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Abstract

Background/objectives: The quantity of clinical data varies across patient populations
and often reflect clinicians’ perceptions of risk and their decisions to perform certain
laboratory tests. Missingness in electronic health records can be informative because it may
indicate that certain clinical parameters were not measured because clinicians considered
them unnecessary for stable patients. Methods: This retrospective single-center study
explored the ability of a deep learning-based early warning system, the VitalCare-Major
Adverse Event Score, to predict unplanned intensive care unit transfers, cardiac arrests, or
death among adult inpatients 6 h in advance. We classified patients using the Charlson
Comorbidity Index (CCI) and assessed whether patients with high severity and a greater
volume of laboratory data benefited from more comprehensive inputs. Results: Overall,
patients with high CCI scores underwent more testing and had fewer missing values,
whereas those with moderate-to-low CCI scores underwent less testing and had more
missing data. Within the event cohorts, however, the high-CCI and moderate/low-CCI
groups showed similar proportions and patterns of missing values. The discriminative
ability of the model remained robust across both groups, implying that the clinical context
of missingness outweighed the raw quantity of available data. Conclusions: These findings
support a nuanced view of data completeness and highlight that preserving the real-world
patterns of ordering laboratory tests may enhance predictive performance.

Keywords: artificial intelligence; early warning score; Charlson Comorbidity Index;
electronic health records; missing data; predictive modeling

1. Introduction

Clinical data are heterogeneous in real-world healthcare settings. Some patients,
particularly those with complex comorbidities, undergo frequent laboratory evaluations
that produce an abundance of data [1]. Other patients who are perceived as clinically stable
often have sparser data available, thus raising concerns about whether machine learning
models can accurately predict adverse outcomes under such incomplete circumstances.
Traditionally, missing data have been viewed as problematic because missingness can lead
to biases or imputed approximations [2,3]. However, previous studies have introduced the
notion of “informative presence,” which suggests that the absence of laboratory tests is not
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random; instead, this absence signals that specific tests were not performed because no
abnormality was suspected [4,5]. The VitalCare-Major Adverse Event Score (VC-MAES),
which is an artificial intelligence (Al)-based early warning system designed to predict
clinical deterioration events, such as unplanned intensive care unit (ICU) transfers, in-
hospital cardiac arrests, or death 6 h in advance, leverages this concept by conservatively
imputing missing values by assuming that the unmeasured parameters were likely within
normal ranges.

Our recent study demonstrated that artificially imputing these missing values with
approximate estimates reduced the performance of the VC-MAES compared with that
achieved by using the system’s default normal value replacement of the system, suggesting
that missing healthcare data can have intrinsic meaning and reflect the decision-making
process of clinicians [6]. Furthermore, this study also demonstrated the following implicit
clinical rationale: if no concern exists, then further testing may not be required. To eluci-
date how baseline severity intersects with these patterns of missingness, we categorized
inpatients using the Charlson Comorbidity Index (CCI) to determine whether data quantity
alone drives the predictive performance and whether ordering (or forgoing) laboratory
tests plays a critical role in predicting outcomes relative to patients’ baseline comorbidity.

2. Materials and Methods

This retrospective analysis was conducted at Presbyterian Medical Center in the
Republic of Korea. We included adult patients (>19 years) admitted to the general medical—-
surgical wards between December 2022 and May 2024 who (i) had at least one valid
measurement of each of the five key vital signs—systolic blood pressure (SBP), diastolic
blood pressure (DBP), heart rate (HR), respiratory rate (RR), and body temperature—and
(ii) remained hospitalized for a minimum of 24 h. Patients who were directly transferred
from the emergency department or operating room to an ICU were excluded because they
were considered planned ICU admissions [7,8]. Baseline comorbidities were assessed using
the CCI, calculated according to methods described in previous studies [9,10]. Patients
with a CCI > 3 were classified as having high severity, and those with a CCI of <3 were
classified as having moderate-to-low severity [11].

