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Objective: To evaluate the accuracy of large language models (LLMs) in extracting Coronary Artery Disease-Reporting and Data 
System (CAD-RADS) 2.0 components from coronary CT angiography (CCTA) reports, and assess the impact of prompting 
strategies.
Materials and Methods: In this multi-institutional study, we collected 319 synthetic, semi-structured CCTA reports from six 
institutions to protect patient privacy while maintaining clinical relevance. The dataset included 150 reports from a primary 
institution (100 for instruction development and 50 for internal testing) and 169 reports from five external institutions for 
external testing. Board-certified radiologists established reference standards following the CAD-RADS 2.0 guidelines for all 
three components: stenosis severity, plaque burden, and modifiers. Six LLMs (GPT-4, GPT-4o, Claude-3.5-Sonnet, o1-mini, 
Gemini-1.5-Pro, and DeepSeek-R1-Distill-Qwen-14B) were evaluated using an optimized instruction with prompting 
strategies, including zero-shot or few-shot with or without chain-of-thought (CoT) prompting. The accuracy was assessed and 
compared using McNemar’s test.
Results: LLMs demonstrated robust accuracy across all CAD-RADS 2.0 components. Peak stenosis severity accuracies reached 
0.980 (48/49, Claude-3.5-Sonnet and o1-mini) in internal testing and 0.946 (158/167, GPT-4o and o1-mini) in external 
testing. Plaque burden extraction showed exceptional accuracy, with multiple models achieving perfect accuracy (43/43) in 
internal testing and 0.993 (137/138, GPT-4o, and o1-mini) in external testing. Modifier detection demonstrated consistently 
high accuracy (≥0.990) across most models. One open-source model, DeepSeek-R1-Distill-Qwen-14B, showed a relatively low 
accuracy for stenosis severity: 0.898 (44/49, internal) and 0.820 (137/167, external). CoT prompting significantly enhanced 
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CoT prompting has demonstrated particular effectiveness 
in complex medical reasoning tasks by enabling models 
to explicitly articulate their decision-making processes 
[34-36], which is crucial for clinical acceptance and 
error identification. This approach breaks down complex 
diagnostic criteria into manageable steps, thereby 
improving the accuracy and interpretability. Such explicit 
reasoning is especially valuable in standardized reporting 
systems such as CAD-RADS, where the precise application 
of multiple criteria and thresholds is essential for accurate 
classification.

Initial applications of LLMs to CAD-RADS extraction 
have shown promise, with a recent single-center study 
demonstrating 0.870 accuracy in stenosis severity extraction 
using GPT-4o on 100 CCTA reports [37] and another study 
evaluating the comprehension of LLMs through multiple-
choice questions [38]. However, these studies were limited 
in scope, focusing primarily on stenosis severity without 
exploring the full range of CAD-RADS 2.0 components or 
the impact of different prompting techniques. This study 
aimed to address this knowledge gap by comprehensively 
evaluating the accuracy of LLMs in extracting all CAD-RADS 
2.0 components from CCTA reports and assessing the impact 
of prompting strategies, particularly CoT prompting.

MATERIALS AND METHODS

This study received a waiver of approval after initial 
review by the Institutional Review Board of Seoul National 
University Boramae Medical Center, the primary study 
site (IRB No. 07-2024-32). As the study utilized entirely 
synthetic, non-identifiable data, additional IRB approvals 
from the other participating institutions were not required. 
Further details are provided in Supplementary Text 1. The 
code used in this study is available at https://github.com/
reonaledo/cad-rads-extraction. The overall workflow of this 
study is shown in Figure 1.

Data
We collected synthetic CCTA reports from six cardiothoracic 

INTRODUCTION

Coronary artery disease is one of the most prevalent 
and important cardiovascular diseases with significant 
morbidity and mortality [1]. Management depends on patient 
symptoms, risk assessment, and coronary artery involvement 
[2,3]. Coronary CT angiography (CCTA) enables detailed 
visualization of plaque characteristics, stenosis severity, and 
functional significance, thereby guiding treatment strategies 
[4]. Numerous studies have underscored the value of CCTA in 
both stable and acute chest pain diagnoses [5-7].

Although high-quality radiological examinations depend 
on multiple factors, consistent reporting is crucial for clinical 
decision making [8,9]. Structured impressions enhance 
interreader agreement and diagnostic clarity, as observed 
in other standardized reporting systems [10-12]. Coronary 
Artery Disease-Reporting and Data System 2.0 (CAD-RADS 
2.0) provides a framework with three main components: 
stenosis severity, plaque burden, and modifiers [13-15]. This 
framework enables systematic documentation and facilitates 
clear communication among healthcare providers [16]. 
Despite these standardization benefits, the additional time 
and effort required for the implementation of CAD-RADS has 
limited its clinical adoption [17]. Furthermore, significant 
variability in radiology reporting remains a persistent 
challenge [18,19], where reporting discrepancies can lead 
to misclassification of stenosis severity or overlooking high-
risk plaque (HRP) features, thereby impacting decisions 
and patient outcomes [20]. These challenges underscore 
the need for reliable automated approaches to support 
standardized CCTA reporting and reduce the burden of 
implementing CAD-RADS.

