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Abstract

Objectives: Virtual reality (VR) has emerged as a promising tool for assessing anxiety-
related disorders through immersive exposure and physiological monitoring. This study
aimed to evaluate whether multimodal data, including heart rate variability (HRV), skin
conductance response (SCR), and self-reported anxiety, collected during VR exposure could
classify patients with panic disorder and agoraphobia using machine learning models.
Methods: Seventy-six participants (38 patients with panic disorder and agoraphobia, 38
healthy controls) completed 295 total VR exposure sessions. Each session involved two
road and two supermarket scenarios designed to induce anxiety. Inside the sessions,
self-reported anxiety was measured along with physiological signals recorded by photo-
plethysmography and SCR sensors. HRV measures of heart rate, standard deviation of
normal-to-normal intervals, and low-frequency to high-frequency ratio were extracted
along with SCR peak frequency and average amplitude. These features were analyzed
using Gaussian Naïve Bayes (GNB), k-Nearest Neighbors (k-NN), Logistic Ridge Regres-
sion (LRR), C-Support Vector Machine (SVC), Random Forest (RF), and Stochastic Gradient
Boosting (SGB) classifiers. Results: The best model achieved an accuracy of 0.83. Most
models showed specificity and precision ≥0.80, while sensitivity varied across models,
with several reaching ≥0.82. Performance was stable across major hyperparameters, VR-
stimulus settings, and medication status. The patients reported higher subjective anxiety
but exhibited blunted physiological responses, particularly in SCR amplitude. Self-reported
anxiety demonstrated higher feature importance scores compared to other physiological
properties. Conclusion: VR exposure with self-reported anxiety and physiological mea-
sures may serve as a feasible diagnostic aid for panic disorder and agoraphobia. Further
refinement is needed to improve sensitivity and clinical applicability.

Keywords: biomarkers; digital markers; virtual reality assessment; heart rate variability;
skin conductance; galvanic skin response; electrodermal activity
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1. Introduction
Virtual reality (VR) is increasingly being explored as a diagnostic and measurement

tool for patients with psychiatric disorders. VR allows and assists clinicians to evaluate
symptoms, identify symptom-related markers, establish factors that can predict disorders,
and verify the putative cause of the disorders [1]. Therefore, numerous attempts to utilize
VR for the assessment of various anxiety disorders have been made, including social anxiety
disorder, posttraumatic stress disorder, and phobic disorders [1,2]. There have also been
attempts to adopt VR for the assessment of panic disorder and agoraphobia by evaluating
patients’ anxiety levels during virtual exposure to anxiety-inducing environments or panic
attacks. Several notable studies have aimed to incorporate VR exposure as a multimodal
assessment tool for stress or panic symptoms to overcome the limitations of traditional
assessments that predominantly depend on interviews or self-reports. Ahilan et al. (2023)
developed a VR-based embedded system using electromyography, pulse oximetry, and
galvanic skin response (GSR) sensors, showing its potential to diagnose users’ stress levels
during VR exposure [3]. Kim et al. (2023) combined VR exposure with physiological
markers such as photoplethysmography (PPG) or heart rate variability (HRV) as well as
self-reported anxiety to assess panic symptoms, which is based on the multimodal approach
that adopts various physiological benchmarks for the diagnosis and assessment of mental
disorders [4]. These approaches are considered a breakaway from the traditional subjective
diagnostic methods [5,6].

Although these studies demonstrated the potential of VR as an assessment tool for
panic disorder, they also reveal certain limitations. First, the current approaches still seem
immature to be considered a complete multimodal assessment tool. For instance, Kim et al.
(2023) incorporated HRV data with self-reported anxiety during VR sessions to diagnose
panic disorder, but only reported mere significance levels of each variable without the
combined use of various HRV features with self-reports [4]. In contrast, Ahilan et al. (2023)
adopted machine learning for comprehensive stress prediction utilizing all the acquired
data; however, due to the limitation of the neural network model, the individual predictive
ability of each feature was not provided, and its medical significance remains unclear [3].
Determining medical significance is essential because increased anxiety levels during VR
sessions may not be a primary marker for panic disorder. To illustrate, Kim et al. (2023)
observed that both self-rated and physiological anxiety levels were mostly not significantly
associated with the Panic Disorder Severity Scale (PDSS), which is considered a gold
standard for panic disorder, but instead correlated with the Generalized Anxiety Disorder-
7, a gold standard for generalized anxiety [4]. To identify whether these variables are
relevant markers for panic disorder, we need to meticulously verify whether the variables
can adequately predict the symptoms of the patients, beyond mere correlational or “black-
box” reports.