The VC-MAES is a proprietary deep-learning model built on a bidirectional long
short-term memory architecture. It outputs a risk score from 0 to 100, with higher values
indicating a greater likelihood of clinical deterioration within the next 6 h. The model
requires age and five core vital-sign inputs (SBP, DBP, HR, RR, and body temperature) to
generate the risk score. When available, it also incorporates 13 additional physiological
and laboratory variables: oxygen saturation; Glasgow Coma Scale score; and values
of total bilirubin, lactate, creatinine, platelet count, pH, sodium, potassium, hematocrit,
white blood cell count, bicarbonate (HCO3 ™), and C-reactive protein. Comprehensive
specifications of the network architecture and derivation cohort were provided in our
previous studies [6,12,13].

Missing values were imputed with a last-observation-carried-forward (LOCF) strategy:
the most recent prior measurement replaced the missing entry. LOCF is widely utilized
in clinical prediction models based on longitudinal electronic health record (EHR) data
as it preserves temporal continuity and clinical plausibility by assuming relative stability
between measurements. If no historical value was available, the model substituted a default
normal value derived from standard reference ranges [14,15].

The composite endpoint comprised unplanned ICU transfer, in-hospital cardiac arrest,
or death. The model performance was evaluated using the area under the receiver-operating
characteristic curve (AUROC).
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Demographic characteristics and the proportions of missing laboratory results were
compared between groups classified by the CCI. Categorical variables were analyzed using
the chi-square test, and continuous variables were compared using either the independent
t-test or the Wilcoxon rank-sum test, depending on the data distribution. Differences
in proportions of missingness were assessed using a two-sided z-test for independent
proportions with continuity correction, based on the score method. A two-sided p-value of
<0.05 was considered statistically significant.

3. Results

During this study period, 24,359 hospitalizations were recorded, including 12,139
in the high severity group (CCI > 3) and 12,220 in the moderate/low severity group
(CCI < 3). Patients with high severity underwent more laboratory investigations, resulting
in fewer missing values and a higher rate of unplanned ICU transfer, cardiac arrest, or death
(4.8%), consistent with their high risk of adverse outcomes at baseline. Conversely, patients
in the moderate/low severity group underwent fewer laboratory tests and, consequently,
exhibited higher missingness rates; however, they experienced significantly fewer adverse
events overall (1.0%). Table 1 summarizes the baseline demographic characteristics, vital
signs, and differences in laboratory test missingness of the high severity and moderate/low
severity groups.

In the high-CCI and moderate /low-CCI groups, patients who experienced adverse
events consistently had fewer missing laboratory values than those without events, reflect-
ing more frequent testing when clinical deterioration was suspected. Among the event
cohorts specifically, patients in both the high-CCI and moderate /low-CCI groups exhibited
similar proportions of missing values overall; however, the high-CCI group had fewer
missing pH and HCOj3 values (0.34 vs. 0.43, p = 0.08), suggesting an even more intensive
diagnostic approach for higher-risk patients (Figure 1).

Proportion of Missing Values

High CCI Moderate/Low CCI
No Event 10 No Event
Event . Event

0.8

n

o

2

o}

>

206

@

i}

=

s

c

o

S 04

c

2

[
0.2
0.0

0 & EN ¢ o & 2 o @ £) & & & & 9 5] & 2
o & ; & g & e“\b \cé & ‘\(’o \’\q‘\z & & & .ch_. q c?s\x f;a‘“\ o ‘Sn\, W e(,D \"e‘ &
o & g S & 7 P @
@ A & o @ A & & o

Figure 1. Proportion of missing laboratory test results, stratified by event vs. non-event, among
patients with a high Charlson Comorbidity Index (CCI > 3) and those with a moderate/low CCI
(CCI<3).
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Table 1. Baseline demographic characteristics, vital signs, and differences in missing laboratory test

values for the high severity and moderate/low severity groups.

