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Objectives: This study assessed the effectiveness of in-context learning using Generative Pre-trained Transformer-4 (GPT-4) 
for labeling radiology reports. Methods: In this retrospective study, radiology reports were obtained from the Medical In-
formation Mart for Intensive Care III database. Two structured prompts—the “basic prompt” and the “in-context prompt”—
were compared. An optimization experiment was conducted to assess consistency and the occurrence of output format er-
rors. The primary labeling experiments were performed on 200 unseen head computed tomography (CT) reports for multi-
label classification of predefined labels (Experiment 1) and on 400 unseen abdominal CT reports for multi-label classification 
of actionable findings (Experiment 2). Results: The inter-reader accuracies in Experiments 1 and 2 were 0.93 and 0.84, 
respectively. For multi-label classification of head CT reports (Experiment 1), the in-context prompt led to notable increases 
in F1-scores for the “foreign body” and “mass” labels (gains of 0.66 and 0.22, respectively). However, improvements for other 
labels were modest. In multi-label classification of abdominal CT reports (Experiment 2), in-context prompts produced 
substantial improvements in F1-scores across all labels compared to basic prompts. Providing context equipped the model 
with domain-specific knowledge and helped align its existing knowledge, thereby improving performance. Conclusions: In-
context learning with GPT-4 consistently improved performance in labeling radiology reports. This approach is particularly 
effective for subjective labeling tasks and allows the model to align its criteria with those of human annotators for objective 
labeling. This practical strategy offers a simple, adaptable, and researcher-oriented method that can be applied to diverse la-
beling tasks. 
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I. Introduction

Radiology report labeling significantly enhances the utility 
and value of reports, enabling their use beyond communi-
cation with physicians. Extracting clinical information as 
labels from reports provides a valuable resource for research 
[1,2]. These labels typically serve as ground truth for train-
ing artificial intelligence (AI) models [3], supporting the de-
velopment of numerous predictive algorithms. By extracting 
detailed clinical nuances, researchers can define tailored co-
horts for their studies [4,5]. This approach achieves greater 
precision than extraction using structured data from elec-
tronic medical records. Furthermore, rapid identification of 
findings in reports facilitates timely alerts for urgent issues 
[6,7] and enables follow-up recommendations [8], thereby 
improving patient care coordination.
	 Despite the growing need for accurate and efficient radiol-
ogy report labeling, the process remains highly specialized 
and challenging, extending beyond simple text classification. 
One major challenge is the variability in how radiologists 
describe medical findings, even when referring to the same 
observation. As a result, an accurate understanding of both 
the clinical context and the imaging findings is essential for 
appropriate labeling. Another challenge is the broad spec-
trum of labeling tasks, ranging from straightforward disease 
categorization via keyword extraction to complex, high-level 
interpretive tasks requiring substantial medical expertise. 
Thus, a deep understanding of the labeling topic and the 
clinical context is crucial for proper categorization of radiol-
ogy reports.
	 Recent advances in large language models (LLMs) have 
demonstrated significant potential for radiology report label-
ing, often surpassing traditional methods. Unlike rule-based 
approaches that rely on language- and institution-specific 
dictionaries [9], or earlier deep learning models, such as bi-
directional encoder representations from transformers, that 
require domain-specific fine-tuning [3], modern LLMs excel 
at interpreting the nuanced context present in radiology 
reports. This strength has been especially valuable for tasks 
requiring a comprehensive understanding, such as report 
structuring, impression generation, and error detection [10-
13].
	 In studies employing LLMs for radiology, prompt engineer-
ing—the process of carefully crafting prompts to enhance 
performance—is critical [14]. Several studies have imple-
mented prompt engineering using a small subset of data 
prior to the main experiment and observed increases in F1-
score or accuracy as a result [1,2,7,15]. However, specific de-