Large language models (LLMs) have demonstrated 
promising potential in medical text analysis, particularly in 
extracting structured information from clinical narratives 
and radiology reports [21-29]. The model performance is 
enhanced through different prompt engineering strategies, 
including instruction prompting (zero-shot prompting), few-
shot prompting with example pairs, and chain-of-thought 
(CoT) prompting, which guide step-by-step reasoning [30-33]. 

the accuracy of several models, with GPT-4 showing the most substantial improvements: stenosis severity accuracy 
increased by 0.192 (P < 0.001) and plaque burden accuracy by 0.152 (P < 0.001) in external testing.
Conclusion: LLMs demonstrated high accuracy in automated extraction of CAD-RADS 2.0 components from semi-structured 
CCTA reports, particularly when used with CoT prompting.
Keywords: Coronary CT angiography; CAD-RADS 2.0; Information extraction; Large language model; Prompting strategy

file:https://github.com/reonaledo/cad-rads-extraction
file:https://github.com/reonaledo/cad-rads-extraction
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radiologists (K.N.J., W.G.J., H.L., K.S.B., S.H.H., and 
E.Y.K., with 16, 6, 16, 10, 12, and 15 years of experience 
in cardiothoracic radiology, respectively) from different 
institutions in a single country. The dataset comprised 
319 reports: 150 from the primary study site (institution 
X) and 169 from the remaining five external institutions 
(institutions A-E). The reports were mostly semi-structured, 
and representative examples are provided in Supplementary 
Table 1.

To protect patient privacy while maintaining clinical 
relevance, these synthetic reports were generated based 
on actual cardiac CT reports but were extensively modified 
by altering key clinical elements such as lesion location, 
extent, and plaque characteristics. Each radiologist 
created synthetic reports according to their institution’s 
characteristic reporting style and format while preserving 
the natural variation in reporting patterns across different 
clinical settings. No actual clinical information, including 
patient sex, age, or symptoms, was utilized during 
generation, ensuring complete anonymization. 

Of the 150 reports from institution X, 100 were designated 

as the development set for instruction development. The 
remaining 50 reports, along with the 169 reports from 
external institutions, were allocated to the internal and 
external test sets, respectively, for model evaluation.

Data Annotation
An overview of the data annotation process and 

establishment of a reference standard is shown in Figure 2. Two 
board-certified cardiothoracic radiologists (K.N.J. and M.Y.K.; 
16 and 10 years of experience in radiology, respectively) 
reviewed all reports and established reference standards 
through consensus following CAD-RADS 2.0 guidelines. This 
process included the categorization of stenosis severity, 
plaque burden assessment, and evaluation of relevant 
modifiers.

Instruction Development
Two board-certified radiologists (C.M.P. and K.N.J.; 21 and 

16 years of experience in radiology, respectively) selected 
three representative examples from the development 
set that encompassed the diversity of our dataset, and 

A

B

Fig. 1. Schematic flow diagram of the model evaluation process. A: Example of CCTA report, large language models for CAD-RADS 2.0 
extraction, and example of CAD-RAD 2.0 including stenosis severity, plaque burden, and modifiers. B: Study datasets, example of instruction 
development, and accuracy evaluation process. CCTA = coronary CT angiography, CAD-RADS = Coronary Artery Disease-Reporting and Data 
System, HRP = high-risk plaque
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provided input reports and their corresponding CAD-RADS 
components as reference cases for few-shot prompting. 
Based on these examples, they developed a comprehensive 
instruction incorporating the CAD-RADS 2.0 guidelines 
and definitions. The instruction was then refined through 
iterative testing using the development set to maximize the 
mean accuracy across all CAD-RADS components in the few-
shot setting. For this process, we used three representative 
models (Claude-3.5-Sonnet, GPT-4o, and Gemini-1.5-Pro) 
and selected the instruction that achieved the highest 
average accuracy across these models. Once optimized, the 
instruction remained unchanged throughout all subsequent 
experiments (the detailed instruction structure is shown in 
Supplementary Fig. 1). The two radiologists had no prior 
exposure to the external test set (169 reports), which 
prevented data leakage.

