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Abstract 

Seizure-induced cardiac arrhythmias, such as ictal (during seizure) or postictal 

(post-seizure) sinus arrhythmias, are potential triggers for sudden unexpected death 

in epilepsy. Traditionally, these arrhythmias have been attributed to changes in auto-

nomic balance during ictal or postictal phases, as per the neurogenic mechanism. 

However, it remains unclear if these arrhythmias may involve intrinsic cardiogenic 

mechanisms. Furthermore, while circadian and sleep-wake patterns influence both 

neurogenic and cardiogenic mechanisms, a direct mechanistic link to seizure-induced 

arrhythmias remains to be established. In this study, we utilized a mathematical model 

of mouse sinoatrial nodal cell pacemaking and an autonomic clamping protocol, to 

dissect neurocardiogenic mechanisms in seizure-induced sinus arrhythmias and to 

test the hypothesis that circadian and sleep-wake rhythms directly modulate cellular 

susceptibility to these arrhythmias. Our simulations revealed that, in the context of 

altered autonomic levels associated with seizure progression, diverse seizure-induced 

sinoatrial nodal cell firing patterns during ictal or postictal phases can be triggered 

directly by intrinsic cardiac dynamics, without the need for dynamical changes in 

within-phase autonomic activities. This finding highlights the distinct roles of neuro-

genic and cardiogenic mechanisms in shaping sinoatrial nodal cell firing patterns, 

challenging the predominance of the neurogenic mechanism. This neurocardiogenic 

framework also successfully captures distinct circadian and vigilance state patterns of 

seizure-induced arrhythmias. Specifically, while daytime sleep predisposed sinoatrial 

nodal cells to postictal sinus arrhythmias, nighttime wakefulness promotes ictal sinus 

arrhythmias. However, these circadian patterns can be disrupted when sleep-wake 

cycles are decoupled from circadian rhythms, supporting the hypothesis that sleep-

wake patterns can directly be a key determinant of seizure-induced sinus arrhythmias. 
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Our findings may facilitate the development of novel therapeutic strategies for manag-

ing the risk of sudden unexpected death in epilepsy.

Author summary

Seizure-induced sinus arrhythmias are potential triggers for sudden unexpect-
ed death in epilepsy. Traditionally, these arrhythmias have been considered 
as secondary effects resulting from changes in autonomic balance. However, 
our research suggests that the heart itself may play a more active role. Using 
a mathematical model of pacemaker cells in the mouse heart, we found that 
seizure-induced sinus arrhythmias can occur without transient autonomic chang-
es during or after seizures. We also investigated the influence of sleep-wake 
patterns and circadian rhythms on these arrhythmias. Our findings indicate that 
daytime sleep increases the risk of post-seizure arrhythmias, while nighttime 
wakefulness makes arrhythmias more likely during a seizure. Importantly, these 
circadian patterns can be disrupted when sleep-wake cycles are misaligned 
with circadian rhythms, underscoring the critical role of sleep-wake patterns in 
shaping seizure-induced sinus arrhythmias. These mechanistic insights may 
help pave the way for developing novel strategies to manage the risk of sudden 
unexpected death in epilepsy.

Introduction

Sudden Unexpected Death in Epilepsy (SUDEP; Table 1) is the leading cause of 
death in patients with epilepsy [1,2] and arises from complex, interrelated distur-
bances in the autonomic, cardiac and respiratory systems, typically initiated by sei-
zures [3]. Seizures can disrupt autonomic output, leading to an autonomic imbalance 
that predisposes the heart to arrhythmias [4–6]. At the same time, seizure activity 
may impair normal respiratory function, resulting in central apnea and subsequent 
hypoxemia, which further destabilizes autonomic control [7]. This disruption in respi-
ratory regulation may also exacerbate cardiac dysfunction by facilitating the onset 
of arrhythmias. In this context, seizure-induced cardiac arrhythmias, driven by both 
neurogenic and respiratory factors, may represent a tipping point in the cascade of 
events compromising autonomic, respiratory, and cardiac function during an epileptic 
seizure event [8]. They can reciprocally further impair the neuro-respiratory system 
by reducing cardiac output, disrupting autonomic feedback loops, and promoting 
hypoxia, thereby perpetuating a self-reinforcing cycle that ultimately contributes to 
SUDEP [9].

Seizure-induced cardiac arrhythmias manifest in a wide range of clinical pheno-
types, including tachycardia, bradycardia, atrioventricular-conduction block, atrial 
flutter and ventricular fibrillation [4–6]. Among these, seizure-induced sinus arrhyth-
mias, e.g., sinus tachycardia, bradycardia, or asystole during ictal and postictal 
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phases [6,10–12], are frequently observed and may act as potential triggers for SUDEP or occur around the same time as 
SUDEP events [13–15]. While ictal tachycardia can occur in up to 80% of seizures, ictal bradycardia or asystole are rarer 
events and may cause syncope and subsequent falls [6]. Intriguingly, previous clinical studies have documented that ictal 
tachycardia following the onset of seizures may progress into bradycardia and even prolonged asystole (Fig 1A) [16–18]. 
This puzzling transition from ictal tachycardia to bradycardia and asystole has been attributed to a neurogenic mechanism 
involving an initial surge in sympathetic nervous activity (SNA), followed by a transient increase in parasympathetic ner-
vous activity (PNA) and a dramatic decrease in sympathetic tone originating from the cardiovascular center in the medulla 
due to prolonged seizures [16,17,19–21]. In addition to this ictal pattern, Al-Aweel et al [22] have identified another piece 
of this puzzle during the postictal phase. They observed transient but prominent postictal low-frequency heart rate oscil-
lations (0.01 to 0.1 Hz) in patients with partial epilepsy (Fig 1B), suggesting that this postictal phenomenon could indicate 
neuroautonomic instability [22]. However, it remains unclear whether these seizure-induced ictal and postictal patterns 
depend solely on neurogenic mechanisms or if other contributing factors can be involved [23,24]. Besides the autonomic 
nervous system (ANS), cardiac pacemaking activities can be influenced by the intrinsic properties of the sinoatrial nodal 
cells (SANCs). For example, non-linear interactions between membrane and intracellular Ca oscillations of SANCs may 
drive changes in heart rates under pathological conditions [25,26]. Moreover, the interplay between the slow and fast 
dynamics of SANCs can result in abnormal cardiac pacemaking patterns [27].
Recent studies have begun to identify not only seizure-related cardiac alterations but also the correlation of circadian 
rhythm and sleep-wake patterns with seizures, which may impact SUDEP prevalence [29–32]. Previous studies suggest 
that day-night differences in seizure severity and susceptibility to SUDEP may be attributed to central circadian rhythms 

Table 1.  Definitions of non-standard abbreviations.