Therefore, medical diagnosis of mental disorders using VR and psychophysiology
should satisfy three criteria: (i) aggregate features to develop a comprehensive predictive
model; (ii) demonstrate that the measures included in the model can contribute to the
overall performance; and (iii) adopt the criteria of what they test that are medically valid.
Park et al. (2025) developed a multimodal model to predict social anxiety disorder using
acoustic data and physiological signals such as heart rate (HR) and GSR collected during
VR sessions, achieving an area under the receiver operating characteristic curve scores of
up to 0.866 [7]. A similar attempt was made by Tsai et al. (2022) [8], although they did not
adopt VR methods. They tried to predict future panic attacks of the patients with panic
disorder by gathering and analyzing not only self-reports but also the physiological factors
measured using data obtained from wearable devices, such as HR and sleep durations,
and environmental factors such as air quality. Overall, their models demonstrated high
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performance, achieving an accuracy of up to 0.81 [8]. Similarly, Kim et al. (2023) reported a
comprehensive HRV index derived from a pre-equipped device, with effect sizes that were
lower than self-reports and only significant for some sessions [4].

These results suggest a need for careful implementation of valid symptom-specific
features for panic disorder and agoraphobia. Consequently, we adopted diverse HRV
features extracted from the PPG raw signals, which are considered relevant to anxiety
disorders [7,9]. Additionally, we measured skin conductance or GSR, which is considered
one of the representative physiological properties of patients with panic disorder [10]. For
HRV features, HR, the standard deviation of the normal-to-normal interval (SDNN), and
the low frequency/high frequency (LF/HF) ratio were considered relevant. For HR, Freire
et al. (2010) reported that when they were watching anxiogenic computer simulations,
panic and agoraphobia patients with panic attacks exhibited higher HR than healthy people,
whereas those without panic attacks showed rather lower HR, despite the lack of overall
difference between patients and healthy controls [11]. SDNN indicates the variability of
sinus heartbeats and is associated with the physical ability of stress coping [9,12]. The
LF/HF ratio reflects the relative dominance between sympathetic and parasympathetic
activities, which is considered germane to panic-related anxiety [9,13]. Zhang et al.’s (2020)
meta-analysis concluded that patients with panic disorder exhibit short-term increases in
LF/HF ratio but long-term decreases in SDNN [12]. For GSR, Freire et al. (2010) reported
that while watching the anxiogenic computer simulations, higher tonic skin conductance
level (SCL) and the magnitude of phasic skin conductance response (SCR) were observed
among patients with panic and agoraphobia compared to healthy people, although the
frequency of SCR did not differ [11]. Pruneti et al. (2010), when they were conducting stress
response and recovery tasks, reported that SCR values of patients with panic disorder were
higher than those with major depressive disorder or obsessive–compulsive disorder [14].
Moreover, a recent computer simulation study by Freire et al. (2020) revealed that patients
with panic attacks tended to exhibit increased SCL over the time of exposure, whereas
patients without panic attacks tended to demonstrate decreased SCL during the exposure
sessions like healthy people [15].

In summary, we aimed to evaluate the accuracy of a multimodal physiological measure-
ment VR exposure program in distinguishing between agoraphobic patients and healthy
individuals by analyzing HRV, GSR, and self-reported anxiety. To this end, we employed
various machine learning models to classify patients with panic disorder and agoraphobia.
Also, beyond reporting overall performance and individual feature importance, we focused
on enhancing the models’ explainability, aiming to improve the clinical applicability of
the models. We also focused on the robustness of the results across diverse VR stimuli,
hyperparameter settings, and medication status to see the potential generalizability of
the models.

2. Materials and Methods
2.1. Participants

The participants were recruited through online advertisements and from outpatient
clinics at a local hospital. Inclusion criteria for patients required a primary diagnosis of
either panic disorder or agoraphobia according to the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition (DSM-5). Healthy controls were required to have no
current mental disorders. For both groups, eligibility criteria included 18 to 65 years of
age and the absence of cognition and movements or motor impairments that could hinder
participation in the VR tasks or completion of questionnaires. Exclusion criteria included
a history of epileptic or photosensitive seizures, suicide attempts within six months, and
serious psychiatric disorders such as psychosis or bipolar I disorder. All assessments were
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conducted by a researcher with a master’s degree in psychology under the supervision of a
board-certified psychiatrist. This study was approved by the Institutional Review Board,
and all participants provided written informed consent.

