemical constituents with fractional weights were obtained 
by comparing the values calculated from NIST data using Eq 1. Consequently, the percentage differences in fractional 
weights of chemical constituent for five compounds were in <0.01% and 2.98% for the material comprising two and three 

Fig 5.  Comparison of mass attenuation coefficient calculated by Geant4 simulation and acquired from NIST data. Inverted triangle (yellow) and 
triangle (purple) mean the NIST data for 50 and 80 keV, respectively. Cross (blue) and X (red) mean the data by Geant4 simulation at 50 and 80 keV, 
respectively.

https://doi.org/10.1371/journal.pone.0322805.g005

Fig 4.  Test of polymethyl methacrylate (C
5
O

2
H

8
) through algorithm: Curves of both objective function and fractional weight in the process of 

identifying third chemical constituent after H was assumed, i.e., step 2 in Figure 2. The trial element, C (Z = 6), brought objective function to the 
minimal singularity at Z = 8.

https://doi.org/10.1371/journal.pone.0322805.g004

https://doi.org/10.1371/journal.pone.0322805.g005
https://doi.org/10.1371/journal.pone.0322805.g004
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constituents, respectively. These results demonstrate that the algorithm for identifying the chemical constituents works 
quite accurately for the material comprising two or three constituents with H, C, and O (Table 2).

Mixtures

Nine human tissue (mixture) materials were tested and the results are shown in Table 3. It was confirmed that the %dif-
ference in the case of number of constituents was 4, 5 and 6 were 0.340–5.449%, 1.410–5.188%, and 3.693–6.027%, 
respectively. It can be seen that the higher the number of constituents, the higher the %difference overall. The reasons for 
this will be discussed in more detail in Discussion section.

Discussion

The originality of our algorithm is that it can find the constituent elements of an unknown material consisting of two or 
more elements and the fractional weight of those elements using only two CT energy spectra. Although the algorithm we 
developed does not require calculating Z

eff
 as an approximation, it is considered a useful result, but several considerations 

were made about the problems encountered during performing of this study and are described below.

Consideration on the improvement of the accuracy

We made careful efforts to improve the accuracy in the overall process of algorithm development. One of them was the 
effort made in the process of selecting built-in data to be used in the process of identifying chemical constituents. Rather 
than using the MAC provided by NIST, we used that obtained by Geant4 simulation as built-in data because NIST only 
provides MACs with four significant figures. Moreover, the resulting truncation error possibly acts as a factor of uncertain-
ties. Because MACs obtained by Geant4 simulation might not completely remove uncertainty, the condition that the atomic 
number of an element is always quantized to an integer was used in the algorithm.

Currently, the suggested algorithm can identify chemical constituents for mixtures or compounds with two elements 
with extremely high accuracy (Table 2). However, the confirmation that the accuracy of the result was somewhat lower for 
mixtures or compounds with more than three elements. The accuracy decreases as the number of elements forming the 
material increases can be understood by considering error propagation. Fig 2 shows the algorithm sequentially identifies 
the atomic number and weight fraction step by step. In this process of identifying the 1, 2, …, and (n)th element, the MAC 
from the first to the (n-2)th elements are used as inputs for the subsequent step. Therefore, at each step, the resultant 
atomic number Zstep has the uncertainty propagated via the objective function (f) (Eq 5) [20]:

	
σzstep 1

=

√(
∂f
∂µx

σµx

)2

+
(

∂f
∂µ1

σµ1

)2

	 (7)

Table 1.  Comparison of calculated mass attenuations using energy spectrum and their representative energies at H2O, PMMA, and cortical 
bone (ICRP).