Abbreviations Definitions

ANS Autonomic nervous system

AP Action potential

BPM Beats per minute

BT Body temperature

CRBT Circadian rhythm of body temperature

FR Firing rates

HCN Hyperpolarization-activated cyclic nucleotide-gated channel

I
CaL

L-type Ca current

I
CaT

T-type Ca current

I
i
, I

p
Irregular firing during ictal and postictal phases, respectively

I
KACh

Muscarinic K current

LCR Local circadian rhythmicity

N
i
, N

p
No-firing during ictal and postictal phases, respectively

P
i
, P

p
PNA scaling factors during ictal and postictal phases, respectively

PNA Parasympathetic nervous activity

R
i
,R

p
Rhythmic firing during ictal and postictal phases, respectively

S, P Preictal SNA and PNA levels, respectively

SANC Sinoatrial nodal cells

S
i
, S

p
SNA scaling factors during ictal and postictal phases, respectively

SNA Sympathetic nervous activity

SUDEP Sudden unexpected death in epilepsy

ZT Zeitgeber time

τ, τ
p

Time durations of ictal and postictal ramping phases, respectively

https://doi.org/10.1371/journal.pcbi.1013318.t001

https://doi.org/10.1371/journal.pcbi.1013318.t001
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influencing neuronal excitability and regulating cardiac function through the ANS, thereby predisposing both the brain and 
heart to epileptic seizures and SUDEP [33–36]. However, recent evidence indicates that local circadian rhythmicity (LCR) 
in the heart may also contribute to these differences [37,38]. Day-night variations in hyperpolarization-activated cyclic 
nucleotide-gated (HCN) channel expression in SANCs are critical for cardiac pacemaking function and could be associ-
ated with cardiac arrhythmias under pathological conditions [39]. This link is further supported by experimental studies 
suggesting that cardiac HCN channelopathy can develop in rat epilepsy models [37]. Interestingly, experimental studies 
report a higher incidence of seizure-induced death in mice during sleep, regardless of circadian phases, suggesting that 
sleep-wake patterns might be a stronger indicator of seizure-induced death than circadian patterns (Fig 1C) [35]. Despite 
these findings, the mechanisms responsible for the disparity between circadian and sleep-wake patterns of seizure-
induced deaths remain elusive.

To unravel these questions, we dissect the role of neurogenic and cardiogenic mechanisms underlying seizure-induced 
sinus arrhythmias using a SANC model (Fig 2) [26]. Our findings reveal that varying autonomic levels between ictal and 
postictal phases, while keeping within-phase autonomic activity constant, can trigger diverse seizure-induced SANC firing 
patterns, such as low-frequency oscillations in SANC firing rates (FR) and transitions from ictal tachycardia to bradycar-
dia and asystole. Our results suggest that neurogenic mechanisms primarily drive across-phase SANC firing patterns, 
while cardiogenic mechanisms are responsible for within-phase firing patterns. This challenges the conventional view 
that attributes these outcomes solely to within-phase changes in autonomic balance. Our neurocardiogenic framework 
successfully captures distinct circadian patterns of seizure-induced sinus arrhythmia in mice. Daytime sleep predisposes 
SANC to postictal sinus arrhythmia, whereas nighttime wakefulness tends to promote ictal sinus arrhythmia. However, 
these circadian patterns can be disrupted when sleep-wake cycles are decoupled from circadian rhythms, supporting the 

Fig 1.  Clinical and experimental measurements of seizure-induced sinus arrhythmias and mortality. (A-B) Representative clinical heart rate 
recordings from patients with epilepsy, capturing patterns before, during (pink blocks), and after seizures. (A) Ictal heart rate patterns in infants expe-
riencing apneic seizures, showing mixed sinus tachycardia and bradycardia (left), or tachycardia alone (right) [16]. The red arrow marks the onset of 
progressive sinus bradycardia during the seizure. Data from Maruyama et al, Pediatric Neurology, 127: p52, 2022. (B) Postictal low-frequency heart 
rate oscillations were observed in adult patients with partial epilepsy [22]. Before the seizure, heart rate maintains a respiratory sinus rhythm at 0.3Hz. 
During the seizure, heart rate elevates, and it subsequently transitions into transient low-frequency heart rate oscillations at 0.13Hz (left) and 0.07Hz 
(right) (blue blocks). Data from Al-Aweel et al, Neurology, 53: p1591-1592, 1999. (C) Circadian and sleep-wake patterns of mortality rates in adult mice 
following maximal electroshock-induced seizures [28]. Fatalities are predominantly observed in seizures that occur during sleep, both under dark and 
light conditions. Data from Purnell et al, Journal of Neurophysiology, 118 [5]: p2594, 2017.

https://doi.org/10.1371/journal.pcbi.1013318.g001

https://doi.org/10.1371/journal.pcbi.1013318.g001
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hypothesis that sleep-wake patterns appear to be a more critical determinant of seizure-induced sinus arrhythmias. Our 
model simulations provide novel insights that could inform the development of chronobiological management and preven-
tion strategies for seizure-induced deaths or SUDEP.

Results

Transient autonomic changes are not required to trigger ictal and postictal sinus arrhythmias

To dissect neurocardiogenic mechanisms underlying seizure-induced sinus arrhythmias, we implemented an autonomic 
clamping protocol — a computational method that specifies the levels of sympathetic and parasympathetic inputs over 
prescribed time windows (Fig 3A) — in our recently developed mouse SANC model (Fig 2A) [26]. By eliminating auto-
nomic fluctuations during and after seizure events, this approach isolates intrinsic cardiogenic factors contributing to 
arrhythmias. Specifically, for a typical seizure event lasting a duration of τ (Fig 3A), preictal (before seizure) SNA (S) and 
PNA (P) are adjusted by their ictal scaling factors, S

i
 and P

i
, respectively, to simulate a seizure-induced shift in auto-

nomic balance as seen in [40]. During the seizure, SNA and PNA are promptly clamped to their ictal values, S×(1 + S
i
) 

and P×(1 + P
i
), respectively, for the duration of τ (Fig 3A). Considering that ictal tachycardia may occur in up to 80% of 

seizures [6], we assume an ictal sympathetic dominance over the parasympathetic system, so that S
i
 > P

i
. Following the 

seizure, SNA and PNA linearly ramp towards their postictal values, S×(1 + S
p
) and P×(1 + P

p
), respectively, over a ramping 

duration of τ
p
 (Fig 3A). Here, we assume a postictal parasympathetic dominance (P

p
 > P

i
) with a minimal SNA (S

p
 = -100%), 

potentially allowing the recovery of sinus rhythms from ictal sinus arrhythmias. It is important to note that the epileptic 
parameters, namely, S

i
, P

i
, S

p
, P

p
, τ, τ

p,
 remain actively operative within the model under autonomic clamped conditions, 

allowing state variables to freely evolve and manifest seizure-induced SANC dysfunction. Thus, while autonomic clamping 