CCI Groups
Overall High-CCI Mode(r:a(t:;/Low- Value
(n = 24,359) (n = 12,139) (n = 12.220) P
Age, median £+ IQR, yr 69.0 + 22.0 78.0 + 14.0 57.0 + 23.0 <0.001
F 12,303 (50.5) 5456 (44.9) 6847 (56.0)
Sex, n (%) <0.001
M 12,056 (49.5) 6683 (55.1) 5373 (44.0)
BMI, median + IQR, kg/m? 23.67 +5.2 2294 +5.0 2428 + 5.1 <0.001
DBP, median + IQR, mmHg 78.0 +£12.0 75.0 £ 12.0 80.0 = 15.0 <0.001
Pulse, median + IQR 78.0 +£18.0 79.0 £ 19.0 78.0 £ 18.0 0.006
Respiration, median £+ IQR 20.0 +2.0 20.0 + 2.0 20.0 + 2.0 <0.001
SBP, median + IQR, mmHg 125.0 +29.0 127.0 £ 28.0 123.0 £27.0 <0.001
SpO; (%), median £+ IQR 97.0 £ 2.0 97.0 £3.0 97.0+£2.0 <0.001
Temperature, median + IQR, °C 36.8 + 0.6 36.8 = 0.5 36.8 = 0.5 <0.001
Missing laboratory values, n (%)
Total bilirubin 5550 (22.78) 2048 (16.87) 3502 (28.66) <0.001
Lactate 24,038 (98.68) 11,894 (97.98) 12,144 (99.38) <0.001
pH 20,956 (86.03) 9937 (81.86) 11019 (90.17) <0.001
Sodium 5039 (20.69) 1723 (14.19) 3316 (27.14) <0.001
Potassium 5045 (20.71) 1725 (14.21) 3320 (27.17) <0.001
Creatinine 4926 (20.22) 1686 (13.89) 3240 (26.51) <0.001
Hematocrit 3300 (13.55) 1551 (12.78) 1749 (14.31) <0.001
White blood cell count 3303 (13.56) 1554 (12.80) 1749 (14.31) 0.001
HCO;3~ 20,956 (86.03) 9937 (81.86) 11,019 (90.17) <0.001
Platelet 3300 (13.55) 1551 (12.78) 1749 (14.31) <0.001
C-reactive protein 6832 (28.05) 2667 (21.97) 4165 (34.08) <0.001

BMI, body mass index; CCI, Charlson Comorbidity Index; DBP, diastolic blood pressure; F, female; HCO3~,

bicarbonate; IQR, interquartile range; M, male; SBP, systolic blood pressure.

When used to predict clinical deterioration events within a 6 h prediction window,
the VC-MAES achieved an AUROC of 0.86 in the overall patient cohort and maintained
robust performance across both severity groups despite differences in data availability.
Specifically, the AUROC values for the high severity and moderate/low severity groups
were 0.86 and 0.85, respectively (Figure 2).



J. Clin. Med. 2025, 14, 4444

50f8

1.0

0.8

True positive rate
o
o

I
IS

0.2

% —— High CCI (AUC = 0.86)

0.0 Low/Moderate CCl (AUC = 0.85)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Figure 2. Receiver-operating characteristic (ROC) curves illustrating the areas under the ROC
curve (AUC) of patients with a high Charlson Comorbidity Index (CCI > 3) and patients with a
moderate /low CCI (CCI < 3).

4. Discussion

Using the CCI to stratify patients into high-severity (CCI > 3) and moderate/low-
severity (CCI < 3) groups, we found that comorbidity burden influenced both clinical
trajectories and clinicians” propensity to order laboratory tests. Overall, patients with
higher CCI scores underwent more frequent testing and therefore exhibited fewer missing
values, whereas those with lower CCI scores were tested less often. However, within the
event cohorts, the high-CCI and moderate/low-CClI groups displayed similar proportions
and patterns of missing values, reflecting clinicians” heightened perception of risk in these
cases. The VC-MAES early-warning system retained robust discriminative performance
across both strata, demonstrating that its accuracy did not depend solely on the absolute
volume of laboratory data. Instead, the pattern of missingness itself served as a clinically
meaningful signal—an embodiment of the “informative presence” concept, whereby each
decision to order or withhold a test conveys implicit information about the clinician’s level
of concern and the patient’s risk of deterioration.