Prompting Strategies
We evaluated the LLMs in two base prompt configurations 

using the optimized instruction: zero-shot prompting 
(without example cases) and few-shot prompting (with 
the three selected examples). To guide the model’s step-
by-step reasoning process in CAD-RADS 2.0 component 
extraction, we implemented CoT prompting by augmenting 
the base prompt with explicit reasoning paths. For few-

shot CoT prompting, these three examples were enhanced 
with explicit reasoning paths, leading to CAD-RADS 
extraction, generated using Claude-3.5-Sonnet (example 
reasoning structure in Supplementary Fig. 2). For zero-
shot CoT prompting, where example reasoning paths were 
not available, we followed the zero-shot CoT technique by 
adding “Let’s think step by step.” at the end of the prompt 
[33]. The detailed preparation process for the CoT example 
is described in Supplementary Text 2.

LLM Evaluation for CAD-RADS 2.0 Extraction
We evaluated five proprietary LLMs (GPT-4o, GPT-4, o1-mini, 

Claude-3.5-Sonnet, and Gemini-1.5-Pro) accessed through 
their official APIs in October 2024, and one open-source model 
(DeepSeek-R1-Distill-Qwen-14B; DeepSeek-14B) evaluated 
in a local environment. Each model received standardized 
inputs consisting of the optimized instruction, prompting 
strategy-specific prompts, and individual CCTA reports, and 
was required to output CAD-RADS 2.0 components (stenosis 
severity, plaque burden, and modifiers) in the JSON format. 
All evaluations followed the Minimum Reporting Items for 
Clear Evaluation of Accuracy Reports of Large Language 
Models in Healthcare guidelines [39], including setting the 
temperature to 0 and ensuring independence between CCTA 
reports. Further details of the experimental setup, including 

Fig. 2. Process of synthetic report generation and data collection for CCTA reports labeled with CAD-RADS 2.0. CCTA = coronary CT angiography, 
CAD-RADS = Coronary Artery Disease-Reporting and Data System, Institution X = Seoul National University Boramae Medical Center, Institution 
A = Incheon Sejong Hospital, Institution B = Korea University Anam Hospital, Institution C = Chonnam National University Hwasun Hospital, 
Institution D = Seoul St. Mary’s Hospital, Institution E = Severance Hospital, E = exceptions, N = non-diagnostic study, G = grafts, HRP = high-
risk plaque, S = stent, I = ischemia

• ‌�Six cardiothoracic radiologists from six different medical centers in South Korea 
were asked to generate plausible synthetic cardiac CT reports that encompass normal 
CT, minimal to severe coronary stenosis, and CTs with coronary stents and coronary 
artery bypass grafts, in the manner of the interpretation forms used at their own 
institutions

• ‌�Two board-certified radiologists (K.N.J. and M.Y.K.) independently reviewed all 
reports and established reference standards through consensus

• ‌�This process followed the CAD-RADS 2.0 guidelines and included three key 
components: CAD-RADS categories (0, 1, 2, 3, 4A, 4B, or 5), plaque burden scores 
(none, P1, P2, P3, or P4), and six modifiers (E, N, G, HRP, S, and I). Each modifier 
was annotated as either present (1) or absent (0) for every report

Radiologists and 
report contents

Data collection

Reference standards for 
CAD-RADS 2.0

• ‌�Radiologist K.N.J. (Institution X): 150 reports
• ‌�External hospitals:
   • ‌�Radiologist A (Institution A): 30 reports
   • ‌�Radiologist B (Institution B): 29 reports
   • ‌�Radiologist C (Institution C): 30 reports
   • ‌�Radiologist D (Institution D): 27 reports
   • ‌�Radiologist E (Institution E): 53 reports
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output formatting protocols, are provided in Supplementary 
Text 3.

The accuracy of the LLMs was assessed both overall and 
separately for three CAD-RADS 2.0 components: stenosis 
severity categories, plaque burden scores, and each of the 
six modifiers. Cases with modifier N (non-diagnostic) were 
excluded from the stenosis severity extraction accuracy, 
and cases with modifier S (stent) or without explicitly 
stated calcium scores were excluded from the plaque burden 
extraction accuracy.

Institution-Wise Analysis
To evaluate the generalizability of the model across 

different reporting patterns, we conducted detailed 
institution-wise accuracy analyses at five external 
institutions. We selected four representative LLMs: GPT-4o, 
which demonstrated the highest accuracy in our external 
test set; GPT-4, which has been extensively validated in 
various medical applications and is the most widely adopted 
model; Claude-3.5-Sonnet, which demonstrated the highest 
accuracy in our internal test set; and Gemini-1.5-Pro, which 

showed the lowest accuracy in our external test set.

Statistical Analysis
McNemar’s test was used to assess the significance 

of accuracy differences between 1) pairwise model 
comparisons on identical test datasets and 2) models with 
and without CoT prompting. Statistical significance was 
set at P < 0.05. The Bonferroni correction was applied to 
account for multiple comparisons. All statistical analyses 
were performed by D.M. using Python (version 3.10.11; 
https://www.python.org) with statsmodels (version 0.14.2; 
https://www.statsmodels.org).