Fig 2.  Schematic of a mouse SANC model incorporating circadian and vigilance state variations. (A) Each heartbeat is initiated by an action 
potential (AP) generated in a SANC. The firing patterns of SANC APs are shaped over a 24-hour cycle by circadian variations in the ANS, body tem-
perature (BT), and LCR (green dot). The ANS, regulated by the master circadian clock located in the suprachiasmatic nucleus, finely adjusts the balance 
between SNA (yellow dot) and PNA (blue dot). This autonomic balance modulates SANC firing rates (FR) via SNA (e.g., I

HCN
, L-type (I

CaL
) and T-type Ca 

currents (I
CaT

)) and PNA-dependent (e.g., muscarinic K current (I
KACh

)) regulatory targets, adapting to diverse physiological demands throughout the day. 
The circadian rhythm of body temperature (CRBT) further regulates this balance, impacting the kinetics and/or conductance of ion channels, exchangers, 
and pumps in a SANC. Moreover, vigilance state (sleep/wake) changes, e.g., high PNA during sleep and low PNA during wakefulness, also modulate the 
autonomic balance in the mouse SANC. (B) During an epileptic seizure event, the well-maintained autonomic balance can be disrupted, potentially leading 
to distinct ictal and postictal outcomes, influenced by both circadian and vigilance state variations. The CRBT icon is derived from https://openclipart.org/
detail/231080/thermometer, while the circadian clock icon is modified based on https://openclipart.org/detail/198766/mono-tool-timer.

https://doi.org/10.1371/journal.pcbi.1013318.g002

https://openclipart.org/detail/231080/thermometer
https://openclipart.org/detail/231080/thermometer
https://openclipart.org/detail/198766/mono-tool-timer
https://doi.org/10.1371/journal.pcbi.1013318.g002
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stabilizes external inputs, the epileptic parameters and their impact on model state variables remain necessary to disrupt 
SANC function.

Using this autonomic clamping protocol, we first simulated the ictal S
i
-P

i
 parameter space map (Fig 3B) —a 

heatmap-based approach that examines how different combinations of two model parameters influence SANC 
activity patterns. To this end, we varied S

i
 from 20% to 220% and P

i
 from -20% to 40% and measured the ictal SANC 

FR in beats per minute (BPM) at the end of the seizure window (Fig 3A; left green triangle). As S
i
 increases, the 

ictal SANC activity pattern can degenerate from rhythmic firing (R
i
) to irregular firing (I

i
), and finally to no firing (N

i
) 

(Fig 3B). On the other hand, increasing P
i
 expands the region of rhythmic firing (R

i
), reducing the extent of the no 

firing region (N
i
) (Fig 3B). Interestingly, the transition from rhythmic firing to irregular firing and ultimately to no firing 

proceeds along the horizontal axis (from left to right), highlighting the dominant influence of Sᵢ in shaping ictal firing 
patterns of SANC.

Fig 3.  Transient autonomic changes are not required to trigger ictal and postictal sinus arrhythmias. (A) Illustration of the autonomic clamping 
protocol used to induce epileptic seizures in the SANC model without within-phase autonomic changes. A seizure event with the duration of τ is simu-
lated by a dominant level of ictal SNA (S×(1 + S

i
)) over ictal PNA (P×(1 + P

i
)) (S

i
 > P

i
). After such an event, postictal levels of SNA and PNA are linearly 

ramped towards S×(1 + S
p
) and P×(1 + P

p
), respectively, with a ramping duration of τ

p
. Green triangles indicate the locations where ictal and postictal 

SANC FR are sampled. (B-C) Resulting ictal (B) and ictal-postictal parameter space maps (C) at the sleep-wake transition phase (light off at zeitgeber 
time (ZT) 12 in a 12h:12h lighting regime [41]). (B) When S

i
 and P

i
 are varied, the borders between rhythmic (R

i
), irregular (I

i
), and no-firing (N

i
) regions 

of ictal SANC firing patterns are indicated by white dashed lines. (C) After setting P
i
 to 10% (B; green dashed line and dots) and S

p
 to -100%, S

i
 and 

P
p
 are varied to obtain the postictal parameter space map. Green and white dashed lines delineate the borders between rhythmic (R), irregular (I), and 

no-firing (N) regions of ictal (i) and postictal (p) SANC firing patterns, respectively. This results in a total of nine distinct regions in the parameter space 
map (labeled 1 to 9). (D) Simulation traces of SANC membrane potentials (black traces) sampled from the nine parameter regions, demonstrating a wide 
range of seizure-induced SANC excitation patterns. These include ictal sinus rhythm [1–3], mixed ictal tachycardia and bradycardia [4–6], ictal asystole 
[7–9], postictal sinus rhythm [1,4,7], postictal low-frequency oscillations [2,5,8] and postictal asystole [3,6,9]. Simulation traces labeled 5 (yellow; I

i
-I

p
) and 

9 (red; N
i
-N

p
) depict oscillatory and asystolic seizure events, respectively.

https://doi.org/10.1371/journal.pcbi.1013318.g003

https://doi.org/10.1371/journal.pcbi.1013318.g003
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Next, we simulated the ictal-postictal S
i
-P

p
 parameter space map (Fig 3C) to characterize SANC activity patterns both 

during and after seizures. For this step, we varied S
i
 from 20% to 220% and P

p
 from 60% to 400%, while fixing P

i
 at 

10% (Fig 3B; green dashed lines and dots) and S
p
 at -100%. Then, we sampled the SANC FR both before and after the 

postictal ramp (Fig 3A; left and right green triangles). These simulations yielded a S
i
-P

p
 parameter space map segmented 

into nine distinct regions, delineated by green dashed lines (ictal patterns) and white dashed lines (postictal patterns) in 
Fig 3C. These regions correspond to rhythmic (R), irregular (I), or no firing (N) patterns of ictal (i) and postictal (p) SANC 
activity. In contrast to the horizontal transition observed in Fig 3B, a mostly vertical transition (from bottom to top; Fig 3C) 
across these firing regions is evident, underscoring the critical role of P

p
 in shaping postictal dynamics.