2.2. Implementation of VR Exposure

Figure 1 illustrates the overall study procedure from implementation to analysis. In
general, each participant was exposed to a total of four VR sessions (two road and two
mart sessions) that may induce agoraphobic anxiety in individuals with panic disorder and
agoraphobia. The road and mart sessions in VR were designed to simulate environments
that typically induce significant agoraphobic anxiety, specifically: (1) using public trans-
portation and (2) crowds and public spaces. The validity of the simple prototype of the
simulated environments used in this study was demonstrated in our previous research [16].
During the road sessions, participants had to sit in the passenger seat and pass through a
highway, bridge, and tunnel in the first session. However, in the second car session, either
the bridge or tunnel subsection was omitted, and instead, a random event that may strain
the participants occurred, such as thick fog or road construction. During the mart sessions,
the participants had to buy some ingredients with a shopping cart at a grocery store. In
the first session, participants were tasked with buying two designated ingredients, and
in the second session, they needed to buy one ingredient. The cart automatically drove
itself to the target, but the participants had to actively pick up the ingredients and put
them into the cart. Like the road session, the second mart session included a random
event that may strain the participants, such as other customers blocking the way or a
supermarket staff member initiating a conversation with the participants. For both sessions,
voice instructions were provided on VR usage and coping strategies for managing anxiety
during the exposure sessions. Over the sessions, the crowd density (the density of cars or
other customers), brightness (midday, day, night, or midnight during the car sessions; the
lucidity of indoor lights during the mart sessions), and spatial dimensions (the overall size
of the supermarket, height of the ceiling, and width of the aisle) were personalized for each
participant. The personalized settings were based on the pre-exposure survey responses
about the degree to which they feel anxious (i) when in crowded places versus when alone
in a place where no one is around, (ii) when they are in bright versus dark places, and (iii)
when they are in wide versus closed spaces. The VR exposure environments used in this
study were developed with technical support from nGarden (Daegu, Republic of Korea).

Participants sat in a reclining, stationary chair capable of 360◦ rotation in a comfortable
place and experienced VR scenarios via an Oculus Quest 2 head-mounted display (Meta
Platforms Inc., Menlo Park, CA, USA), wirelessly connected to a desktop computer for
high-quality graphic rendering. Participants used a right-hand VR controller to perform
tasks and self-rated their anxiety levels, while physiological sensors (PPG and GSR) were
attached to their left hand. They were asked to put their left hand on the armrest and only
use the right hand to manipulate the VR controller. A research staff member monitored the
entire process of the three VR scenarios and was expected to respond to patient requests
or emergencies. Each session lasted approximately 5 min, with slight variations (~1 min)
owing to the difference in the scenario settings and the participants’ response speed. The
entire study lasted 20–25 min.
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Figure 1. Visualized outline of the current study.

2.3. Measurement and Feature Extraction

The participants’ self-reported anxiety levels and physiological properties were mea-
sured during the VR sessions. The participants’ anxiety levels were measured during the
VR exposure using the Visual Analogue Scale (VAS), an 11-point scale from 0 (not at all
anxious) to 10 (overwhelmingly anxious). These self-reported anxiety levels were recorded
2–4 times per session based on the session length; particularly, at the beginning of the
session and end of each subsection of the scenario (e.g., when the car passed through the
highway/bridge/tunnel or when the participant finished picking up the item). The average
anxiety score through the session was saved for analysis.

During the sessions, a PPG sensor and two GSR sensors were affixed to the partic-
ipant’s left hand, along with a Shimmer3 GSR + Unit (Shimmer Research Ltd., Dublin,
Ireland) at a sampling rate of 51.2 Hz. The GSR sensors were attached to the index and
middle fingers, and the PPG sensor was attached to the ring finger. The PPG raw signals
were processed and analyzed using NeuroKit2 [17]. Finally, the mean HR, SDNN, and
LF/HF ratio were extracted for each session. The GSR raw signals were downsampled to
17.07 Hz and smoothed using a Gaussian window of a width of 8. To extract the peaks and
amplitudes of the SCR, a Discrete Decomposition Analysis was conducted. This method
adopts the nonnegative decomposition introduced by Benedek and Kaernbach (2010), who
argued that this analysis is well-applicable to the variations from the standard signals and
more sensitive compared to the conventional peak detection method, especially when the
inter-stimulus intervals are short [18]. The analysis was conducted with a 0.2 s smooth
window and a grid size of 60, and tau values were automatically optimized to minimize the
errors. The peaks of the phasic activity were detected with the peak amplitudes (µS) at a
significance level of 0.001. Finally, the number of peaks divided by the length of the session
(minutes) and the average amplitude of the detected peaks were extracted for each session.
The GSR signals were processed and analyzed using Ledalab (http://www.ledalab.de).

http://www.ledalab.de


Diagnostics 2025, 15, 2239 6 of 15

2.4. Machine Learning Analysis

Utilizing the above measures (VAS score, HR, SDNN, LF/HF ratio, SCR peak, and
SCR average amplitude), classification of patients and healthy people was conducted using
various machine learning methods. To increase the size of the dataset, each session, rather
than each participant, was included as an individual subject for the machine learning
analysis. For all the models, the entire dataset was divided into training (80%) and test
(20%) sets. For the main analysis, cross-validation was performed using 1000 iterations of
the train-test-set splits. The data splits were stratified to maintain the proportion of patients
versus healthy controls and the distribution of sessions across VR environments (two roads
and two marts). To avoid data leakage, participant-level grouping was enforced, ensuring
that sessions from the same participant were not included in both the training and test
sets within the same cross-validation loop. All analyses for classification were conducted
with scikit-learn [19], and the coding was assisted by ChatGPT (OpenAI, San Francisco,
CA, USA).