Material Density (g/cm³) Spectral energy Representative energy %diff (C)

Energy (kVp) μ/ρspecE (cm²/g) (A) Energy (keV) μ/ρspecE (cm²/g) (B)

H₂O 1.00 80 0.2689 41.70 0.2682 0.07

140 0.2274 49.50 0.2297 0.22

PMMA 1.18 80 0.2344 40.13 0.2342 0.09

140 0.2057 50.80 0.2057 < 0.01

Cortical bone (ICRP) 1.85 80 0.5408 44.29 0.5303 1.05

140 0.3775 53.31 0.3772 0.03

https://doi.org/10.1371/journal.pone.0322805.t001

https://doi.org/10.1371/journal.pone.0322805.t001
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where 
(

µ
ρ

)
x
≡ µx and 

(
µ
ρ

)
1
≡ µ1 are considered as variables because the MAC of unknown material, 

(
µ
ρ

)
x
, as an input 

value has the uncertainty that could be from measurement or reconstruction of CT scan. Furthermore, the MAC of trial 
element 

(
µ
ρ

)
1
might have truncation errors in the computation. With increase in steps, the uncertainty would increase.

	
σtot =

√
(σzstep 1

)
2
+(σzstep 2

)
2
+ · · ·+ (σzstep n)

2

	 (8)

Therefore, as the number of constituent elements increase, the uncertainty inevitably increases as the uncertainty prop-
agates. In future, we expect to determine the chemical constituents for a material of >10 elements using the developed 
algorithm. Therefore, in order to improve accuracy, it will be more essential to use the MAC calculated by Geant4 rather 
than the MAC of NIST in the future.

Table 2.  Results of using the algorithm to find the chemical constituents for compounds using dual energy and mass attenuation coefficient.

Human Body 
Material

Dual Energy 
Type

Number of 
Constituent

H C N O P Ca Max. 
Diff.

H₂O Ref. 2 11.20% N/A N/A 88.80% N/A N/A

Mono. I 11.191% (−0.009%) 88.809% (0.009%) 0.009%

Mono. II 11.191% (−0.009%) 88.809% (0.009%) 0.009%

Spectral I 11.191% (−0.009%) 88.809% (0.009%) 0.009%

Spectral II 11.191% (−0.009%) 88.809% (0.009%) 0.009%

Spectral III 11.191% (−0.009%) 88.809% (0.009%) 0.009%

C₂H₄ Ref. 2 14.37% 85.63% N/A N/A N/A N/A 0.002%

Mono. I 14.372% (0.002%) 85.628% (−0.002%) 0.002%

Mono. II 14.372% (0.002%) 85.628% (−0.002%) 0.002%

Spectral I 14.372% (0.002%) 85.628% (−0.002%) 0.002%

Spectral II 14.372% (0.002%) 85.628% (−0.002%) 0.002%

Spectral III 14.372% (0.002%) 85.628% (−0.002%) 0.002%

C₃H₈ Ref. 2 7.74% 92.26% N/A N/A N/A N/A 0.003%

Mono. I 7.743% (0.003%) 92.258% (−0.002%) 0.003%

Mono. II 7.743% (0.003%) 92.258% (−0.002%) 0.003%

Spectral I 7.743% (0.003%) 92.258% (−0.002%) 0.003%

Spectral II 7.743% (0.003%) 92.258% (−0.002%) 0.003%

Spectral III 7.743% (0.003%) 92.258% (−0.002%) 0.003%

C₅O₂H₈ Ref. 3 8.05% 59.98% N/A 31.96% N/A N/A 0.005%

Mono. I 8.055% (0.005%) 59.985% (0.005%) 31.961% (0.001%) 0.005%

Mono. II 8.055% (0.005%) 59.985% (0.005%) 31.961% (0.001%) 0.005%

Spectral I 8.055% (0.005%) 59.985% (0.005%) 31.961% (0.001%) 0.005%

Spectral II 8.055% (0.005%) 59.985% (0.005%) 31.961% (0.001%) 0.005%

Spectral III 8.055% (0.005%) 59.985% (0.005%) 31.961% (0.001%) 0.005%

C₁₀H₈O₄ Ref. 3 4.20% 62.50% N/A 33.30% N/A N/A 0.004%

Mono. I 4.196% (−0.004%) 62.502% (0.002%) 33.302% (0.002%) 0.004%

Mono. II 4.196% (−0.004%) 62.502% (0.002%) 33.302% (0.002%) 0.004%

Spectral I 4.196% (−0.004%) 62.502% (0.002%) 33.302% (0.002%) 0.004%

Spectral II 3.980% (−0.220%) 62.000% (−0.491%) 34.011% (0.711%) 0.711%

Spectral III 4.640% (0.440%) 65.039% (2.539%) 30.322% (−2.978%) 2.978%

Mono Ⅰ: 50/80 keV; Mono Ⅱ: 80/100 keV; Spectral Ⅰ: Representative energy for 80/140 kVp at H
2
O; Spectral Ⅱ: Representative energy for 80/140 kVp at 