From each of these nine regions (labeled 1–9 in Fig 3C), we sampled simulation traces of SANC membrane poten-
tials (Fig 3D) to demonstrate the diverse and dynamic changes of SANC activity both during and after the seizure event. 
Specifically, when S

i
 is low (traces 1–3; Fig 3D), ictal SANC excitation remains rhythmic, while postictal SANC activity 

can degenerate from a sinus rhythm to low-frequency FR oscillations and asystole with increasing P
p
. Notably, postictal 

asystole can be observed both during and after the postictal ramp (red arrows, trace 3; Fig 3D) when P
p
 is high. With 

moderately increased S
i
 (traces 4–6; Fig 3D), postictal SANC excitation patterns remain mostly unchanged compared to 

low S
i
 (traces 1–3; Fig 3D); however, ictal low-frequency oscillations between tachycardic and bradycardic states can be 

observed in the SANC FR (blue stars, traces 4–6; Fig 3D). Interestingly, transient events of postictal sinus arrest can be 
observed immediately after seizure events (blue arrows, traces 4–6; Fig 3D). With a high S

i
 (traces 7–9; Fig 3D), mixed 

ictal tachycardia and bradycardia can further degenerate into ictal asystole after the onset of seizure events (yellow stars, 
traces 7–9; Fig 3D), accompanied by prolonged events of postictal sinus arrest (yellow arrows, traces 7–9; Fig 3D).

Interestingly, our simulation results (traces 7–9; Fig 3D) suggest that even when ictal sympathetic and parasympa-
thetic tones were clamped with no dynamic changes during the seizure (Fig 3A), a neurocardiogenic mechanism can 
drive transitions from ictal tachycardia to bradycardia, and ultimately asystole (Fig 1A). This contrasts with the neurogenic 
mechanism [17], which attributes ictal bradycardia and asystole to a transient increase in vagal tone during the seizure. 
Furthermore, we also found that both ictal (traces 4–6; Fig 3D) and postictal (traces 2, 5, 8; Fig 3D) low-frequency oscilla-
tions in SANC FR (Fig 1B) can emerge with clamped autonomic activity, suggesting a neurocardiogenic explanation that 
does not rely on autonomic instability [22].

Neurocardiogenic mechanisms underlying seizure-induced sinus arrhythmias

To investigate the neurocardiogenic mechanisms underlying distinct patterns of seizure-induced SANC activity, we com-
pared the electrophysiological and ionic details behind representative oscillatory (trace 5; Fig 3D) and asystolic (trace 
9; Fig 3D) seizure events (grey (trace 5) and black (trace 9) traces; Fig 4A). Specifically, during the seizure, SANC FR 
promptly increases due to the acute effects of SNA dominance over PNA, i.e., enhanced I

CaT
 and I

CaL
 (red arrows; Fig 4A). 

As the seizure progresses, this elevated FR allows more Na to enter the cell, leading to intracellular Na accumulation, Ca 
overload, and a subsequent reduction in SANC excitability (yellow arrows; Fig 4A), attributed to enhanced Ca dependent 
inactivation of I

CaL
. In the steady-state phase, a balance is reached between the opposing effects of heightened SNA and 

intracellular Na accumulation, ultimately determining the ictal SANC firing patterns, i.e., ictal low-frequency oscillations 
(grey; Fig 4A) or, when these effects are even stronger, asystole (black; Fig 4A). After the seizure, PNA dominates over 
SNA, resulting in intracellular Na depletion from its ictal levels (blue arrow; Fig 4A). Compared to trace 5 (grey; Fig 4A), 
a prolonged postictal sinus arrest (blue star; Fig 4A) can be observed in trace 9 (black; Fig 4A) due to higher Na loading 
during the seizure (yellow star; Fig 4A). Further reduction in Na content can restore sinus rhythm. However, such res-
toration can be transient (Fig 4A) due to increasing postictal PNA, which reduces SANC excitability by enhancing I

KACh
 

(black arrow; Fig 4A). After the postictal ramp (τ
p
), SANC excitability is co-modulated by steady-state SNA and PNA levels 

and is mechanistically determined by intracellular Na content and I
KACh

. This results in postictal SANC firing patterns such 
as low-frequency oscillations (grey; Fig 4A) or asystole (black; Fig 4A).
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However, it is evident that compared to their ictal counterparts (yellow dashed box; Fig 4A), postictal low-frequency 
oscillations in SANC excitation (blue dashed box; Fig 4A) are characterized by their distinct AP morphologies, frequencies, 
and intracellular ionic profiles. Thus, we further investigated electrophysiologic and ionic mechanisms underlying the dif-
ferences between ictal and postictal bursts of APs (Fig 4B). Specifically, ictal bursts of APs (~0.35Hz) (yellow dots; Fig 4B) 
have higher amplitudes, while beat-to-beat AP alternans can be observed in postictal bursts of APs (~0.1Hz) (blue dots; 
Fig 4B). Both ictal and postictal bursts of APs involve cyclical Na fluctuations of similar amplitudes but they operate at high 
(~13.9mM) (yellow dashed lines; Fig 4B) and low (~8.6mM) (blue dashed lines, Fig 4B) Na levels, respectively. Postictal 
Na fluctuations are mostly linear (blue dashed lines, Fig 4B), with Na accumulating during bursts of APs and declining 
between bursts, while ictal Na fluctuations are more non-linear (yellow dashed lines; Fig 4B), with a rise in sodium that 
continues after the offset of each burst. These ictal sodium effects relate to the pronounced Ca contributions to ictal oscil-
lations (red arrows; Fig 4B). Indeed, while postictal oscillations in intracellular Ca are minimal and evoke only weak I

CaL
 

and negligible I
CaT

 (blue arrows; Fig 4B), the distinct levels of ictal autonomic signals result in large contributions of both 
I
CaT

 and I
CaL

 to ictal bursts. The resulting elevation of intracellular Ca boosts activity of sodium-calcium exchanger current
,
 

Fig 4.  Neurocardiogenic mechanisms underlying seizure-induced arrhythmias in SANC excitation patterns. (A) Detailed electrophysiologic and 
ionic dynamics behind representative seizure events featuring ictal and postictal low-frequency oscillations (trace 5 from Fig 3C and 3D; grey traces) and 
asystole (trace 9 from Fig 3C and 3D; black traces). (B) A close-up comparison between ictal (A; yellow dashed box) and postictal (A; blue dashed box) 
clusters of bursting APs with underlying intracellular Na, Ca dynamics, and key ionic currents in trace 5 (A; grey).

https://doi.org/10.1371/journal.pcbi.1013318.g004

https://doi.org/10.1371/journal.pcbi.1013318.g004
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which pumps calcium out of the SANC in between bursts of APs while helping to prolong the elevation of the intracellular 
Na concentration during those periods.