tails regarding prompt modifications and their direct impact 
on outcomes are often lacking, with most studies merely not-
ing that prompts underwent iterative adjustments. Providing 
context knowledge has been shown to improve disease label-
ing performance in chest X-rays [16]. This technique, known 
as in-context learning (ICL), allows LLMs to acquire specific 
knowledge without changing internal parameters [17]. Un-
like chain-of-thought prompting, which focuses on enhanc-
ing reasoning [18], or few-shot learning, which depends on 
careful selection of examples [19], ICL is particularly well-
suited for subjective labeling tasks where identical findings 
may receive different labels depending on clinical context 
[20]. Nonetheless, existing studies rarely provide detailed ex-
planations of how clinical context is chosen or systematically 
evaluate its quantitative and qualitative effects on model per-
formance across different labeling tasks and difficulty levels.
	 In this study, we assessed the performance benefits of ICL 
on two distinct labeling tasks: labeling diseases on head 
computed tomography (CT) and urgent findings on abdomi-
nal CT. We further present both quantitative and qualitative 
analyses of how ICL influences the performance of these 
labeling tasks.

II. Methods

This study utilized de-identified, publicly available datasets 
and did not involve direct data collection from human sub-
jects, exempting it from Institutional Review Board approval 
requirements. Figure 1 illustrates the study flow.

1. Data Curation
1) Report extraction, inclusion, and exclusion criteria
Radiology reports were sourced from the Medical Informa-
tion Mart for Intensive Care III (MIMIC-III), one of the most 
extensively validated open-source databases [21]. MIMIC-III 
contains over 2 million anonymized free-text clinical notes, 
including a wide range of radiology reports, from 53,150 in-
tensive care unit (ICU) patients at Beth Israel Deaconess Medi-
cal Center. The dataset is thoroughly anonymized, encom-
passes diverse findings, and has undergone rigorous quality 
control, making it suitable for evaluating GPT-4.
	 We selected head CT reports for multi-label classification 
of disease labels and abdominal CT reports for labeling ac-
tionable findings, due to their clinical importance and broad 
representation. In MIMIC-III, the “Description” column 
includes the relevant radiological assessments. We randomly 
sampled 220 head CT and 420 abdominal CT reports from 
these descriptions, excluding those related to procedures.
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2) Manually labeling reports
Two board-certified radiologists (with 4 and 6 years of ex-
perience) manually labeled the radiology reports. For multi-
label classification of head CT reports (Experiment 1), they 
assigned 10 labels (mass, hemorrhage, infarct, vascular, 
white matter, volume loss, hydrocephalus, pneumocephalus, 
foreign body, and fracture) to each report based on identi-
fied findings, allowing multiple labels per report. For multi-
label classification of abdominal CT reports (Experiment 2), 
they labeled urgent findings and corresponding anatomical 
sections (gastrointestinal, genitourinary, musculoskeletal, 
and vascular) according to the American College of Radiol-
ogy actionable reporting work group’s classification [22]. 
Category 1 and 2 actionable findings—those requiring ac-
tion within hours—were defined as “actionable findings 
within hours” to assess GPT-4’s ability to identify clinically 
significant findings. Discrepancies between annotators were 
resolved by consensus. The complete rationale and refer-
ences for the specific labels used in Experiments 1 and 2 are 
provided in Supplement A, Section I. Method (Experiments 
1 and 2). A detailed description of the manual labeling work-
flow—including the pre-annotation strategy and the consen-
sus procedure for resolving inter-reader discrepancies—is 
available in Supplement A.

2. Prompt Engineering
We designed two structured prompts: a “basic prompt,” 
which included “task” and “output” sections, and an “in-
context prompt,” which added a “context” section (see Fig-

ure 1, Tables 1 and 2). The “task” section provided stepwise 
instructions, while the “output format” specification was 
intended to minimize verbosity, prevent hallucinations, and 
ensure output consistency. For post-processing, we used 
JavaScript Object Notation (JSON), a computer-friendly for-
mat.
	 In the “in-context prompt,” the “context” section supplied 
additional contextual information—in this case, the annota-
tion instructions used by human annotators for labeling. 
These instructions were carefully composed based on the 
hypothesis that ICL could enhance the model’s labeling ac-
curacy [17]. Our approach emphasizes brevity and clarity, 
unlike methods that present full reports and correct labels as 
examples (few-shot prompting) or employ stepwise reason-
ing (chain-of-thought prompting), which tend to produce 
unnecessarily long inputs or outputs.
	 A detailed rationale for our prompt design, along with an 
in-depth explanation of why this strategy is optimal, is pro-
vided in Supplement A.

