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Objective: To evaluate the accuracy of large language models (LLMs) in extracting Coronary Artery Disease-Reporting and Data
System (CAD-RADS) 2.0 components from coronary CT angiography (CCTA) reports, and assess the impact of prompting
strategies.

Materials and Methods: In this multi-institutional study, we collected 319 synthetic, semi-structured CCTA reports from six
institutions to protect patient privacy while maintaining clinical relevance. The dataset included 150 reports from a primary
institution (100 for instruction development and 50 for internal testing) and 169 reports from five external institutions for
external testing. Board-certified radiologists established reference standards following the CAD-RADS 2.0 guidelines for all
three components: stenosis severity, plaque burden, and modifiers. Six LLMs (GPT-4, GPT-40, Claude-3.5-Sonnet, ol-mini,
Gemini-1.5-Pro, and DeepSeek-R1-Distill-Qwen-14B) were evaluated using an optimized instruction with prompting
strategies, including zero-shot or few-shot with or without chain-of-thought (CoT) prompting. The accuracy was assessed and
compared using McNemar's test.

Results: LLMs demonstrated robust accuracy across all CAD-RADS 2.0 components. Peak stenosis severity accuracies reached
0.980 (48/49, Claude-3.5-Sonnet and ol-mini) in internal testing and 0.946 (158/167, GPT-40 and ol-mini) in external
testing. Plaque burden extraction showed exceptional accuracy, with multiple models achieving perfect accuracy (43/43) in
internal testing and 0.993 (137/138, GPT-40, and o1-mini) in external testing. Modifier detection demonstrated consistently
high accuracy (=0.990) across most models. One open-source model, DeepSeek-R1-Distill-Qwen-14B, showed a relatively low
accuracy for stenosis severity: 0.898 (44/49, internal) and 0.820 (137/167, external). CoT prompting significantly enhanced
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the accuracy of several models, with GPT-4 showing the most substantial improvements: stenosis severity accuracy
increased by 0.192 (P < 0.001) and plaque burden accuracy by 0.152 (P < 0.001) in external testing.
Conclusion: LLMs demonstrated high accuracy in automated extraction of CAD-RADS 2.0 components from semi-structured

CCTA reports, particularly when used with CoT prompting.
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INTRODUCTION

Coronary artery disease is one of the most prevalent
and important cardiovascular diseases with significant
morbidity and mortality [1]. Management depends on patient
symptoms, risk assessment, and coronary artery involvement
[2,3]. Coronary CT angiography (CCTA) enables detailed
visualization of plaque characteristics, stenosis severity, and
functional significance, thereby guiding treatment strategies
[4]. Numerous studies have underscored the value of CCTA in
both stable and acute chest pain diagnoses [5-7].

Although high-quality radiological examinations depend
on multiple factors, consistent reporting is crucial for clinical
decision making [8,9]. Structured impressions enhance
interreader agreement and diagnostic clarity, as observed
in other standardized reporting systems [10-12]. Coronary
Artery Disease-Reporting and Data System 2.0 (CAD-RADS
2.0) provides a framework with three main components:
stenosis severity, plaque burden, and modifiers [13-15]. This
framework enables systematic documentation and facilitates
clear communication among healthcare providers [16].
Despite these standardization benefits, the additional time
and effort required for the implementation of CAD-RADS has
limited its clinical adoption [17]. Furthermore, significant
variability in radiology reporting remains a persistent
challenge [18,19], where reporting discrepancies can lead
to misclassification of stenosis severity or overlooking high-
risk plaque (HRP) features, thereby impacting decisions
and patient outcomes [20]. These challenges underscore
the need for reliable automated approaches to support
standardized CCTA reporting and reduce the burden of
implementing CAD-RADS.

Large language models (LLMs) have demonstrated
promising potential in medical text analysis, particularly in
extracting structured information from clinical narratives
and radiology reports [21-29]. The model performance is
enhanced through different prompt engineering strategies,
including instruction prompting (zero-shot prompting), few-
shot prompting with example pairs, and chain-of-thought
(CoT) prompting, which guide step-by-step reasoning [30-33].
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CoT prompting has demonstrated particular effectiveness
in complex medical reasoning tasks by enabling models
to explicitly articulate their decision-making processes
[34-36], which is crucial for clinical acceptance and
error identification. This approach breaks down complex
diagnostic criteria into manageable steps, thereby
improving the accuracy and interpretability. Such explicit
reasoning is especially valuable in standardized reporting
systems such as CAD-RADS, where the precise application
of multiple criteria and thresholds is essential for accurate
classification.

Initial applications of LLMs to CAD-RADS extraction
have shown promise, with a recent single-center study
demonstrating 0.870 accuracy in stenosis severity extraction
using GPT-40 on 100 CCTA reports [37] and another study
evaluating the comprehension of LLMs through multiple-
choice questions [38]. However, these studies were limited
in scope, focusing primarily on stenosis severity without
exploring the full range of CAD-RADS 2.0 components or
the impact of different prompting techniques. This study
aimed to address this knowledge gap by comprehensively
evaluating the accuracy of LLMs in extracting all CAD-RADS
2.0 components from CCTA reports and assessing the impact
of prompting strategies, particularly CoT prompting.

MATERIALS AND METHODS

This study received a waiver of approval after initial
review by the Institutional Review Board of Seoul National
University Boramae Medical Center, the primary study
site (IRB No. 07-2024-32). As the study utilized entirely
synthetic, non-identifiable data, additional IRB approvals
from the other participating institutions were not required.
Further details are provided in Supplementary Text 1. The
code used in this study is available at https://github.com/
reonaledo/cad-rads-extraction. The overall workflow of this
study is shown in Figure 1.