RESULTS

Dataset Characteristics
CCTA report generation and data collection are 

illustrated in Figure 2 and the distribution of CAD-RADS 
2.0 components is shown in Table 1. Since this study used 
synthetic data, conventional demographic characteristics 
such as age and sex distribution could not be represented. 

Table 1. Distribution of CAD-RADS 2.0 components across different datasets and institutions

CAD-RADS 2.0
components

Category
Internal dataset (n = 150) External test dataset (n = 169)
Development 
set (n = 100)

Internal test 
set (n = 50)

Total
(n = 169)

Institution A
(n = 30)

Institution B 
(n = 29)

Institution C 
(n = 30)

Institution D 
(n = 27)

Institution E 
(n = 53)

Stenosis 0 9.0 (9) 6.0 (3) 5.9 (10) 6.7 (2) 20.7 (6) 0 (0) 7.4 (2) 0 (0)
  severity 1 19.0 (19) 10.0 (5) 14.8 (25) 0 (0) 20.7 (6) 10.0 (3) 25.9 (7) 17.0 (9)

2 21.0 (21) 38.0 (19) 26.0 (44) 43.3 (13) 20.7 (6) 20.0 (6) 18.5 (5) 26.4 (14)
3 16.0 (16) 8.0 (4) 27.2 (46) 26.7 (8) 20.7 (6) 43.3 (13) 18.5 (5) 26.4 (14)
4A 20.0 (20) 26.0 (13) 14.8 (25) 3.3 (1) 13.8 (4) 26.7 (8) 14.8 (4) 15.1 (8)
4B 9.0 (9) 8.0 (4) 5.3 (9) 3.3 (1) 0 (0) 0 (0) 14.8 (4) 7.5 (4)
5 6.0 (6) 4.0 (2) 5.9 (10) 16.7 (5) 3.4 (1) 0 (0) 0 (0) 7.5 (4)

Plaque burden None 40.0 (40) 16.0 (8) 24.3 (41) 43.3 (13) 37.9 (11) 3.3 (1) 29.6 (8) 15.1 (8)
P1 21.0 (21) 30.0 (15) 24.3 (41) 13.3 (4) 24.1 (7) 26.7 (8) 25.9 (7) 28.3 (15)
P2 16.0 (16) 22.0 (11) 20.7 (35) 13.3 (4) 24.1 (7) 30.0 (9) 14.8 (4) 20.8 (11)
P3 10.0 (11) 26.0 (13) 23.1 (39) 20.0 (6) 10.3 (3) 33.3 (10) 14.8 (4) 30.2 (16)
P4 12.0 (12) 6.0 (3) 7.7 (13) 10.0 (3) 3.4 (1) 6.7 (2) 14.8 (4) 5.7 (3)

Modifiers E 2.0 (2) 2.0 (1) 2.4 (4) 3.3 (1) 6.9 (2) 0 (0) 0 (0) 1.9 (1)
N 14.0 (14) 2.0 (1) 1.2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 3.8 (2)
G 11.0 (11) 4.0 (2) 1.2 (2) 6.7 (2) 0 (0) 0 (0) 0 (0) 0 (0)

HRP 0 (0) 10.0 (5) 4.1 (7) 0 (0) 3.4 (1) 6.7 (2) 7.4 (2) 3.8 (2)
S 12.0 (12) 12.0 (6) 16.0 (27) 36.7 (11) 17.2 (5) 0 (0) 22.2 (6) 9.4 (5)
I 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Values are presented as percentage of total cases in each column with number of cases in parentheses. Age and sex demographics are not 
presented as this study utilized synthetic data generated from modified real-world data to protect patient privacy. 
CAD-RADS = Coronary Artery Disease-Reporting and Data System, Institution A = Incheon Sejong Hospital, Institution B = Korea 
University Anam Hospital, Institution C = Chonnam National University Hwasun Hospital, Institution D = Seoul St. Mary’s Hospital, 
Institution E = Severance Hospital, E = exceptions, N = non-diagnostic study, G = grafts, HRP = high-risk plaque, S = stent, I = ischemia

https://www.python.org
https://www.statsmodels.org
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In terms of stenosis severity, 2 and 4A categories were 
predominant in the internal test set, accounting for 64.0% 
of the cases. In the external test set, categories 0, 4B, and 
5 each represented only 5.3%–5.9% of the cases. P4 plaque 
burden was relatively uncommon across both datasets, 
comprising 6.0% and 7.7% of the internal and external test 
sets, respectively. Notably, a HRP modifier was absent in 
the development set, while it appeared in 4.1%–10.0% of 
cases in the test sets, and no cases with the I modifier were 
present in any dataset.

LLM Accuracy in Extraction of CAD-RADS 2.0 Component: 
Overall

Table 2 presents the optimal accuracy achieved by 
each model across all evaluated prompting strategies, 
representing the clinical benchmark for automated CAD-
RADS 2.0 extraction.