3. Parameter Optimization Experiment
Although previous studies have explored the diverse capa-
bilities of LLMs, their robustness and consistency remain 
insufficiently characterized. The flexibility of LLMs enables 
versatility across many tasks, but it can also lead to incon-
sistency and bias [23,24]. For example, GPT-4 has exhibited 
limited robustness and repeatability on radiology board-style 
examinations, highlighting the need for optimization [24].
	 To evaluate model consistency and determine the optimal 
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Figure 1. ‌�Overall flow of the study. The radiology reports obtained from the MIMIC-III database were manually labeled by radiologists. 
Prompt engineering involved developing “basic” and “in-context” prompts to provide context for in-context learning that 
effectively summarizes the instructions used by the human annotators. A parameter optimization experiment was conducted 
across multiple temperature settings to evaluate consistency and output format. The main labeling experiment utilized op-
timized GPT-4 models for disease and urgent findings labeling on head CT (n = 200) and abdominal CT (n = 400) reports, 
with a focus on evaluating the labeling performance of two different prompts. CT: computed tomography.
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Table 1. Prompts used in the Experiment 1

Basic prompt In-context prompt

Task
- Categorize this report under the following labels: 

mass, hemorrhage, infarct, vascular, white matter, 
volume loss, hydrocephalus, pneumocephalus, for-
eign body, and fracture

- If multiple labels are deemed appropriate, several of 
them may be assigned (except “normal”).

Output (JSON)
{“Label”: [“label 1”, “label 2”]}
or
{“Label”: “none”}

Task
- Review the entire Head CT Report and categorize this report under the 

following labels: mass, hemorrhage, infarct, vascular, white matter, vol-
ume loss, hydrocephalus, pneumocephalus, foreign body, and fracture

- If multiple labels are deemed appropriate, several of them may be as-
signed (except “none”).

Context
{
   “Mass”: [
      “neoplasm”,
      “abscess”,
      “cyst”,
      “other similar findings”
   ],
   “Hemorrhage”: [
      “epidural hematoma”,
      “subdural hematoma”,
      “subarachnoid hemorrhage”,
      “intraparenchymal hemorrhage”,
      “other similar findings”
   ],
   “Infarct”: [
      “acute infarct”,
      “subacute infarct”,
      “chronic infarct”,
      “other similar findings”
   ],
   “Vascular”: [
      “aneurysm”,
      “vascular steno-occlusive lesion”,
      “vascular malformation”,
      “arteriovenous fistula”,
      “other similar findings”
   ],
   “White matter”: [
      “findings describing white matter inflammation”,
      “small vessel disease”,
      “other similar findings”
   ],
   “Volume loss”: [
      “diffuse brain atrophy”,
      “encephalomalacia”,
      “post-operative tissue changes”,
      “chronic infarction with volume loss”,

Continued on the next page.
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“temperature” parameter—which controls the diversity of 
responses—we conducted an experiment using 40 reports (20 
head CT and 20 abdominal CT). Two prompts per report 
were evaluated, and the temperature was varied from 0 to 1.0 
in increments of 0.2, with 5 iterations per setting, yielding 
2,400 responses. “Inconsistency” was defined as the propor-
tion of responses deviating from the most frequent answer 
across the five iterations. “Output format error” was the sum 
of syntactic errors (JSON inaccuracies or minor structural 
issues), semantic errors (correct but imprecise labels), and 
undefined label errors (labels not present in the predefined 
set). Experiments were conducted on our institution’s pri-
vate Azure OpenAI platform, using the OpenAI application 
program interface (API) in a Python environment, with each 
query executed in a new session and in accordance with the 
PhysioNet Credentialed Data Use Agreement.

4. Main Labeling Experiment
For the main GPT-4 labeling experiment, we used 200 previ-
ously unseen head CT reports and 400 previously unseen 
abdominal CT reports, applying two prompts per task. GPT-
4’s performance was compared to the reference labels using 
precision, recall, F1-score, and accuracy. A qualitative review 
was also conducted to evaluate the effects of ICL on GPT-4’s 
labeling.