PMMA; Spectral Ⅲ: Representative energy for 80/140 kVp at cortical bone.

https://doi.org/10.1371/journal.pone.0322805.t002

https://doi.org/10.1371/journal.pone.0322805.t002
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Consideration on the improvement of calculation time

The suggested algorithm takes about 0.5 to 10 s for material with two and four elements, respectively (Intel i7-10700k 
CPU, 32 GB RAM). For application to medical images having about 100 slices with 512 × 512 voxels, it is necessary to 
improve the calculation time in terms of hardware and software. GPU-based programming would be appropriate; more-
over, there will be another approach to impose certain restrictions for identifying an element. For example, it could be suffi-
cient to use 10 chemical elements for medical CT scans. Alternatively, we can reduce the number of voxels by skipping 
the calculation of nearby and similar HU-valued voxels.

Evaluating the effect of noise

To extend DECT research to the clinical field, it is essential to consider noise. Other researchers also considered the case 
in which noise is included in the image. Hünemohr et al. predicted the weight fraction by including a uniform Gaussian 
distributed noise with one standard deviation in electron density and Z

eff
 [14]. They demonstrated that the mean standard 

deviation was 0.1% H, 9.9% C, 0.9% N, 10.3% O, 1.1% P, and 0.2% Ca. Lalonde and Bouchard reported a method of 
using a larger number of energy spectra compared to the number of principal components (PC) used in the principal com-
ponents analysis (PCA) technique to overcome the effect of noise [15].

We investigated whether the developed algorithm could identify elemental composition well even when noise was pres-
ent in the CT images reported by other authors; furthermore, we performed the noise test. The MAC is derived from the 
HU acquired via CT scans. In accordance with the directives outlined by the International Atomic Energy Agency (IAEA), 
it is recommended that the CT value’s precision remains within a range of ± 20 HU relative to the manufacturer’s recom-
mended value [21]. Considering the allowable deviation of 20 HU, the MAC exhibits an error of about 2% in relation to 
water as the standard reference. With a prudent approach, we undertook error assessments, setting a conservative upper 
limit of 3%. Table 4 shows the results of the element composition and fractional weight of H

2
O reported in the algorithm 

when there is an error of 0.5%–5.0% in the MACs input to the algorithm. If an error of 3% or more is included in the MAC, 
it was confirmed that an error of 5% or more remains in the fractional weight calculated by the algorithm. Table 5 shows 
how much the stopping power ratio differs from the fractional weight difference calculated using the Bethe-Bloch formula 
[22]. Since our algorithm finds the ratio of constituent elements based on the difference in the MAC according to energy, 
research on finding an appropriate energy pair should be conducted in order to be robust to noise.

Representative energy difference according to material

To test the uncertainty of using the representative energy obtained through H
2
O for other materials, the difference PMMA 

and cortical bone (ICRP) was compared to H
2
O. Furthermore, representative energies for spectral X-ray, i.e., 80 and 140 

kVp, were compared (Table 6). The representative energy differences between H
2
O and PMMA were 0.20 and 0.97 keV 

Table 4.  The percentage difference between the weight fraction of the elements reported by the algorithm and ground truth when present in 
the error in the mass attenuation coefficients used as an input.