Machine learning classifiers included Gaussian Naïve Bayes (GNB), k-Nearest Neigh-
bors (k-NN), Logistic Ridge Regression (LRR), C-Support Vector Machine (SVC), Random
Forest (RF), and Stochastic Gradient Boosting (SGB). For GNB, the prior probabilities were
automatically adjusted according to the data. The k-NN model used a brute-force algo-
rithm and Euclidean distance with uniform weight, and various values of the number of
neighbors were tested to identify the robustness of the test results. The LRR model used
an L2 penalty term (Ridge) with a primal formulation. SVC was based on the Radial Basis
Function with the gamma parameter set to scale. For k-NN, LRR, and SVC, the data were
normalized before the main analysis. The normalization was performed after the train-test
split within each cross-validation loop to prevent data leakage. For both LRR and SVC, the
hyperparameter C (the inverse strength of regularization) was initially set to 1 as a baseline
value and subsequently varied to assess the robustness of the results.

The RF model adopted Gini impurity with a maximum tree depth of 5. The minimum
number of samples was restricted to 3 for internal node splits and 2 for leaf node splits. The
SGB model adopted a stochastic algorithm that only utilized half of the entire dataset to fit
a tree. The maximum depth of the nodes was limited to 4, and employed exponential loss,
incorporating AdaBoost-like features as well. For both ensemble models (RF and SGB), the
number of estimators (trees/boosting stages) was tested with multiple values to identify
the robustness of the test results.

For performance testing, average accuracy, specificity, sensitivity, and precision scores
with their 95% confidence intervals (CIs) were calculated by aggregating the scores in
the cross-validation loops. To determine the optimal classification threshold, fine-tuning
within each cross-validation loop was performed by selecting the best threshold value
from the grid [0.25, 0.30, 0.35, 0.40, 0.50] that maximized the F1 score. Results with various
hyperparameters (e.g., k for k-NN, C for LRR and SVC, and the number of estimators
for RF and SGB) were provided to identify the optimal model configurations and test the
robustness of the results. Additionally, subgroup analyses were conducted to compare
model performance across different VR scenes (Road 1, Road 2, Mart 1, Mart 2), person-
alized VR settings (brightness and crowd density), and concomitant use of antianxiety or
benzodiazepine (BZD) medications. For the analyses, performance metrics were aggregated
over 1000 iterations of train-test splits performed within each subgroup. Finally, feature
importance for RF and SGB models was determined by aggregating the Shapley Additive
Explanation (SHAP) values obtained from the cross-validation loops.
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3. Results
3.1. Participants and Descriptive Statistics

A total of 76 participants (38 patients with panic/agoraphobia and 38 healthy controls)
were included in this study. All participants completed four sessions each; however, nine
sessions (four from patients and five from healthy controls) lasted less than two minutes
and were excluded, resulting in 295 sessions remaining for analysis.

Table 1 summarizes the descriptive statistics and group differences in the main vari-
ables. No significant demographic differences were observed between the two groups. The
patient group and healthy control group showed significant differences in baseline PDSS
scores. The state anxiety subscale of the State-Trait Anxiety Inventory (STAI-S) was higher
in patients both before and after VR exposure; however, patients’ STAI-S scores slightly de-
creased following the exposure, possibly reflecting a habituation effect. Many participants
in the patient group were taking psychiatric medications, such as antidepressants or BZDs,
whereas none of the healthy control group reported current psychiatric medication use.
Overall, the sessions of patients reported significantly higher VAS scores and SDNN but
lower SCR amplitude than the sessions of the healthy controls. Also, the patient sessions
tended to have numerically higher LF/HF ratio and lower SCR peak rate than the healthy
control sessions, although these differences were not statistically significant. Overall, the
patients demonstrated stronger stress reactions as observed in self-reported anxiety and
HRV features but exhibited blunter reactions in skin responses.

Table 1. Descriptive statistics and group differences based on traditional statistics.