5. Statistical Analysis
Inter-reader agreement for manual labeling was measured 
as accuracy on a per-label basis. The difference in perfor-
mance metrics between the two prompting methods was 
calculated by subtracting the outcomes of the basic prompt 
from those of the in-context prompt. To assess the statistical 
significance of metric differences between the two prompts, 
we performed 1,000 bootstrap iterations to obtain the 95% 

Table 1. Continued

Basic prompt In-context prompt

      “other similar findings”
   ],
   “Hydrocephalus”: [
      “acute/chronic stable hydrocephalus”,
   “ventricular enlargement”,
   “normal pressure hydrocephalus”,
   “other similar findings”
   ],
   “Pneumocephalus”: [
      “any findings suggestive of pneumocephalus on CT”
   ],
   “Foreign body”: [
      “shunt”,
      “clips”,
      “coils”,
      “other materials related to surgery or procedure”
   ],
   “Fracture”: [
      “any displaced/non-displaced bony fracture on skull”,
      “upper cervical vertebra”
   ]
}

Output (JSON)
{“Label”: [“label 1”, “label 2”]}
or
{“Label”: “none”}
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Table 2. Prompts used in the Experiment 2

Basic prompt In-context prompt

Task
- Review the entire abdomen CT Report and clas-

sify the reports into actionable and non-action-
able categories. Actionable findings are those that 
need to be urgently communicated within hours.

- Actionable findings should be further categorized 
into GI, GU, MSK, and Vascular sections (refrain 
from evaluating other sections). Note: a single 
report may contain multiple sections of action-
able findings.

- Actionable findings without significant interval 
changes compared with those of previous studies 
are considered non-actionable. Only findings with 
substantial progression are defined as actionable.

Output format (JSON)
Either
(“Actionable”: [“section 1”, “section 2”])
or
(“Non-actionable”: “NA”)

Task
- Review the entire abdomen CT Report and classify the reports into ac-

tionable and non-actionable categories. Actionable findings are those that 
need to be urgently communicated within hours.

- Actionable findings should be further categorized into GI, GU, MSK, and 
Vascular sections (refrain from evaluating other sections). Note: a single 
report may contain multiple sections of actionable findings.

- Actionable findings without significant interval changes compared with 
those of previous studies are considered non-actionable. Only findings 
with substantial progression are defined as actionable.

Context
Actionable findings are as below:
{
   “GI”: [
      “Unexplained pneumoperitoneum”,
      “Intestinal obstruction (including closed loop intestinal obstruction)”,
      “Intestinal ischemia and/or portal/mesenteric venous gas”,
      “Pseudoaneurysm or active hemorrhage (post-trauma, GI bleed, other)”,
      “Intra-abdominal organ injury (liver, spleen, pancreas, other)”,
      “Abscess, any location”,
      “Intra-abdominal infection, likely surgical or interventional candi-

date (appendicitis, cholecystitis, diverticulitis, abscess, other)”,
      “Large volume ascites”,
      “Pneumatosis in the bowel wall, no other signs of ischemia”
   ],
   “GU”: [
      “Torsion of testicular and ovarian”,
      “High likelihood of ectopic pregnancy”,
      “High-grade injuries to kidney, ureter, or bladder post-trauma”,
      “Complications in post-operative kidney”,
      “Obstructions in the urinary tract”,
      “Pyonephrosis or renal abscess”,
      “Placental abnormality”
   ],
   “MSK”: [
      “Nonspinal fractures or dislocations”,
      “Septic arthritis”,
      “Necrotizing fasciitis”,
      “Bone lesions with fracture risk”,
      “Large hematomas with potential structural compression”,
      “Changes in fracture alignment or infection risk”,
      “Complications with surgical hardware”
   ],
   “Vascular”: [

Continued on the next page.
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confidence intervals. Statistical significance was determined 
when the confidence interval did not include zero. All sta-
tistical analyses and data visualizations were performed in 
Python (version 3.11.4) using Pandas (version 2.1.1), SciPy 
(version 1.6.3), Matplotlib (version 3.4.2), and Seaborn (ver-
sion 0.11.1).

III. Results

1. Baseline Characteristics
The characteristics of the MIMIC-III radiology reports are 

shown in Figure 2, with baseline characteristics summarized 
in Table 3. The dataset comprised 200 head CT scans, with 
a median word count of 279.5 and a median sentence count 
of 15.5. These head CT scans represented 174 patients (93 
male), with a median age of 62.0 years. For abdominal CT 
reports, 400 reports were included, with a higher median 
word count (570.5) and sentence count (34.0). This cohort 
included 311 patients (176 males), also with a median age of 
62.0 years. Examples of MIMIC-III reports are provided in 
Supplementary Figure S1.