Circadian and vigilance state regulation of seizure-induced sinus arrhythmias

These neurocardiogenic insights (Fig 4) add a critical dimension to our understanding of the brain-heart interactions 
underlying seizure-induced sinus arrhythmias. However, they were investigated only at the transition state (ZT12) between 
sleep and wake (black dots; Fig 5A), assuming no variations in circadian and vigilance state conditions, i.e., no time-of-
day differences in autonomic balance, BT, LCR and sleep/awake patterns (Fig 2). To quantitatively study circadian and 
vigilance state regulation of seizure-induced sinus arrhythmias, we introduced four additional states into our model (blue 
and red dots; Fig 5A). Specifically, concurrently with naturally waking up during the night (awake state at ZT18; red dots, 
Fig 5A), SANC FR (grey curve; Fig 5A) peaks due to high expression levels of I

HCN
 driven by LCR (green curve; Fig 5A), 

high BT (red curve; Fig 5A), and low PNA (blue curve; Fig 5A). Conversely, during daytime sleep (sleep state at ZT6; 
blue dots, Fig 5A), SANC FR bottoms out due to low expression levels of I

HCN
, low BT, and high PNA. Here, we assumed 

minimal circadian variations in SNA, which may be attributed to a high baseline sympathetic tone in mice to maintain a 
normal core temperature (37°C) under standard laboratory conditions (20°C), potentially limiting additional time-of-day 
fluctuations as previously reported [26]. In addition to these circadian states (solid dots; Fig 5A), vigilance states, i.e., 
forced sleep and awake states (red and blue empty dots; Fig 5A), were introduced to decouple circadian rhythms from 
sleep-wake patterns. Specifically, these vigilance states were phenomenologically modeled by assuming unchanged LCR 
and BT with off-phase PNA at ZT18 and ZT6, respectively.

Next, we generated parameter space maps with these circadian and vigilance state variations (blue and red dots; Fig 
5A), using the same simulation protocols described earlier (Fig 3B and 3C). Compared to the transition state at ZT12 (Fig 
3B and 3C), during daytime sleep (Fig 5B), the no-firing region shrinks in the ictal parameter space map but expands 
in the postictal parameter space map. In addition, the ictal transition from rhythmic firing to irregular firing to no-firing 
regions becomes diagonal (from top left to bottom right) in the parameter space map (Fig 5B; upper panel), in contrast 
to the mostly horizontal transition observed in Fig 3B. This pattern suggests a more balanced contribution from S

i
 and P

i
 

in driving ictal SANC excitations during daytime sleep. Conversely, after waking up at ZT18 (Fig 5C), the no-firing region 
expands in the ictal parameter space map yet shrinks in the postictal parameter space map, relative to ZT12 (Fig 3B and 
3C). Notably, the ictal transition across firing regions becomes almost perfectly horizontal, indicating a minimal contribu-
tion of P

i
 in determining ictal SANC firing patterns during wakefulness.

Interestingly, when circadian rhythms are decoupled from sleep-wake patterns (Fig 5D and 5E), forced wakefulness at 
ZT6 (Fig 5D) results in an expansion of the no-firing region in the ictal map, and a reduction in the postictal map compared 
to natural sleep at ZT6 (Fig 5B). In this condition, the ictal transition from rhythmic firing, irregular firing to no firing regions 
becomes fully horizontal in the parameter space map (Fig 5D; upper panel), confirming that P

i
 has little influence in driving 

ictal excitation patterns during forced wakefulness. Conversely, forced sleep at ZT18 (Fig 5E) results in a reduced no-firing 
region in the ictal map and an expansion in the postictal map compared to natural wakefulness at ZT18 (Fig 5C). Under 
forced sleep, the ictal transition across firing regions shifts from horizontal to diagonal in the parameter space map, sug-
gesting a balanced contribution of P

i
 and S

i
 in shaping ictal SANC firing patterns.

To dissect and identify key mechanisms responsible for these changes in parameter space maps (Fig 5B–E), we 
compared simulated traces of seizure-induced membrane excitations during an oscillatory seizure event (labeled as 
trace 5 in Figs 3C and 5B–E) under various circadian and vigilance state conditions (Fig 6). Specifically, ictal low-
frequency oscillations in SANC firing patterns at ZT12 (Fig 6B) may escalate at ZT18 (ii; Fig 6A), but are suppressed 
at ZT6 (ii; Fig 6C). Conversely, postictal low-frequency oscillations at ZT12 (Fig 6B) can normalize to sinus rhythm at 
ZT18 (ii; Fi 6A) or degenerate to asystole at ZT6 (ii; Fig 6C). To identify key mechanisms underlying these circadian 
patterns in ictal and postictal SANC activity, each circadian factor was applied individually to determine its relative 
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Fig 5.  Regulation of seizure-induced SANC firing patterns by circadian rhythms and vigilance states. (A) Simulated circadian rhythms of SANC 
FR (grey curve), LCR (green curve), CRBT (red curve), and PNA (blue curve) over a 24-hour cycle under a 12h:12h lighting regime. SANC FR, LCR, 
and CRBT peak at ZT18 during nighttime wakefulness (awake state; solid red dot), and hit bottom at ZT6 during daytime sleep (sleep state; solid blue 
dot). In contrast, PNA peaks at ZT6 and has a minimum at ZT18. The solid black dot represents the transition state (at ZT12). Red and blue empty dots 
indicate the forced sleep (at ZT18) and forced awake (at ZT6) states with off-phase PNA, respectively. (B-C) Differences in ictal (top) and postictal (bot-
tom) parameter space maps between the sleep (B) and awake (C) states. (D-E) Ictal (top) and postictal (bottom) parameter space maps when circadian 
rhythms are decoupled from sleep-wake patterns via forced awake (D) and forced sleep (E) protocols.