PD/A Patients (n = 38,
Sessions = 148)

Healthy Control (n = 38,
Sessions = 147) p for t/χ2

Demographics and baseline characteristics
Sex (female) 23 (61%) 21 (55%) 0.810
Age 30.39 ± 13.15 27.45 ± 11.28 0.298
Education (years) 13.97 ± 2.17 14.32 ± 1.80 0.450
PDSS (baseline) 7.95 ± 5.13 0.08 ± 0.36 <0.001
STAI-S (baseline) 55.83 ± 12.42 33.82 ± 8.18 <0.001
STAI-S (after exposure) 53.32 ± 12.58 33.87 ± 8.09 <0.001
Antidepressants 14 (37%) 0 (0%) <0.001
BZDs 13 (34%) 0 (0%) <0.001

Features
VAS 2.67 ± 1.86 0.30 ± 0.68 <0.001
HR 78.56 ± 12.22 78.69 ± 7.12 0.915
SDNN 97.40 ± 86.82 80.75 ± 47.51 0.042
LF/HF ratio 1.24 ± 1.87 1.02 ± 1.20 0.235
SCR peak 9.66 ± 11.95 11.25 ± 9.10 0.199
SCR amplitude 0.080 ± 0.102 0.151 ± 0.266 0.003

Note: The demographics and baseline characteristics were based on the participant data. The feature statistics were
based on the session-wide data. The bold numbers indicate statistically significant p-values (<0.05). Abbreviations:
PD/A, panic disorder or agoraphobia; PDSS, Panic Disorder Se-verity Scale; STAI-S, State-Trait Anxiety Inventory–
State; BZD, benzodiazepine; VAS, Visual An-alogue Scale for current anxiety level; HR, heart rate; SDNN,
standard deviation of nor-mal-to-normal interval; LF/HF, low frequency divided by high frequency; SCR, skin
conductance response.

Figure 2 illustrates the distributions and intercorrelations of the features used in
this study. Generally, the collinearity between variables was not very high. Rather, VAS
exhibited significant negative correlations with SCR peak (r = −0.163, p = 0.005) and SCR
amplitude (r = −0.174, p = 0.003), indicating that blunt SCRs were characteristic of more
anxious participants in this study. Strong associations between the subfactors of HRV and
SCR were observed: r = 0.422 between SDNN and LF/HF ratio; r = 0.296 between SCR
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peak and amplitude; ps < 0.001. In contrast, HR exhibited no correlation with LF/HF ratio
(r = 0.034) and was even negatively correlated with SDNN (r = −0.245, p < 0.001). SCR peak
showed positive correlations with SDNN (r = 0.219, p < 0.001) and LF/HF ratio (r = 0.141,
p = 0.015), despite negative correlations with VAS, possibly reflecting a general arousal
response that may be independent of anxiety or negative affect.

 
Figure 2. The correlogram of the main features of this study. Note: Marks the distribution of the
subjects (sessions) and their correlations (regression lines) for each combination of the features. The
diagonal cells describe the overall frequency distribution of each group. Orange indicates patients
and blue indicates healthy controls. Green lines indicate regression lines with shaded areas indicating
confidence band of the regression lines.

3.2. Overall Performance and Robustness

Table 2 summarizes the overall performance of the classification models. All models
achieved accuracy, specificity, sensitivity, and precision scores of around 0.80 except for
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k-NN. Although the training process involved threshold tuning based on the F1 score that
focuses on sensitivity (i.e., the proportion of actual patients correctly classified as patients)
and precision (i.e., the proportion of the predicted patients who were truly patients), most
models reached high overall performance including specificity (i.e., the proportion of
healthy participants correctly classified as healthy) scores. Accuracy and specificity scores
were the highest for LRR (0.83–0.86) but the lowest for k-NN (below 0.80). Sensitivity was
higher for SVC and ensemble models such as RF and SGB, all of which exceeding 0.82,
compared with baseline or linear models.

Table 2. The overall performance scores for the machine learning models.

Models Accuracy [95% CI] Specificity [95% CI] Sensitivity [95% CI] Precision [95% CI]

Gaussian Naïve Bayes
0.797 [0.661–0.914] 0.808 [0.556–1.00] 0.787 [0.591–0.936] 0.823 [0.636–1.00]

k-Nearest Neighbors
k = 1 0.725 [0.596–0.845] 0.760 [0.548–0.929] 0.694 [0.486–0.900] 0.762 [0.588–0.917]
k = 3 0.740 [0.610–0.862] 0.757 [0.429–0.964] 0.729 [0.471–0.968] 0.778 [0.578–0.960]
k = 5 0.751 [0.614–0.879] 0.733 [0.470–1.00] 0.771 [0.467–0.968] 0.767 [0.583–1.00]
k = 7 0.768 [0.621–0.898] 0.772 [0.500–1.00] 0.765 [0.484–0.967] 0.793 [0.613–1.00]
k = 9 0.771 [0.627–0.897] 0.789 [0.519–1.00] 0.756 [0.516–0.963] 0.805 [0.615–1.00]

Logistic Ridge Regression
C = 0.1 0.831 [0.690–0.948] 0.862 [0.633–1.00] 0.802 [0.600–0.964] 0.870 [0.687–1.00]
C = 1 0.830 [0.690–0.948] 0.858 [0.640–1.00] 0.804 [0.594–0.964] 0.866 [0.676–1.00]
C = 3 0.829 [0.690–0.947] 0.856 [0.630–1.00] 0.805 [0.600–0.964] 0.865 [0.676–1.00]
C = 6 0.829 [0.693–0.948] 0.857 [0.630–1.00] 0.804 [0.586–0.964] 0.865 [0.679–1.00]
C = 10 0.829 [0.695–0.948] 0.857 [0.654–1.00] 0.804 [0.600–0.964] 0.865 [0.679–1.00]