Table 2. Continued

Basic prompt In-context prompt

      “Ruptured or leaking arterial aneurysms”,
      “Arterial dissections or intramural hematomas”,
      “Significant arterial stenosis or occlusion with acute symptoms”,
      “Post-vascular access arterial pseudoaneurysms”,
      “Abdominal aortic aneurysms exceeding 5 cm, if stable”,
      “Deep venous thrombosis”
   ]
}

Output format (JSON)
{“Actionable”: [“section 1”, “section 2”]}
or
{“Non-actionable”: “NA”}

Included report description on MIMIC-III database

Head CT
CT HEAD W/O CONTRAST,

CTA HEAD W&W/O C & RECONS,
CT HEAD W/ & W/O CONTRAST,

CT HEAD W/CONTRAST,
CT EMERGENCY HEAD W/O CONTRAST,

PORTABLE HEAD CT W/O CONTRAST

Abdomen CT
ABDOMEN W/CONTRAST,

CT ABDOMEN W/O CONTRAST

Head CT (n = 37,645)
Abdomen CT (n = 4,823)

Finally included reports in this study

Head CT (n = 200)
Abdomen CT (n = 400)

Inclusion criteria
- Random sampling of 200 head CT reports
- Random sampling of 400 abdomen CT reports

Figure 2. ‌�Inclusion and exclusion cri-
teria of the MIMIC-III radi-
ology reports. CT: computed 
tomography.
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2. Parameter Optimization Experiment
Inconsistency rates declined from 4%–12% at a temperature 
setting of 1.0 to 0%–3% at temperature 0 (Figure 3A). The 
output format error likewise decreased from 4%–8% at tem-
perature 1.0 to 0% at temperature 0 (Figure 3B). Among the 
errors, syntactic errors were most frequent (27 cases), fol-
lowed by semantic errors (17 cases), such as the use of “in-
farction” instead of “infarct.” Only one undefined label error 
occurred, producing the label “actionable or non-actionable.” 
No hallucinations (i.e., generation of entirely novel labels) 
were observed. Based on these results, temperature 0 was 
considered optimal, as it yielded the lowest inconsistency 
and output format error rates.

3. Multi-label Classification for Head CT (Experiment 1)
Excellent agreement was observed between the manual la-
bels by the two readers (accuracy = 0.93). Across the labeled 
reports, an average of 2.29 labels per report was assigned (458 
labels across 193 reports). The label distribution was: vascu-

lar (n = 131), hemorrhage (n = 114), infarct (n = 54), foreign 
body (n = 44), volume loss (n = 30), white matter (n = 27), 
hydrocephalus (n = 18), fracture (n = 17), mass (n = 16), and 
pneumocephalus (n = 7) (Figure 4A). Seven reports were not 
assigned any labels.
	 Using the basic prompt, GPT-4 demonstrated strong per-
formance across most labels, with F1-scores ranging from 
0.784 to 1.000, except for “mass” and “foreign body” (Figure 
5A). Notably, the F1 scores for “foreign body” and “mass” 
increased from 0.275 to 0.933 (ΔF1 = 0.658; 95% confidence 
interval [CI], 0.519–0.838) and from 0.585 to 0.800 (ΔF1 = 
0.215; 95% CI, 0.081–0.373), respectively. The score for “hy-
drocephalus” also improved, rising from 0.839 to 0.971 (ΔF1 = 
0.132; 95% CI, 0.030–0.292). While performance improved for 
most labels, the extent of improvement was generally modest.
	 Labeling of “mass” often resulted in false positives. With 
the basic prompt, especially in cases describing a “mass ef-
fect,” the model struggled to identify surgical materials as 
“foreign body,” resulting in frequent false negatives (recall = 
0.159). When “foreign body” labeling instructions explicitly 
included “shunts, clips, coils, or other materials related to 
surgery or procedure,” the model successfully inferred not 
only these items but also others, such as “ventriculostomy 
tube,” “ventriculostomy catheter,” and “NG tube,” even when 
not explicitly listed in the instructions.