https://doi.org/10.1371/journal.pcbi.1013318.g005

https://doi.org/10.1371/journal.pcbi.1013318.g005
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Fig 6.  Dissecting key mechanisms governing circadian and vigilance state regulation of seizure-induced SANC firing patterns. Representative 
oscillatory (labeled as 5 in Fig 5B–E) seizure events under different circadian (at ZT18 (A), ZT12 (B), and ZT6 (C)) and vigilance state (forced sleep at 
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contribution in shaping seizure-induced SANC patterns (green boxes; Fig 6). Notably, circadian changes in PNA (i-c; 
Fig 6C) dominate over other circadian factors in determining both ictal (white stars; Fig 6C) and postictal (black stars; 
Fig 6C) SANC firing patterns at ZT6 (ii; Fig 6C). However, at ZT18, circadian changes in BT (iii-b; Fig 6A) are most 
important in promoting ictal low-frequency oscillations (white stars; Fig 6A), while circadian changes in PNA remain 
the dominating factor in restoring postictal sinus rhythm (black stars; Fig 6A). Interestingly, when circadian rhythms are 
decoupled from sleep-wake patterns, our simulations suggest that postictal asystole during sleep can occur regardless 
of the time of day (i; Fig 6A versus ii; Fig 6C). This finding is in agreement with experimental findings (Fig 1C) [6,28] 
and suggests that sleep-wake patterns may be a stronger indicator of seizure-induced deaths or SUDEP compared to 
circadian variations.

Discussion

In this study, we examined the critical yet largely overlooked neurocardiogenic mechanisms that contribute to seizure-
induced sinus arrhythmias using a mathematical model of mouse SANC [26] (Fig 1A–B). Epileptic seizure events were 
simulated by varying autonomic levels between the ictal and postictal phases. To eliminate the impact of transient auto-
nomic changes during these phases, we implemented an autonomic clamping protocol with SNA and PNA clamped at 
fixed levels. Our results reveal that intrinsic cardiogenic mechanisms alone can suffice to drive ictal and postictal low-
frequency oscillations as well as the transition from ictal tachycardia to bradycardia and asystole (Figs 3 and 4). These 
findings suggest distinct roles for neurogenic and cardiogenic mechanisms in shaping across-phase and within-phase 
SANC firing patterns, respectively. Our results underscore the role of cardiogenic factors in seizure-induced sinus arrhyth-
mias, contrasting with the neurogenic mechanism that attributes these arrhythmias to temporally varying autonomic 
signals during or after seizures [17,22].

Additionally, we investigated the impact of circadian rhythms and vigilance states on seizure-induced sinus arrhyth-
mias. Both clinical and experimental recordings have reported circadian patterns in seizure-induced deaths and SUDEP; 
however, a high fatality rate is observed for maximal electroshock-induced seizures occurring during sleep, regardless of 
the circadian phase (Fig 1C) [28]. Our simulation results highlighted the role of PNA in shaping both circadian and vigi-
lance state patterns of postictal sinus arrhythmias, frequently linked to SUDEP or near SUDEP events (Fig 6). Specifically, 
we found that postictal asystole can occur during sleep regardless of the time of day (Fig 6), suggesting that sleep-wake 
patterns can be a stronger indicator of seizure-induced deaths or SUDEP than circadian variations [29]. This finding is 
in agreement with both experimental data (Fig 1C) and clinical evidence [42]. For example, clinical studies indicate that 
sleep-wake patterns are stronger predictors of pediatric seizures compared to circadian rhythm [43,44]. Seizure occur-
rences in frontal lobe epilepsy are more closely aligned with transitions between sleep and wakefulness, both during the 
day and night [45]. In addition, our simulations indicate that being vigilant during the postictal phase may help prevent 
SUDEP (Fig 5D). A case-control study supports this finding that having someone present at night reduces the likelihood of 
SUDEP (odds ratio 0.4) [46]. This intervention involves family members observing seizures that occur at bedtime and then 
waking the individual during the postictal phase [47]. Moreover, our simulation results suggest that circadian changes in 
BT play a significant role in promoting ictal sinus arrhythmias (Fig 6A). Intriguingly, patients with Dravet syndrome exhibit 
a disproportionately high incidence of sudden death in bathtubs, often in the absence of drowning evidence [48,49]. Hot 
water immersion, which triggers sympathetic activation and raises BT, increases seizure risk and amplifies SUDEP sus-
ceptibility within this vulnerable population [49–51].

ZT18 (A-i) and forced awake at ZT6 (C-iii)) conditions. Time-of-day changes in PNA (A-iii-a; ZT18) (C-i-a; ZT6), CRBT (A-iii-b; ZT18) (C-i-b; ZT6), and 
LCR (A-iii-c; ZT18) (C-i-c; ZT6) were applied individually to dissect the relative contributions of each circadian factor in shaping distinct SANC firing 
patterns at ZT18 (upper green box) and ZT6 (lower green box), respectively.

https://doi.org/10.1371/journal.pcbi.1013318.g006

https://doi.org/10.1371/journal.pcbi.1013318.g006
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These neurocardiogenic and chronobiological insights could potentially inform the development of therapeutic strate-
gies aimed at managing seizure-induced cardiac arrhythmias and mitigating risks associated with SUDEP. For example, 
antiepileptic drugs like lamotrigine may increase the risk of SUDEP [52]. Recently, the US Food and Drug Administration 
issued a safety warning on the cardiac effects of lamotrigine, highlighting its potential to slow ventricular conduction and 
promote sudden death [53]. Notably, elevated heart rates, such as those occurring during the ictal phase of a seizure 
event (Figs 3 and 4), could further exacerbate the risk of slowed ventricular conduction with lamotrigine. Future research 
may utilize the model and approaches developed in this study to identify the ionic mechanisms underlying the adverse 
effects of lamotrigine in promoting SUDEP and cardiac arrhythmias.

Furthermore, chronotherapy, i.e., the strategic timing of drug administration to optimize efficacy while minimizing side 
effects [54–58], has been applied in treating cancer and cardiovascular diseases [59,60]. Currently, drug-resistant epi-
lepsy affects one-third of patients and is associated with an increased risk of SUDEP [61], and chronotherapy could offer 
an opportunity to reduce the likelihood of drug-resistant epilepsy [62]. For example, clinical studies have suggested that 
epileptic patients who took the majority of their antiepileptic drugs at 8pm experience better seizure control and drug 
tolerance compared to those on a twice-daily dosing regimen [62]. Interestingly, our simulation results (Fig 6) indicate that 
sleep-wake patterns may be more predictive of seizure-induced deaths or SUDEP than circadian variations. The efficacy 
of chronotherapeutic interventions may therefore be influenced by an individual’s sleep-wake cycles, possibly due to ele-
vated PNA during sleep. Two complications in the design of such treatments are that up to two thirds of epileptic patients 
experience sleep disturbances [63] and that antiepileptic drugs can disrupt sleep architecture, leading to side effects such 
as insomnia or fragmented sleep [64]. These disruptions may further exacerbate seizure activity by altering brain excit-
ability and reducing drug efficacy, creating a vicious cycle: antiepileptic drug-induced sleep disturbances impair seizure 
control, potentially necessitating higher or additional dosing, which in turn further compromises sleep [65]. In light of these 
complexities, the model developed in our study can serve as a valuable tool for the identification of optimal drug targets 
and chronotherapeutic dosing strategies, offering a theoretical basis for personalized interventions tailored to mitigate 
SUDEP risk in patients with drug-resistant epilepsy.