C-Support Vector Machine
C = 0.1 0.779 [0.618–0.914] 0.722 [0.429–0.964] 0.833 [0.576–1.00] 0.771 [0.585–0.964]
C = 1 0.813 [0.678–0.931] 0.794 [0.571–1.00] 0.832 [0.583–0.969] 0.821 [0.643–1.00]
C = 3 0.807 [0.672–0.917] 0.795 [0.543–1.00] 0.818 [0.586–0.968] 0.820 [0.636–1.00]
C = 6 0.797 [0.655–0.914] 0.786 [0.538–1.00] 0.809 [0.571–0.968] 0.811 [0.636–1.00]
C = 10 0.784 [0.649–0.900] 0.775 [0.514–1.00] 0.793 [0.548–0.967] 0.800 [0.621–1.00]

Random Forest
n = 10 0.804 [0.667–0.929] 0.780 [0.500–1.00] 0.827 [0.613–0.968] 0.812 [0.630–1.00]
n = 20 0.817 [0.677–0.932] 0.802 [0.548–1.00] 0.831 [0.633–0.968] 0.827 [0.636–1.00]
n = 30 0.819 [0.678–0.932] 0.805 [0.548–1.00] 0.833 [0.645–0.968] 0.830 [0.636–1.00]
n = 50 0.817 [0.678–0.933] 0.801 [0.548–1.00] 0.833 [0.633–0.968] 0.827 [0.634–1.00]
n = 70 0.819 [0.679–0.933] 0.802 [0.538–1.00] 0.834 [0.633–0.968] 0.828 [0.644–1.00]
n = 90 0.820 [0.679–0.933] 0.806 [0.556–1.00] 0.833 [0.636–0.968] 0.831 [0.655–1.00]

Stochastic Gradient
Boosting

n = 10 0.818 [0.677–0.932] 0.817 [0.567–1.00] 0.820 [0.600–0.968] 0.837 [0.636–1.00]
n = 20 0.819 [0.679–0.931] 0.817 [0.571–1.00] 0.821 [0.625–0.968] 0.838 [0.655–1.00]
n = 30 0.816 [0.684–0.915] 0.818 [0.593–1.00] 0.815 [0.607–0.967] 0.837 [0.645–1.00]
n = 50 0.810 [0.672–0.919] 0.821 [0.577–1.00] 0.801 [0.600–0.966] 0.836 [0.645–1.00]
n = 70 0.808 [0.677–0.921] 0.823 [0.593–1.00] 0.794 [0.567–0.967] 0.837 [0.643–1.00]
n = 90 0.805 [0.672–0.917] 0.823 [0.592–1.00] 0.789 [0.559–0.964] 0.835 [0.647–1.00]

Note: The scores are the average performance from 1000 iterations of the stratified train-test splits. Abbrevia-
tions: CI, confidence interval; k, number of neighbors; C, inverse of the strength of regularization; n, number
of estimators.

The performance scores across various machine learning models underscore the
feasibility and potential clinical utility of this VR-based diagnostic framework for panic
disorder and agoraphobia. The sensitivity scores of up to 0.83 suggest that the system
reliably detects symptomatic individuals, reducing the likelihood of false negatives that
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could delay timely intervention. The consistently strong accuracy, specificity, and precision
indicate balanced classification, limiting unnecessary follow-ups for healthy participants.
Moreover, the robust performance across diverse hyperparameter settings suggests the
framework’s potential generalizability to different samples, enhancing its prospects for
real-world deployment in screening or stepped-care pathways.

3.3. Subgroup Analysis

Figure 3 presents subgroup performance scores for LRR and SVC models across var-
ious conditions including VR scenes, personalized VR settings, and concomitant BZD
usage. Although direct comparisons were difficult due to the limited sample sizes of each
subgroup, the performance scores generally remained consistent across subgroups, with
no substantial differences observed. Furthermore, the models demonstrated adequate
sensitivity regardless of BZD intake, indicating reliable symptom prediction irrespective of
medication status. The minimal variability in performance across subgroups highlights the
robustness of the models and supports their potential generalizability to diverse VR scenar-
ios and contexts. These findings also imply that the models can capture distinct behavioral
or physiological response patterns in patients with panic disorder and agoraphobia, even
in the presence of psychotropic medication effects.