4. �Multi-label Classification for Abdominal CT  
(Experiment 2)

Manual labeling of abdominal CT reports demonstrated 
moderate agreement between the two readers (accuracy = 
0.84). Among actionable reports, an average of 1.12 labels 
per report was assigned (145 labels across 129 reports). The 
distribution of actionable labels was as follows: n = 81 for 
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Figure 3. ‌�Optimization experiment. (A) Rates of inconsistency by temperature for different prompts in two experiments. (B) Rates of 
output format errors by temperature for different prompts in both experiments.

Table 3. Baseline characteristics of the included MIMIC-III datasets

 
CT reports

Head Abdomen

Report count 200 400
Word count 279.5 (215.5–349.75) 570.5 (452.25–676.0)
Sentence count 15.5 (11.0–19.0) 34.0 (25.75–41.0)
Patient count 174 311
Age (yr) 62.0 (48.0–74.0) 62.0 (49.0–74.0)
Sex, male 93 176

Values are presented as number or median (interquartile range).
CT: computed tomography.
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sification for abdominal CT. CT: computed tomography, GI: gastrointestinal, GU: genitourinary, MSK: musculoskeletal.
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gastrointestinal (GI), n = 19 for genitourinary (GU), n = 20 
for musculoskeletal (MSK), and n = 25 for vascular (Figure 
4B). In total, 129 actionable and 271 non-actionable reports 
were identified. Discrepancies occurred primarily in cases 
with inconclusive imaging findings (e.g., unclear cause of 
pneumoperitoneum or infections), situations requiring sub-
jective judgment without clear cutoffs (e.g., large-volume 
ascites), or risk assessments based solely on report text (e.g., 
risk for pathologic fracture).
	 The basic prompt yielded relatively low performance, with 
F1-scores ranging from 0.585 to 0.622, primarily due to fre-
quent false positives. In contrast, the in-context prompt led 
to significant performance gains, with F1-scores across la-
bels increasing from 0.17 to 0.306: GI ΔF1 = 0.170 (95% CI, 
0.112–0.231), GU ΔF1 = 0.231 (95% CI, 0.133–0.348), MSK 
ΔF1 = 0.306 (95% CI, 0.144–0.481), and vascular ΔF1 = 0.288 
(95% CI, 0.182–0.417), all statistically significant (Figure 
5B). Most of the performance improvement was attributed 
to a decrease in false positives across label categories. Ad-
ditionally, GPT-4 demonstrated the ability to identify several 
clinical contexts not explicitly stated in the instructions.
	 Detailed results for both experiments are presented in Ta-
ble 4, Figure 5, and Supplementary Figures S2 and Figure S3. 
Representative cases and their descriptions, based on a re-
view of model responses where ICL improved labeling after 
context was provided, are summarized in Table 5. Analysis 
of failed cases appears in Supplementary Table S4.

IV. Discussion

We observed significant performance gains in GPT-4 via 
ICL across two radiology report labeling experiments. The 
performance improvement was particularly marked in Ex-
periment 2, where baseline performance and inter-reader 
agreement were lower. The model not only utilized concepts 
explicitly presented in the instructions, but also inferred 
additional, related concepts, further enhancing its label-
ing effectiveness. Moreover, our results confirm that low-
temperature settings for GPT-4 resulted in highly consistent 
model behavior and strong adherence to the specified output 
format.
	 Previous labeling studies have employed a range of natural 
language processing approaches, from rule-based methods 
to deep learning models. Rule-based techniques, such as 
keyword or pattern searches (e.g., regular expressions), are 
interpretable but can generate false positives and often strug-
gle with variations in sentence structure, medical abbrevia-
tions, and typographical errors [5,10]. Traditional deep 