Peak Accuracy Summary
Proprietary LLMs showed robust accuracy across all 

components. The highest accuracies for stenosis severity 
were 0.980 (48/49, internal) and 0.946 (158/167, 
external). Plaque burden extraction showed exceptional 
results, with multiple models achieving perfect scores 
(43/43) in internal testing and up to 0.993 (137/138) 

in external testing. Modifier detection demonstrated a 
consistently high accuracy, with the mean accuracy across 
the six modifiers exceeding 0.989 in both test sets (49.5/50, 
internal; 167.2/169, external). 

Analysis across all 36 model-component-test 
combinations revealed that few-shot CoT prompting 
achieved peak accuracy in 61.1% (22/36) of the cases, 
demonstrating its superiority over other approaches. When 
considering CoT strategies collectively (combining few-
shot CoT and zero-shot CoT), they proved optimal in 86.1% 
(31/36) of the cases, confirming the substantial benefit of 
explicit reasoning guidance for CAD-RADS extraction tasks. 
Additionally, few-shot prompting methods were optimal in 
75.0% (27/36) of the cases, further highlighting the value 
of providing examples to guide model performance.

Model-Specific Accuracy Characteristics
Claude-3.5-Sonnet and o1-mini achieved superior 

accuracy in internal testing, with Claude-3.5-Sonnet 
reaching 0.980 (48/49) stenosis accuracy, and o1-mini 
demonstrating consistent accuracy across datasets, achieving 
0.980 (48/49) in internal testing and 0.946 (158/167) 
in external testing for stenosis severity. Open-source 
DeepSeek-14B demonstrated promising accuracy as an 
open-source alternative with stenosis accuracies of 0.898 

Table 2. Peak accuracy summary across all prompting strategies

Model
Stenosis severity Plaque burden Modifiers (averaged)

Internal 
(n = 49)

External 
(n = 167)

Internal 
(n = 43)

External 
(n = 138)

Internal 
(n = 50)

External 
(n = 169)

GPT-4o 0.837 (41) 
(multiple methods)

0.940 (157)
(multiple methods)

1.000 (43) 
(multiple methods)

0.993 (137) 
(few-shot CoT)

0.993 (49.7) 
(few-shot CoT)

1.000 (169.0) 
(few-shot CoT)

GPT-4 0.816 (40) 
(few-shot CoT)

0.928 (155) 
(few-shot CoT)

1.000 (43) 
(few-shot CoT)

0.971 (134) 
(few-shot CoT)

0.997 (49.8) 
(few-shot CoT)

0.989 (167.2) 
(few-shot CoT)

Claude-3.5-Sonnet 0.980 (48) 
(few-shot CoT)

0.904 (151) 
(few-shot)

1.000 (43) 
(few-shot CoT)

0.986 (136) 
(few-shot CoT)

0.993 (49.7) 
(few-shot CoT)

0.992 (167.7) 
(few-shot CoT)

Gemini-1.5-Pro 0.918 (45) 
(multiple methods)

0.856 (143) 
(few-shot CoT)

0.953 (41) 
(few-shot CoT)

0.942 (130) 
(zero-shot CoT)

0.997 (49.8) 
(zero-shot)

0.993 (167.8) 
(few-shot)

o1-mini 0.980 (48) 
(multiple methods)

0.946 (158) 
(multiple methods)

0.977 (42) 
(multiple methods)

0.993 (137) 
(few-shot CoT)

0.997 (49.8) 
(few-shot)

0.995 (168.2) 
(few-shot)

DeepSeek-14B 0.898 (44) 
(zero-shot CoT)

0.820 (137) 
(zero-shot CoT)

0.907 (39) 
(multiple methods)

0.935 (129) 
(zero-shot CoT)

0.990 (49.5) 
(few-shot CoT)

0.992 (167.7) 
(few-shot CoT)

Values are presented as accuracy with number of correct predictions in parentheses. For modifiers, values represent averaged accuracy 
across six modifiers with average number of correct predictions shown in parentheses. Parentheses also indicate the prompting method 
that achieved peak accuracy for each model-component combination. Multiple methods indicate tied accuracy. Internal test set: n = 49 
for stenosis severity (excluding modifier N cases), n = 43 for plaque burden (excluding modifier S cases and cases without calcium scores), 
n = 50 for modifiers. External test set: n = 167 for stenosis severity (excluding modifier N cases), n = 138 for plaque burden (excluding 
modifier S cases and cases without calcium scores), n = 169 for modifiers. CoT = chain-of-thought, DeepSeek-14B = DeepSeek-R1-Distill-
Qwen-14B
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(44/49, internal) and 0.820 (137/167, external).
Statistical analysis using McNemar’s test revealed 