Noise (%) Z = 1 Z = 8

Fractional weight % difference Fractional weight % difference

0.0 0.111907 0.00 0.888093 0.00

0.5 0.120112 0.84 0.879888 0.84

1.0 0.128167 1.69 0.871833 1.69

1.5 0.136076 2.56 0.863924 2.56

2.0 0.143843 3.44 0.856157 3.44

2.5 0.158965 4.71 0.841035 4.71

3.0 0.158965 4.71 0.841035 4.71

https://doi.org/10.1371/journal.pone.0322805.t004

https://doi.org/10.1371/journal.pone.0322805.t004
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at 80 and 140 kVp, respectively, and 4.17 and 2.51 keV between H
2
O and cortical bone. Consequently, for PMMA with a 

lower density compared to H
2
O, the difference in representative energy was lower than that of the bone with a high den-

sity difference. To reduce the uncertainty stemming from the use of the representative energy, materials such as bone with 
a high density or lungs with a low density should be considered. In future, we plan to conduct research to obtain robust-
ness representative energy for biomaterials.

Statistical error of Geant4 simulation

Geant4 simulation was used to acquire built-in data and input data to perform algorithms. To acquire both data, 1E + 08 
events were used for the simulation. To confirm whether data is statistically reliable, the number of events was changed 
and MACs was obtained ten times for each event. Table 7 shows the average, standard deviation, and relative error of 
MACs obtained as per the number of events. Relative error represents statistical precision because of fractions for the 
estimated mean; the equation is as follows.

	
Relative error =

[
1
N

(
x2

x2
– 1

)]1/2
	 (9)

where N is the number of trials, x2  is the average of the squares of each trial result, and x  is the average of trial results. 
The number of events used in this study (1E + 08) has a standard deviation of 5.68E-05, whereas the relative error value 
is < 0.01, which is sufficiently reliable.

Table 5.  SPR result as per 0% and 3% error of mass attenuation coefficient in H2O.

Material Z L(eV) A Weight fraction SPR %difference

w/o deviation 3% deviation w/o deviation 3% deviation

H20 1 19.2 1.008 0.111898 0.161898 4.23 4.11 2.91

2 95 16 0.838102 0.838102

https://doi.org/10.1371/journal.pone.0322805.t005

Table 6.  The results of representative energy (keV) for 80 and 140 kVp energies for H2O, PMMA, and bone.

Material Density (g/cm³) Representative energy (keV)

80kvp 140kVp

H2O 1.00 39.93 49.84

PMMA 1.18 40.13 50.80

Cortical bone (ICRP) 1.85 44.29 53.31

https://doi.org/10.1371/journal.pone.0322805.t006

Table 7.  Mean, standard deviation, and relative error results of mass attenuation coefficients as  
per the number of events used to obtain the mass attenuation coefficients for H2O through Geant4  
simulation.

I₀ Mean STD Relative Error (%)

1E + 03 0.187340 1.93E-02 13.88

1E + 04 0.182308 3.92E-03 6.26

1E + 05 0.184286 1.89E-03 4.35

1E + 06 0.183447 7.67E-04 2.77

1E + 07 0.183544 1.66E-04 1.29

1E + 08 0.183493 5.68E-05 0.75

https://doi.org/10.1371/journal.pone.0322805.t007

https://doi.org/10.1371/journal.pone.0322805.t005
https://doi.org/10.1371/journal.pone.0322805.t006
https://doi.org/10.1371/journal.pone.0322805.t007
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Clinical applicability

Several methods of deriving SPR from DECT data have been tested using experimental data [23–25]. The algorithm 
proposed in this study currently conducts image evaluation on substances consisting of three to six components, but it is 
necessary to decompose substances based on information on CT volume to be applied to clinical situations. In order to 
use the algorithm developed in this study for clinical use, the patient CT image will be partitioned by organ and the scope 
of finding solutions will be reduced by setting tolerance by organ. To this end, we would like to create a relief element and 
ratio table for each human organ to add built-in data, and provide the correct answer to the items with the smallest differ-
ence in the element ratio compared to the algorithm results. In addition, in order to improve the speed of algorithm calcu-
lation for CT information in the volume unit, the HU value of the volume divided by the long term will be replaced with an 
average value, and the algorithm will be executed by unifying it into one HU value for each long term. This will set a range 
with the same HU value for the same organ and optimize it to clarify the distinction from other organs.