learning models have demonstrated adaptability to various 
report types [25–27], but they require substantial training 
data and, once trained, may lack flexibility for other tasks. 
Furthermore, many of these models have not undergone 
external validation [28–30], limiting their generalizability as 
universal tools for labeling diverse radiology reports.
	 LLMs address many limitations of traditional approaches 
through their versatility. However, they function fundamen-
tally differently from existing models, and their unique chal-
lenges must be addressed for optimal use. Their probabilistic 
outputs can result in variability in both output format and 
clinical judgment for identical queries—a phenomenon un-
familiar to traditional models and clinicians alike. Thus, be-
fore evaluating model accuracy, it is important to assess the 
extent of this variability for a given task. Our optimization 
experiments demonstrated that, by specifying an appropriate 
output format and utilizing low-temperature settings, LLMs 
can perform consistently for the same task.
	 By conducting two labeling experiments, we showed that 
ICL effectively improves labeling performance while sup-
porting that the performance improvement is attributed to 
different mechanisms in each case. In multi-label classifica-
tion for head CT (Experiment 1), the significant increase 
in labels such as “foreign body” and “mass” may be due to 
the alignment of the model with our desired output rather 
than an increase in domain knowledge. Considering the 
extensive training corpus of GPT-4, the definitions of labels 
such as “foreign body” or “mass” may not be absent. This 
is supported by the fact that the performance of the basic 
prompt was reasonably good for most labels. The substantial 
performance improvement in certain labels suggested that 
the model initially interpreted these labels differently from 
human annotators. The ability of the model to understand 
the intent conveyed by the instructions by observing a few 
cases and applying this understanding further contributed 
to performance improvement. Thus, providing annotation 
rules can enhance the potential of the model by reminding it 
of the correct label intent, including when the primary goal 
is not to supply domain-specific knowledge.
	 In multi-label classification for abdominal CT (Experiment 
2), we observed a general increase in performance, probably 
because of an increase in task-specific domain knowledge 
rather than model alignment. The definition of an action-
able finding can still be subjective at a specific level [7,22], 
and the American College of Radiology guideline used in 
this study is not a public document. Therefore, it may not 
have been included in the corpus or may have been learned 
in combination with various other information. In these 
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subjectivity tasks, the ICL of GPT-4 effectively provides task-
specific knowledge within the prompt and enables studies to 
induce positive bias in the desired direction depending on 
the context provided.
	 Both experiments demonstrated that supplying conceptual 
information—without overly specific examples or verbatim 
sentences—enables the model to flexibly apply similar clini-
cal concepts in radiology reports. This flexibility is a major 
advantage when using LLMs. While such human-written 
instructions require domain expertise, they are considerably 
more feasible and effective than attempting to include every 
real-world example within the prompt.
	 The strengths and implications of this study are threefold. 
First, we showed that providing annotation instructions con-
sistent with those used by human annotators offered mean-
ingful context to the model and improved performance. This 
approach was efficient, enabling the model to generalize 
beyond directly provided information, and subjective tasks 
especially benefited from contextual prompts. Second, we 
proposed a simple, reusable, and efficient ICL framework 
for radiology report labeling, utilizing existing prompt engi-
neering techniques. The prompt components can be flexibly 
adapted, suggesting that targeted guidance for subjective is-
sues can support research-specific labeling needs. Third, we 
quantitatively assessed model consistency and confirmed the 
importance of prompt and parameter optimization in radiol-
ogy report labeling tasks.
	 Nonetheless, this study has several limitations that future 
research can address. First, all experiments were conducted 
using the MIMIC database. Although this ICU dataset in-
cluded severe and complex cases—posing a meaningful 
challenge for LLMs and reinforcing the significance of our 
findings—the generalizability of our results warrants careful 
consideration. The MIMIC-CXR reports reflect a specific in-
stitutional format and clinical environment, and any poten-
tial biases in our manually labeled validation dataset could 
further limit generalizability. Future studies should validate 
these findings across different institutions, clinical settings, 
languages, and radiology modalities, especially examining 
ICL’s performance with other imaging modalities (e.g., MRI, 
CT, ultrasound) that feature unique reporting complexities 
and disease spectra. Second, we evaluated only GPT-4, as 
larger LLMs with many parameters are thought to benefit 
most from ICL, and GPT-4, as the largest available model, 
was thus selected for this evaluation [30]. Subsequent work 
should focus on validating open-source models that are ef-
fective yet less computationally demanding [5,12,15].
	 In conclusion, our study demonstrates that GPT-4 with 

ICL significantly and consistently enhances performance 
on radiology report labeling tasks. This practical approach 
offers a simple, flexible, and researcher-adaptable method 
that can be broadly applied to diverse labeling scenarios. By 
leveraging ICL, the utility of radiology reports can be further 
extended to support research, artificial intelligence model 
development, and improved patient care coordination.
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