significant accuracy differences between models under few-
shot CoT prompting for stenosis severity and plaque burden 
but not for modifiers (P > 0.230). In the internal test set, 
Claude-3.5-Sonnet and o1-mini significantly outperformed 
GPT-4o in terms of stenosis severity (both P = 0.013). In 
external testing, GPT-4o significantly outperformed Gemini-
1.5-Pro (P = 0.033) and DeepSeek-14B (P < 0.001) in terms 
of stenosis severity. When compared to DeepSeek-14B, all 
models except Gemini-1.5-Pro significantly outperformed 
DeepSeek-14B in terms of stenosis severity (all P < 0.012). 
For plaque burden assessment, GPT-4o, Claude-3.5-Sonnet, 
and o1-mini significantly outperformed DeepSeek-14B (all 
P < 0.007), whereas GPT-4 and Gemini-1.5-Pro showed no 
significant differences.

LLM Accuracy in Extraction of CAD-RADS 2.0 Component: 
Specific Components

Stenosis Severity
This was the most challenging component of the three 

tests, with accuracies ranging from 0.673 (33/49) to 0.980 
(48/49) (Table 3). CoT effectiveness varied across models, 
with GPT-4 showing the most notable improvement through 
CoT, increasing the external accuracy by 0.126 (zero-shot, 
P < 0.001) and 0.192 (few-shot, P < 0.001). In contrast, 
o1-mini showed a minimal CoT response (difference = -0.041 
to +0.020), suggesting pretrained reasoning capabilities. 
The accuracy consistency between the test sets varied 
substantially, with o1-mini maintaining stable accuracy 
(0.980 [48/49] to 0.946 [158/167]), whereas Gemini-1.5-
Pro showed significant variation (0.918 [45/49] to 0.856 
[143/167]).

Plaque Burden
Plaque burden extraction demonstrated superior accuracy 

compared to stenosis severity, with accuracies ranging 
from 0.698 (30/43) to 1.000 (138/138) (Table 4). CoT 
prompting showed substantial benefits, with Claude-3.5-
Sonnet exhibiting notable improvement through zero-shot 
CoT (difference = +0.239, P < 0.001, external), and GPT-
4 achieving perfect internal accuracy (43/43) with few-
shot CoT (difference = +0.163, P = 0.016). Few-shot CoT 
prompting generally provided stable accuracy, with multiple 
proprietary models achieving perfect or near-perfect 
accuracy in both test sets: GPT-4o (1.000 [43/43], 1.000 Ta
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[138/138]), GPT-4 (1.000 [43/43], 0.971 [134/138]), and 
Claude-3.5-Sonnet (1.000 [43/43], 0.986 [136/138]).

Modifiers
Modifiers achieved the highest accuracies among all 

the components, ranging from 0.880 (44.0/50) to 1.000 
(169.0/169) (Table 5). Several models achieved near-perfect 
baseline accuracy with zero-shot prompting, indicating high 
intrinsic capability. Despite the high baseline accuracy, 
Claude-3.5-Sonnet and DeepSeek-14B showed significant 
CoT benefits, with DeepSeek-14B improving from 0.880 
(44.0/50) to 0.990 (49.5/50, P < 0.001) during internal 
testing. Modifier extraction demonstrated the smallest 
accuracy gap between the internal and external test sets 
(less than 0.028), indicating its robust generalizability. 
Confusion matrices illustrating the classification patterns 
of the representative models under few-shot CoT prompting 
are shown in Supplementary Figures 3-5.

Institution-Wise Accuracy
As shown in Figure 3, institution-wise analysis using 

few-shot CoT prompting revealed a generally consistent 
accuracy across institutions B through E, with accuracies 
ranging from 0.815 (22/27) to 1.000 (30/30) for stenosis 
severity. Institution A showed a notably lower accuracy 
in stenosis severity extraction across all models, with 
Claude-3.5-Sonnet demonstrating an accuracy of 0.700 
(21/30), and DeepSeek-14B showing an accuracy of 0.300 
(9/30). For plaque burden, GPT-4o achieved accuracy 
of 1.000 (138/138) across all institutions, while GPT-
4 and Claude-3.5-Sonnet maintained accuracies ≥0.956 
(43/45). DeepSeek-14B showed variable accuracy, with 
perfect accuracy at Institutions A (18/18) and B (24/24) 
but reduced accuracy (0.767 [23/30] to 0.822 [37/45]). 
The decline in accuracy for stenosis severity at institution 
A is likely attributable to its distinct reporting style 
(Supplementary Table 1).