 
(a) (b) 

Figure 3. Forest plots of subgroup performance of Logistic Ridge Regression (a) and C-Support Vector
Machine (b) models (C = 1 for each model). Note: Each data point reflects the total distribution of
performance scores across 1000 iterations of train-test splits conducted within the indicated subgroup:
VR scenes (Road 1, Road 2, Mart 1, Mart 2), brightness (bright, dark), crowd density (crowded,
empty), and concomitant benzodiazepine (BZD) use. BZD subgroups are based on the patient data,
and other subgroups include the entire session data. The vertical dotted lines represent the mean
scores across all participants. Diamond markers denote the mean performance across the 1000 splits
and horizontal lines indicate 95% confidence intervals (CIs). Lines and diamond markers for BZD
subgroups were highlighted in blue.

3.4. Feature Importance

Figure 4 demonstrates feature importance as determined by SHAP values for RF and
SGB models. For both models, VAS exhibited substantially higher SHAP magnitude than
the other features, followed by HR. It is notable that HR exhibited relatively high importance
compared to other physiological features, even though the between-group difference in HR
was not significant in the traditional t-test (p = 0.915). Among the physiological variables,
HRV features demonstrated greater importance than SCR features, although in traditional
statistics, SCR amplitude showed the largest raw group difference (p = 0.003). In short,
SHAP highlights complex interactions or non-linear relationships captured by ensemble
models that classical univariate tests may fail to detect.

One illustration of such relationships can be the interaction between SCR amplitude
and the change in state anxiety following VR exposure in patients versus healthy people.
In this study, whereas healthy participants exhibited a positive correlation between the
increase in SCR amplitude and the rise in STAI-S scores after VR exposure compared to
baseline (r = 0.229, p = 0.005), patients’ increase in STAI-S was associated with lower SCR
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amplitude (r = −0.253, p = 0.002). This relationship persisted even after the effect of BZD
medication was controlled for (partial r = −0.242, p = 0.003), highlighting the relevance of
blunted SCRs as a marker for distinguishing patients from healthy individuals.

 
(a) (b) 

Figure 4. SHAP summary plots for the Random Forest (a) and Stochastic Gradient Boosting (b)
models (n = 20 for each). Note: Feature importance was determined using the Shapley Additive
Explanation (SHAP) values derived from 1000 iterations of train-test splits. Each violin plot shows
the distribution of SHAP values for each feature across splits. Orange diamond markers denote the
mean absolute SHAP values, and navy horizontal lines indicate standard deviations.

4. Discussion
This study is a pioneering work that combines VR technology and physiological

measurements to potentially diagnose panic and agoraphobia symptoms. This study
analyzed self-reports and physiological responses collected from patients and healthy
people during the VR exposure, yielding promising results. The identified models showed
high overall classification performance, maintaining robustness across VR environments,
personalized exposure settings, medication status, and model tuning conditions. Although
the self-reported VAS exhibited the highest predictive ability, the findings also highlight
the clinical relevance of physiological markers in panic and agoraphobia, particularly the
attenuated SCR amplitude responses observed in patients. Moreover, through the nested
threshold tuning optimized for the F1 score, this study achieved sensitivity scores above
80%, indicating promise for the clinical utility of this approach in screening patients with
panic disorder and agoraphobia.

To our knowledge, this is the first study to attempt classification of panic and agorapho-
bia symptoms based on physiological data collected with VR stimuli as an umbrella model.
The current findings indicate that the VR exposure proposed in this study can be a valid di-
agnostic tool for panic disorder and agoraphobia. The incorporation of VR-based methods
offers substantial advantages over traditional assessment approaches, particularly by en-
hancing accessibility for patients and improving cost-effectiveness [2,20]. VR tools can also
provide rich, ecologically valid assessment contexts by capturing patients’ in situ responses,
facilitating seamless integration between diagnostic and treatment environments [21].

Looking at the differences in the features between patients and healthy people, VAS
demonstrated the highest differences overall, both in traditional and machine learning
analyses, which is consistent with the previous findings [4]. However, as emphasized in
the Research Domain Criteria (RDoC) framework proposed by the United States National
Institute of Mental Health, self-report and behavioral assessments should be adequately
supplemented by objective measurements such as neurophysiological indicators [21,22]. As
also shown in this study, patients experiencing panic and agoraphobia may report a wide
range of VAS scores, with some individuals not expressing significant anxiety. Moreover,
as discussed above, self-reported anxiety may not be a feature that is specific to panic and
agoraphobia, even if they are measured along with agoraphobic stimuli. For these reasons,
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adding various physiological predictors and establishing precise models for diagnosis and
assessment are needed, based on multimodal principles, although subjective anxiety plays
a most important role in the diagnosis of panic disorder and agoraphobia.