Many predictive modeling approaches focus on maximizing data completeness, ei-
ther by collecting more frequent measurements or by aggressively imputing missing val-
ues [16,17]. However, a recent large-scale simulation study [18] demonstrated that imputing
every missing value actually deteriorates predictive performance, particularly when the
same predictors are frequently missing during model deployment. Specifically, this aggres-
sive imputation strategy leads to calibration drift and a decline in the AUROC, indicating
poorer discrimination and reliability of predictions. In alignment with these findings, both
our prior research and the current analysis using real-world clinical datasets highlight the
importance of preserving clinically meaningful gaps. Rather than forcing data completeness
by inserting synthetic values, allowing the model to retain these meaningful gaps better
reflects actual clinical reasoning, thus enhancing the capability of the model to detect gen-
uine patterns indicative of patient deterioration or clinical outcomes in practical healthcare
settings [6]. This nuanced approach underscores the necessity of carefully considering both
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the mechanisms behind missingness and the intended deployment context when deciding
how to handle missing data in predictive models.

Practically, these findings suggest that the VC-MAES can be implemented without
mandating additional laboratory tests: the performance of the model depends on existing
ordering patterns driven by clinical judgment, not on forcing complete data capture. Clin-
icians can therefore continue to order laboratory studies selectively while still receiving
reliable predictions, enabling early intervention without adding cost or workflow burden.

Additionally, our findings align with those of existing literature demonstrating that
incorporating not only real-world clinical practice patterns but also provider concerns
can enhance the generalizability of Al-based early warning systems [19,20]. Churpek
et al. compared manually collected respiratory rates documented in the EHR with au-
tomatically recorded respiratory rates measured by an FDA-approved respiratory pod
device. They reported that manually collected respiratory rates differed substantially
from those collected automatically. Interestingly, when using these respiratory rates to
predict clinical deterioration events, such as transfers to the ICU, the manually recorded
respiratory rates were significantly more accurate than those from the automated device.
The authors suggested this result may indicate that manually recorded respiratory rates
capture clinical information beyond physiological data alone, possibly reflecting providers’
clinical judgment or concern about patient status [21]. A recent randomized controlled trial
examined the COmmunicating Narrative Concerns Entered by RNs (CONCERN) early
warning system, which employs real-time patterns of nursing surveillance documentation—
reflecting nurses’ concerns—as inputs to its machine-learning algorithm for predicting
patient deterioration. The study demonstrated significant reductions in patient mortality,
sepsis risk, and hospital length of stay with use of CONCERN. Although the VC-MAES
does not directly use documentation patterns as inputs, its patterns of missingness and
data collection behaviors inherently reflect clinicians’ judgments, suggesting that indirect
clinical concerns could similarly enhance predictive capabilities [22].

Limitations

This study has some limitations. First, this retrospective analysis was conducted at a
single center in the Republic of Korea, inherently introducing potential biases related to
local clinical practices and patient management. Local workflows and available resources
could have influenced the selection and frequency of laboratory tests ordered, as well as the
observed baseline comorbidity profiles. Additionally, while the CCI is a widely used mea-
sure, other severity indicators or risk stratification tools might provide alternative insights
into patterns of missing data and clinical event rates. Lastly, the concept of informative pres-
ence used in this study, although valuable, inherently carries a risk of bias because it reflects
clinical decision-making that can vary systematically across providers and care settings.
Such decision-driven patterns of missingness may inadvertently introduce bias during
model development and deployment, ultimately affecting the accuracy and generalizability
of predictive outcomes. Therefore, additional multi-institutional and prospective studies
are essential to comprehensively validate these findings, refine approaches for managing
missing data, account for variations in testing protocols, and optimize the accuracy of risk
predictions across diverse clinical settings.

5. Conclusions

Overall, our results indicated that respecting the natural patterns of test ordering,
which often reflect clinical judgment, may be more beneficial to predictive accuracy than
striving for exhaustive data. By leveraging this “informative presence”, Al-based models
can balance their robustness with real-world applicability, thus ensuring that they gen-
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uinely identify patients who are at risk without necessitating unnecessary or duplicative
testing. The consistent performance across CCI groups suggested that the underlying
context of missingness, rather than the absolute quantity of data, plays a decisive role in
model accuracy.
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