Error Analysis 
Analysis of model errors across four representative LLMs 

(GPT-4, Claude-3.5-Sonnet, Gemini-1.5-Pro, and DeepSeek-
14B) revealed five predominant error types in stenosis 
severity extraction: numerical threshold misapplication, 
qualitative term misinterpretation, multivessel classification 
errors, omission of explicit diagnostic criteria, and 
interpretational ambiguity (Table 6). The most frequent 
errors included numerical threshold misapplication 

(Gemini-1.5-Pro, 3.7%), qualitative term misinterpretation 
(DeepSeek-14B, 10.6%), and omission of explicit diagnostic 
criteria (GPT-4 and DeepSeek-14B, 3.2%). Representative 
examples of these error patterns are listed in Table 7.

DISCUSSION

We systematically evaluated the accuracy of various LLMs 
in extracting CAD-RADS 2.0 components from multicenter 
CCTA reports. 

Our study is the first comprehensive evaluation of 
the accuracy of LLMs in accordance with CAD-RADS 2.0, 
which encompasses not only stenosis severity, but also 
plaque burden assessment and various modifiers. Through 
a systematic evaluation of multiple prompting strategies 
ranging from zero-shot to few-shot CoT approaches, 
proprietary LLMs demonstrated robust extraction accuracy 
across all CAD-RADS 2.0 components. Peak accuracy 
reached 0.980 (48/49) and 0.946 (158/167) for stenosis 
severity in the internal and external test sets, respectively, 
with multiple models achieving perfect accuracy (43/43) 
for plaque burden in internal testing and up to 0.993 
(137/138) in external testing. The open-source model 
DeepSeek-14B showed promising accuracy as an open-
source alternative with stenosis accuracies of 0.898 (44/49, 
internal) and 0.820 (137/167, external) and demonstrated 
robust modifier extraction capabilities (0.990 [49.5/50], 
internal; 0.992 [167.7/169], external), suggesting the 
potential for accessible, cost-effective solutions in clinical 
implementations.

Previous studies demonstrated the potential of LLMs in 
CAD-RADS extraction [37,38]. Silbergleit et al. [37] reported 
an accuracy of 0.870 for CAD-RADS scores using LLMs; 
however, their study was conducted using a relatively small 
dataset (n = 100) from a single institution and focused 
solely on stenosis severity without incorporating advanced 
prompt engineering techniques. Çamur et al. [38] evaluated 
LLMs through multiple-choice questions based on CAD-RADS 
2.0 guidelines, but these questions were not derived from 
actual radiologic reports. 

An analysis of the prompt engineering effectiveness 
provides practical insights. CoT prompting demonstrated 
variable effectiveness across different models and 
components. GPT-4 showed the most substantial 
improvements with CoT prompting in the few-shot setting, 
exhibiting accuracy increases for stenosis severity of 
0.143 (internal) and 0.192 (external, P < 0.001) along 
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Stenosis severity
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0.966
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0.9830.967

0.967 1.000

0.9720.900
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1.000 1.000

0.9941.000
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0.9940.952

0.810

0.852

0.815

0.815

0.815

0.922
1.000 1.000

0.9870.956

1.000 0.997

0.9870.956

0.822

0.922

0.922

0.902

0.882

Institution

  A (n = 30)     B (n = 29)     C (n = 30)     D (n = 27)     E (n = 53)

Fig. 3. Institution-specific analysis of model accuracy in CAD-RADS 2.0 component extraction across five external institutions. Evaluated 
models were GPT-4o, GPT-4, Claude-3.5-Sonnet, Gemini-1.5-Pro, and DeepSeek-14B. All results were obtained using few-shot chain-of-
thought prompting. CAD-RADS = Coronary Artery Disease-Reporting and Data System, DeepSeek-14B = DeepSeek-R1-Distill-Qwen-14B, 
Institution A = Incheon Sejong Hospital, Institution B = Korea University Anam Hospital, Institution C = Chonnam National University 
Hwasun Hospital, Institution D = Seoul St. Mary’s Hospital, Institution E = Severance Hospital
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with notable plaque burden improvements of 0.163 
(internal, P = 0.016) and 0.152 (external, P < 0.001). Zero-
shot CoT also proved effective for GPT-4, improving the 
external stenosis accuracy by 0.126 (P < 0.001). Similarly, 
Claude-3.5-Sonnet benefited significantly from zero-shot 
CoT in plaque burden extraction, achieving a remarkable 
improvement of 0.239 in external testing (P < 0.001). In 
contrast, reasoning-enhanced models showed divergent 
patterns: o1-mini demonstrated minimal response to CoT 
prompting across all conditions (difference = -0.041 to 
+0.020), possibly due to its multi-step internal reasoning 
architecture, while DeepSeek-14B, which employs single-
inference reasoning, showed substantial CoT benefits 
particularly in modifier extraction (improvement of 0.110 
in both test sets, P < 0.001). These contrasting patterns 
suggest that the effectiveness of CoT prompting may depend 
on the underlying reasoning architecture, although further 
research is required to validate this hypothesis and develop 
tailor-prompting strategies for different model types.