On the contrary, although HRV features seem to be valid predictors in the machine
learning models, their predictive ability was not clearly demonstrated in traditional statis-
tics. Such results are assumed to have stemmed from the offset between the arousal
responses and their low stress resistance. Although the HRV features of the patients in-
creased because the VR stimuli induced anxiety only among the patients, the differences
in the magnitude may have shrunk due to their low responsiveness to stress and the
concomitant bluntness of the responses [9]. In fact, some studies reported that under the
VR or computer stimuli, patients with panic disorder and agoraphobia exhibit ambivalent
reactions characterized by either blunt or overreactive responses [11,15]. Therefore, besides
the establishment of the model to detect such ambivalent responses, an adequately adjusted
and, if needed, personalized VR exposure program is required to elicit the optimized reac-
tions of the patients, encompassing both blunt and overreactive responses. This includes
settings that reflect the biological reactivity of the patients, encompassing the length of
exposure sessions, difficulty of exposure, and tailored settings for each patient, as discussed
further below.

Regarding the SCR features, although they seem to be valid for the diagnosis, further
studies are needed to elucidate their significance. Although SCR amplitude exhibited strong
group differences in the traditional statistics, its direction, which was lower for the patient
group, was inconsistent with previous observations [11,14]. Overall, the SCR patterns
observed in patients with panic disorder and agoraphobia in this study also indicated
blunted physiological reactivity, as shown in the interaction effect between patients and
healthy individuals in the relationship between state anxiety and SCR amplitude. Similar
patterns were reported among some patients with anxiety disorders in a previous study [23].
Indeed, blunted physiological reactivity is not uncommon among patients with heightened
anxiety [24]. In particular, chronic anxiety may result in sympathetic overactivation, which
can paradoxically reduce physiological responsiveness in stress-related contexts among
patients with panic and agoraphobia [25,26]. Acute overactivation and hyperarousal
frequently culminate in neural exhaustion, which may also contribute to dysregulation
in fear circuitry in pervasive anxiety [26,27]. Agoraphobia is frequently characterized by
a chronic course [28,29]. However, in the present study, the chronicity of the patients’
conditions was not thoroughly examined, calling for future research to address illness
duration and its neurophysiological correlates in greater depth.

Such an issue may also be attributable to the relatively low anxiety-inducing settings
employed in this study. In our VR exposure program, the training difficulty can be modu-
lated by adjusting the length of exposure time or the occurrence of various random events,
such as a traffic accident on the road or a fire at the supermarket. Nevertheless, in this
pilot study, only a limited number of simple events were presented within relatively brief
sessions, which can also explain why the VAS scores of the patients were not that high.
This approach was intentionally designed to create a safe and controlled exposure environ-
ment, thereby minimizing the risk of inducing severe panic attacks while maintaining the
feasibility of applying it in a general clinical setting. Nevertheless, relatively mild stimuli
or threat cues may elicit attenuated responses in both self-reported and physiological
measures [27,30]. To address this limitation, we are conducting a follow-up study that
leverages this adaptability feature for intervention purposes. The validity of personalized
exposure has already been demonstrated in our previous findings [16].

Another limitation of this study is that although we conducted subgroup analyses
addressing between-condition differences across VR environments and settings, we did
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not take into account the within-session or within-subject differences (i.e., the changes in
self-reported or physiological responses over time/session). In this study, physiological
measures such as SDNN, SCR peak, and SCR amplitude exhibited an increasing trend
across sessions (ps = 0.001–0.005 for the correlations with the session number). Also, the
generalized estimating equation model revealed that the magnitude of within-session
changes in VAS (p < 0.001) and SCR amplitude (p = 0.026) had differences between patients
and healthy people, indicating that over the session, VAS scores tended to increase more
among patients than among the healthy people, whereas SCR amplitude tended to increase
more among the healthy people than among patients. However, these effects were ignored
in this study to simplify the model structure. Moreover, we only used the session-wide data
without focusing on the specific time points during the sessions when the important stimuli
were presented. Multiple studies suggest that incorporating real-time, dynamic stimuli or
applying event-based analyses such as EEG event-related potentials can greatly enrich VR
assessment and diagnostic frameworks [31–33]. Further studies may consider adopting
event-related responses by synchronizing the specific VR events with physiological signals.
We hope that this work will provide insights into data-driven research in VR-based assess-
ment using physiological measures and facilitate future discovery of potential biomarkers
for symptoms of panic disorder and agoraphobia.

Although this study provides meaningful insights into the potential use of VR tech-
nology and physiological measures in diagnosing panic disorder and agoraphobia, the
findings should be considered preliminary. Further validation through external datasets
and diverse patient populations is essential to ensure generalizability and robustness. Fu-
ture research should aim to replicate and extend these findings, ultimately confirming the
clinical utility and reliability of VR-based multimodal assessment approaches for panic and
agoraphobia symptoms.

5. Conclusions
Our findings indicate that VR exposure combined with physiological and subjective

measures holds promise as a diagnostic approach for panic disorder and agoraphobia,
which may contribute to the advancement of data-driven assessment strategies for anxiety
disorders. Further validation using diverse populations and event-related analyses will
ensure the reliability and clinical utility of this multimodal machine learning framework.
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