This paper presents an initial study that primarily revolves around algorithm development and experimental validation. 
However, to acquire real-world results using clinical data, further steps involving thorough clinical verification and evalu-
ation are necessary. Additionally, we are exploring additional research directions, including algorithm enhancement and 
data acquisition, to facilitate future clinical applications. It is crucial to conduct more research to obtain concrete outcomes 
from clinical data.

Comparison with previous studies

Uncertainties arise when obtaining SPR from effective atomic number [7–13]. Zhu et al. pointed out that variations in the 
composition and density of human tissue due to factors like sex, age, and disease state can lead to uncertainties if the 
imaged material’s composition does not match the material used for calibration. In this study, maximum errors of 12.8% 
and 2.2% were found for SECT and DECT, respectively.

Ohira et al. stated that the HU value for a given material with the same SPR can vary due to differences in electron 
densities and effective atomic numbers. Consequently, SPR prediction for radiation treatment planning using existing CT 
scanners may be inaccurate. The study reported uncertainties within −10% and 10% for Z

eff
 in tissue substitutes with low 

or high atomic numbers.
Since Z

eff
 is not used in this study, the uncertainty induced when obtaining Z

eff
 can be eliminated. However, the uncer-

tainty of the elemental component ratio can be reflected in SPR, and the errors for each elemental component are 
reported in Tables 2 and 3.

Limitation

In the implementation of our algorithm, we employ a systematic trial-and-error process to identify the optimal elements 
and their weight fractions for unknown materials. This involves sequentially testing various atomic numbers as potential 
elements and comparing the outcomes to determine the correct combination of elements with their respective fractional 
weights. While this approach proves effective for materials with a relatively small number of elements, it may encounter 
challenges when dealing with complex compounds or mixtures, potentially impacting computational efficiency and restrict-
ing its clinical applicability.

A primary concern associated with the trial-and-error process lies in the increased computational burden, particularly 
evident when materials contain a larger number of elements. As the algorithm considers a growing set of elements, the 
number of iterations and calculations escalates, placing higher demands on computational resources and leading to 
extended processing times. Such resource-intensive requirements might hinder its practicality for clinical applications.

Furthermore, the trial-and-error process may encounter difficulties when materials exhibit similar or overlapping 
elemental compositions. When two or more elements possess comparable mass attenuation coefficients or fractional 
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weights, accurately distinguishing between them becomes challenging. This ambiguity can prolong convergence times 
and even result in misidentifications of the elemental composition.

To address these concerns and enhance the algorithm’s efficiency and clinical applicability, we propose several poten-
tial strategies. Firstly, search space refinement involves focusing on a subset of elements more likely to be present in 
the unknown material, leveraging prior knowledge about common materials encountered in radiation therapy or specific 
medical scenarios. This approach reduces the number of iterations required for convergence and enables faster identifica-
tion of chemical constituents. Secondly, parallel processing and hardware optimization can be achieved by optimizing the 
algorithm for parallel processing using GPUs (Graphics Processing Units). This allows multiple computations to be per-
formed simultaneously, significantly reducing processing time, particularly when dealing with large datasets or materials 
with numerous elements. Lastly, rigorous clinical validation with various materials and compounds is essential to assess 
the algorithm’s accuracy, precision, and robustness in real-world medical scenarios. Feedback from clinical validation will 
facilitate algorithm refinement and address limitations or challenges observed during testing, ensuring its effective perfor-
mance in handling complex scenarios and meeting clinical application demands.

Through search space refinement, parallel processing, hardware optimization, and rigorous clinical validation, our algo-
rithm can be optimized for clinical applications. These strategies collectively contribute to improving computational  
efficiency and accuracy in identifying chemical constituents, ultimately enabling more precise dose calculations and 
enhancing the overall efficacy of particle therapy.

Conclusion

We developed an algorithm to obtain the types of elements and their weight fractions using the MACs of dual-energy X 
rays. Although the algorithm has uncertainty, it succeeded in finding fractional weights and elements of materials consist-
ing of up to 6 constituents and it was found that further study to improve uncertainty was needed. Moreover, we evaluated 
its feasibility of application to the clinic when DECT is in use.
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