Moreover, it should be noted that, in addition to neurogenic and cardiogenic factors, respiratory mechanisms may also 
contribute to the development of SUDEP [13], complicating the design of effective treatments for patients with epilepsy. 
For example, clinical observations in patients with epilepsy reveal a surprising distinction: while ictal asystole events in 
these patients are often self-limiting [17,18], postictal asystole events are frequently linked to SUDEP or near SUDEP 
events [6]. This pattern may derive from the complex neuro-cardio-respiratory interactions during the ictal and postictal 
phases [13]. For instance, our simulation results demonstrated that both ictal and postictal asystole can occur, yet they are 
characterized by unique electrophysiological profiles and intracellular Na concentrations in SANCs (Fig 4). Here, we spec-
ulate that during the ictal phase, the negative respiratory feedback could terminate the seizure event, and release SANC 
from its ictal condition of excessive Na content, potentially allowing the recovery of sinus rhythm. However, during the 
postictal phase with a low Na content in SANC, the respiratory feedback can only further impair SANC excitability, promot-
ing the development of SUDEP. Thus, the development of a more integrated systems model that quantitatively describes 
the delicate interactions among neural, cardiac, and respiratory systems holds great potential for the identification of novel 
drug targets and chronotherapeutic strategies to improve seizure management and reduce SUDEP risk.

In addition to the complex neuro-cardio-respiratory interactions during the ictal and postictal phases, which typically last 
minutes, the severity of a seizure event can be influenced by chronic remodeling in epilepsy that develops over a much 
longer period, e.g., months or years [66,67]. For instance, the risk of SUDEP is 20–40 times higher in patients with chronic 
epilepsy, compared to the general population. Chronic epilepsy is associated with dysfunction in the ANS, disruption of the 
respiratory system, and permanent alterations in cardiac excitation patterns, e.g., heightened heart rates and prolonged 
QT intervals. Specifically, as a chronic consequence of epileptic seizures, the emergence of cardiac HCN channelop-
athies [37] may predispose the heart to the development of cardiac arrhythmias, potentially due to persistent aberrant 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013318  July 16, 2025 14 / 20

autonomic inputs to the heart [66]. Within this context, a minor seizure event (trace 1; Fig 3D) may potentially escalate to 
more severe event lethal outcomes (trace 5 or 9; Fig 3D), depending on the progression of chronic remodeling in epilepsy. 
Thus, chronic remodeling in neuro-cardio-respiratory systems can be a crucial dimension for establishing an integrative 
pathophysiological understanding of SUDEP.

Our study has several limitations that may impact the interpretation of our model simulations. Our model is devel-
oped to be mouse-specific, which necessitates careful considerations when extrapolating our results to humans due to 
cross-species differences [68]. For example, humans are diurnal, with a resting heart rate of approximately 60–100 BPM, 
whereas mice are nocturnal and exhibit a much higher basal heart rate of around 500–600 BPM [69,70]. Moreover, human 
sleep architecture is typically monophasic or biphasic, characterized by one or two primary sleep episodes at night, while 
mice display polyphasic sleep, consisting of multiple short bouts distributed across the 24-hour cycle [71]. These species-
specific differences are further amplified by variations in intrinsic autonomic tone and responsiveness between mice and 
humans [41]. Despite these distinctions, our mouse model of SANC successfully reproduced a wide spectrum of seizure-
induced arrhythmic patterns observed in humans [6], including sinus tachycardia, bradycardia, and asystole (Fig 3D). 
Importantly, without introducing within-phase autonomic fluctuations, our simulations recapitulated the dynamic progres-
sion from ictal tachycardia to bradycardia and eventually to asystole, along with the emergence of postictal low-frequency 
oscillations, as reported in epileptic patients (Fig 1A and 1B) [16,22]. In addition, our simulation results closely align with 
experimental findings from mouse models of epileptic encephalopathy and SUDEP [72,73]. For example, both cardiac 
and parasympathetic hyperactivity have been implicated in contributing to SUDEP in Scn8aN1768D/+ mice [72], consistent 
with our findings on the critical role of PNA in shaping postictal SANC activity patterns (Fig 3C and 3D). Furthermore, 
Kv1.1 potassium channel null mice exhibit spontaneous seizure-induced sinus arrhythmias and SUDEP events exclusively 
following seizures [73], supporting our simulation results that postictal sinus bradycardia may facilitate the development of 
SUDEP, potentially attributed to low intracellular Na content in SANCs (Fig 4).

We introduced forced sleep and awake states with off-phase PNAs, which may oversimplify the complex physiological 
and metabolic aspects associated with sleep [74]. We did not separately study the effects of rapid eye movement sleep 
and non-rapid eye movement sleep, due to limited data availability to characterize these two sleep patterns for our study 
[28]. Additionally, while the autonomic clamping protocol effectively identified neurocardiogenic mechanisms in seizure-
induced sinus arrhythmias, real-world scenarios are far more complex, driven by dynamic neurocardiac excitation patterns 
and their bidirectional coupling during both ictal and postictal phases [75]. For example, seizures can disrupt brain regions 
that regulate autonomic output, leading to rapid shifts that may accelerate the development of cardiac arrhythmias. 
Conversely, cardiac disturbances can reciprocally influence brain function by impairing cerebral perfusion, disrupting auto-
nomic feedback loops, and causing hypoxia [76]. This bidirectional interaction can create either a protective or pathologi-
cal cycle, in which neurological instability alters cardiac function, and cardiac dysfunction either mitigates or exacerbates 
neurological impairment. The integration of dynamic neurocardiac interactions into our model may potentially delineate the 
relative contributions of neurogenic versus cardiogenic mechanisms in driving seizure-induced sinus arrhythmias, e.g., by 
using a state-variable clamp protocol [77].