The error analysis revealed systematic limitations in the 
application of CAD-RADS 2.0 by LLMs, even with few-shot 
CoT prompts. We identified five error types, of which three 
were the most prevalent: numerical threshold misapplication 
(3.7% in Gemini-1.5-Pro), qualitative term misinterpretation 
(10.6% in DeepSeek-14B), and omission of explicit 
diagnostic criteria (3.2% in GPT-4 and DeepSeek-14B). 
A detailed analysis of representative cases demonstrated 
these limitations. In qualitative term misinterpretation, 
models incorrectly categorized “moderate stenosis” as CAD-
RADS 2 despite clear definitional guidelines specifying 
it as CAD-RADS 3. This error was particularly pronounced 
for DeepSeek-14B, potentially reflecting the impact of 
the model scale. In cases of diagnostic criteria omission, 
models often failed to apply CAD-RADS 4B classification 
when left main stenosis was reported as 50%–60%, despite 

explicit instructions specifying that left main stenosis ≥50% 
warrants a 4B classification. The models also exhibited 
numerical threshold errors, such as misclassification of a 
69% stenosis into the 70%–99% range. These consistent 
patterns across models suggest that despite their promising 
capabilities, current LLMs still struggle with the reliable 
application of standardized diagnostic criteria, necessitating 
careful validation before clinical implementation.

The demonstrated performance of LLMs in CAD-RADS 2.0 
extraction suggests a notable potential for clinical integration. 
When integrated into picture archiving and communications 
system (PACS) environments, these models automatically 
generate CAD-RADS values from radiology reports, enabling 
immediate verification and correction during report 
entry. The system can also cross-reference radiologist-
provided assessments with model-generated values and 
flag discrepancies for quality assurance. Furthermore, 
with recent advancements in automated coronary analysis 
software that generate structured reports from CCTA images 
[40], our approach can leverage these outputs to produce 
CAD-RADS classifications directly from automated reports. 
This would enable the automatic display of standardized 
CAD-RADS information on PACS worklists immediately upon 
scan acquisition, even before formal radiologist review. 
This seamless integration could enhance efficiency, support 
immediate patient care prioritization, and improve the 
reliability of CAD-RADS reporting.

Our study has several limitations. First, although our 
CCTA reports were generated by experienced cardiothoracic 
radiologists to reflect daily clinical practice scenarios, 
they may not fully capture the complexity and variability 
of real-world clinical reports. Second, although our multi-
institutional dataset provides insights into the model’s 
generalizability, the relatively small sample size (219 
reports) and single-country origin may limit the broader 

Table 6. Distribution of error types in extraction of stenosis severity

Error type
GPT-4

(errors = 21)
Claude-3.5-Sonnet

(errors = 20)
Gemini-1.5-Pro
(errors = 27)

DeepSeek-14B
(errors = 45)

Numerical threshold misapplication 2.3 (5) 0.5 (1) 3.7 (8) 3.2 (7)
Qualitative term misinterpretation 0.9 (2) 4.2 (9) 2.3 (5) 10.6 (23)
Multi-vessel classification errors 1.4 (3) 0.9 (2) 0.5 (1) 0.9 (2)
Omission of explicit diagnostic criteria 3.2 (7) 1.9 (4) 2.3 (5) 3.2 (7)
Interpretational ambiguity 1.4 (3) 1.4 (3) 2.3 (5) 0.9 (2)
Others 0.5 (1) 0.5 (1) 1.4 (3) 1.9 (4)

Values are presented as percentage of total 216 test cases with number of errors in parentheses. The test cohort comprised 49 cases from 
internal test set and 167 cases from external test set, excluding cases with modifier N. 
DeepSeek-14B = DeepSeek-R1-Distill-Qwen-14B
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applicability of our findings. Third, we could not evaluate 
the “ischemia” modifier (I) because the institutions did 
not perform CT-derived fractional flow reserve assessment, 
and plaque burden assessment was limited to cases with 
documented calcium scores. Fourth, as the reports from 
each institution were generated by a single cardiothoracic 
radiologist, our findings may not fully represent institutional 
reporting variability. Fifth, because we used external 
APIs provided by proprietary LLMs, our methodology may 
not be directly applicable in clinical practice because of 
data privacy and security concerns related to externally 
transmitting patient data [41]. Finally, given the rapid pace 
of technological advancements, the models evaluated in 
this study have already been succeeded by newer versions 
(e.g., Gemini 2.5), potentially limiting the generalizability 
and long-term applicability of our results.

In conclusion, our multi-institutional study demonstrated 
that LLMs can achieve high accuracy in extracting CAD-RADS 
2.0 components from semi-structured CCTA reports, particularly 
when used with CoT-prompting techniques. These findings 
suggest significant potential for improving standardization 
and consistency in CCTA reporting, which could reduce the 
workflow burden and enhance diagnostic clarity.  
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