In our model, autonomic activity levels, i.e., SNA and PNA, are represented as a set of model parameters that map 
to changes in ion channel properties, such as channel conductances, under varying levels of sympathetic and parasym-
pathetic tone. Similar model behaviors to those observed in Fig 3D may be reproduced with a different or reduced set of 
model components, such as the interplay between I

CaL
 (a major SNA target) and I

KACh
 (the primary PNA target), raising the 

possibility that investigation of reduced models could yield specific predictions about the ionic mechanisms underlying 
seizure-induced sinus arrhythmias [78,79]. In this vein, from an analytical perspective, an interesting future direction would 
be to study the bifurcations in model dynamics induced by variation of parameters associated with model ion currents, 
perhaps aided by a timescale decomposition of model variables [80]. The relatively abrupt changes in dynamics seen 
upon conclusion of the autonomic ramp in some parameter regimes (Fig 3D) suggest the involvement of certain types of 
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bifurcations, but careful analysis will be required to determine the details, which may involve a combination of delayed bifur-
cation [81] and slow dynamics effects. In future work, formal bifurcation analysis can be conducted on simplified versions 
of the model to identify specific transitions—such as Hopf, saddle-node on an invariant circle, or Neimark–Sacker bifurca-
tions—and to establish links between these mathematically defined behaviors and their physiological correlates [82–84].

In addition, our study focused on investigating the cardiogenic mechanisms underlying seizure-induced sinus arrhyth-
mias, specifically those originating from abnormal SANC firing patterns at the cellular level. However, the pacemaking 
activity of the sinoatrial node—a highly complex and heterogeneous three-dimensional structure [85]—is driven by the 
emergent behaviors of electrically coupled SANCs and their interactions with surrounding atrial tissue. These complexities 
at the tissue level, along with their modulation by circadian rhythms and sleep-wake cycles, may also contribute to cardio-
genic mechanisms that were beyond the scope of this study. Future model development, including the systematic inte-
gration of neural excitation dynamics [75], respiratory feedback [86], chronic remodeling in epilepsy [66], and tissue-level 
complexities of sinoatrial nodal excitations [87–89] could pave the way for a deeper theoretical understanding of the 
complex brain-heart interactions in epilepsy, and provide a quantitative tool to accelerate the development of therapeutic 
strategies for the management and prevention of epilepsy and SUDEP.

Materials and methods

Our recently developed mathematical model of the circadian regulation of mouse SANC pacemaking [26] was utilized for 
the computer simulations of SANC excitation presented in this study. All model definitions, equations, and parameter set-
tings remain unchanged from those previously described [26]. In this model, SANC firing patterns are determined by the 
intricate interactions between a membrane oscillator, associated with membrane ionic currents, and a Ca oscillator driven 
by intracellular Ca cycling dynamics (Fig 2A), building upon the original work and model code implementations by Kharche 
et al [90] and Ding et al [91]. Importantly, both membrane and Ca oscillators are modulated by day-night rhythms in auto-
nomic balance, BT, and LCR (Fig 2A), enabling the quantitative reconstruction of circadian patterns in SANC pacemaking 
function [26]. A 12h:12h light/dark lighting regime (Fig 5A) was implemented as in experimental studies [41].

All model simulations were performed using parallel computing on a ThinkStation P620 tower workstation with an AMD 
Threadripper processor. Model codes were implemented and solved in MATLAB (Version: 9.13.0 (R2022b)) using the 
ode15s solver. The model codes for computer simulations presented in this study are publicly available for download at 
https://github.com/Mathbiomed/SeizureSANC.

Autonomic clamping

To induce epileptic seizure events in our SANC model, we implemented an autonomic clamping protocol without introduc-
ing transient changes in autonomic balance (Fig 3A). Specifically, during the preictal phase (60s), the model was simulated 
to achieve steady-state behaviors, using default initial conditions and parameter settings previously described [26]. At the 
onset of a seizure event, preictal SNA (S) and PNA (P) were promptly clamped to their ictal values, S×(1 + S

i
) and P×(1 + P

i
), 

respectively, for a duration of 60s (τ; Fig 3A). After the seizure event, ictal SNA (S×(1 + S
i
)) and PNA (P×(1 + P

i
)) linearly 

ramped towards their postictal values, S×(1 + S
p
) and P×(1 + P

p
), respectively, for a duration of 45s (τ

p
; Fig 3A). Following the 

ramp stage, the simulation continued for another 75s to achieve postictal steady-state behaviors. The epileptic parameters 
(i.e., S

i
, P

i
, S

p
, P

p
, τ, τ

p
) remain active under autonomic clamping, allowing seizure-induced SANC dysfunction to emerge 

from freely evolving state variables. The total time duration of a simulated epileptic seizure event was 4 minutes.

Parameter space map

To identify potential seizure-induced SANC excitation patterns, we implemented a parameter space mapping protocol 
(Figs 3B, 3C and 5B–E). Specifically, the ictal parameter space map (Figs 3B and 5B–E, upper panels) was generated 
by varying S

i
 from 20% to 220% with a step size of 10%, and P

i
 from -20% to 40% with a step size of 1.5%, resulting in a 

https://github.com/Mathbiomed/SeizureSANC
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total of 40 × 40 simulations per map, color-coded by ictal SANC FR. Here, the ictal SANC FR was sampled toward the end 
of the ictal phase (Fig 3A; left green triangle). The postictal parameter space map (Figs 3C and 5B–E, lower panels) was 
generated by varying S

i
 from 20% to 220% with a step size of 10%, and P

p
 from 60% to 400% with a step size of 8.5%, 

resulting in a total of 40 × 40 simulations per map, color-coded by postictal SANC FR. The postictal SANC FR was sam-
pled after the postictal ramp (Fig 3A; right green triangle). For postictal maps (Figs 3C and 5B–E, lower panels), P

i
 and S

p
 

were set to 10% and -100%, respectively.

Circadian and vigilance state conditions

To investigate circadian and vigilance state regulation of seizure-induced sinus arrhythmias, we introduced 5 distinct 
model states to account for their variations. For circadian variations, the states included: the awake state at ZT18 (red 
dots; Figs 5 and 6), the transition state at ZT12 (black dots; Figs 5 and 6), and the sleep state at ZT6 (blue dots; Figs 5 
and 6). For vigilance state variations, the states included: the forced sleep state at ZT18 (red empty dots; Figs 5–6) and 
the forced awake state at ZT6 (blue empty dots; Figs 5–6). Parameter settings for these circadian variations were kept the 
same as previously described [26]. For the forced sleep or awake states, we assumed off-phase circadian variations of 
PNA, with maximal PNA at ZT18 (instead of ZT6) and minimal PNA at ZT6 (instead of ZT18). This decouples the sleep-
wake cycle from circadian rhythms while keeping other parameters unchanged [92].
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