Data
We collected synthetic CCTA reports from six cardiothoracic
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CCTA Report

Atherosclerosis in the coronary arteries.

LAD proximal - discrete stenosis (60-70%) with noncalcified

plaque and positive remodelling, suggesting high risk plaque.

LAD mid - discrete stenosis (25-30%) with calcified plaque

RCA distal - discretre stenosis (10-20%) with calcified plaque

Lt main and LCx - no stenosis

No remarkable finding in the myocardium and cardiac chamber
A Calcium score = 51.3

Primary Institution
(Institution X)

GPT-40, GPT-4, ol-mini, Claude:
Gemini-1.5-Pro, DeepSeek-R 1-Disti

CAD-RADS 2.0
Large Language Model
3/P1/HRP
-Sonnet, (Moderate stenosis /
Qwen-14B Mild amount of plaque /
High risk plaque)

Five External Institutions
(Institution A-E)

Internal Dataset
n=150
External Test Set
Development Set Internal Test Set n=169
n=100 n=>50
L
1 Optimized Instruction
You need to extract the CAD-RADS, Plaque burden, and
* Modifier from a coronary artery CT report. Refer to the 0
Instruction normationbelowe T e Accuracy Evaluation
Develop men g:&::g: is determined based on the most severe B ZEI‘O."“Fﬁ 7Sh ot Prompti Ilg
stenosis among various coronary branches: - With or Without Chain-of-Thought
- 0: 0%, Absence of CAD =
- 1: 1-24%, Minimal non-obstructive CAD
ii.xlrar:l the CAD-RADS, Plaque burden, and Modifier
from a given coronary artery CT report like examples
B below.

Fig. 1. Schematic flow diagram of the model evaluation process. A: Example of CCTA report, large language models for CAD-RADS 2.0
extraction, and example of CAD-RAD 2.0 including stenosis severity, plaque burden, and modifiers. B: Study datasets, example of instruction
development, and accuracy evaluation process. CCTA = coronary CT angiography, CAD-RADS = Coronary Artery Disease-Reporting and Data

System, HRP = high-risk plaque

radiologists (K.N.J., W.G.J., H.L., K.S.B., S.H.H., and
E.Y.K., with 16, 6, 16, 10, 12, and 15 years of experience
in cardiothoracic radiology, respectively) from different
institutions in a single country. The dataset comprised

319 reports: 150 from the primary study site (institution
X) and 169 from the remaining five external institutions
(institutions A-E). The reports were mostly semi-structured,
and representative examples are provided in Supplementary
Table 1.

To protect patient privacy while maintaining clinical
relevance, these synthetic reports were generated based
on actual cardiac CT reports but were extensively modified
by altering key clinical elements such as lesion location,
extent, and plaque characteristics. Each radiologist
created synthetic reports according to their institution’s
characteristic reporting style and format while preserving
the natural variation in reporting patterns across different
clinical settings. No actual clinical information, including
patient sex, age, or symptoms, was utilized during
generation, ensuring complete anonymization.

Of the 150 reports from institution X, 100 were designated
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as the development set for instruction development. The
remaining 50 reports, along with the 169 reports from
external institutions, were allocated to the internal and
external test sets, respectively, for model evaluation.

Data Annotation

An overview of the data annotation process and
establishment of a reference standard is shown in Figure 2. Two
board-certified cardiothoracic radiologists (K.N.J. and M.Y.K.;
16 and 10 years of experience in radiology, respectively)
reviewed all reports and established reference standards
through consensus following CAD-RADS 2.0 guidelines. This
process included the categorization of stenosis severity,
plague burden assessment, and evaluation of relevant
modifiers.

Instruction Development

Two board-certified radiologists (C.M.P. and K.N.J.; 21 and
16 years of experience in radiology, respectively) selected
three representative examples from the development
set that encompassed the diversity of our dataset, and
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Radiologists and
report contents

institutions

« Six cardiothoracic radiologists from six different medical centers in South Korea
were asked to generate plausible synthetic cardiac CT reports that encompass normal
CT, minimal to severe coronary stenosis, and CTs with coronary stents and coronary
artery bypass grafts, in the manner of the interpretation forms used at their own

* External hospitals:

Data collection

* Radiologist K.N.J. (Institution X): 150 reports

» Radiologist A (Institution A): 30 reports
* Radiologist B (Institution B): 29 reports
* Radiologist C (Institution C): 30 reports
* Radiologist D (Institution D): 27 reports
* Radiologist E (Institution E): 53 reports

Reference standards for
CAD-RADS 2.0

* Two board-certified radiologists (K.N.J. and M.Y.K.) independently reviewed all
reports and established reference standards through consensus

* This process followed the CAD-RADS 2.0 guidelines and included three key
components: CAD-RADS categories (0, 1, 2, 3, 4A, 4B, or 5), plaque burden scores
(none, P1, P2, P3, or P4), and six modifiers (E, N, G, HRP, S, and I). Each modifier
was annotated as either present (1) or absent (0) for every report

Fig. 2. Process of synthetic report generation and data collection for CCTA reports labeled with CAD-RADS 2.0. CCTA = coronary CT angiography,
CAD-RADS = Coronary Artery Disease-Reporting and Data System, Institution X = Seoul National University Boramae Medical Center, Institution
A = Incheon Sejong Hospital, Institution B = Korea University Anam Hospital, Institution C = Chonnam National University Hwasun Hospital,

Institution D = Seoul St. Mary’s Hospital, Institution E = Severance Hospital, E = exceptions, N = non-diagnostic study, G = grafts, HRP = high-

risk plaque, S = stent, I = ischemia

provided input reports and their corresponding CAD-RADS
components as reference cases for few-shot prompting.
Based on these examples, they developed a comprehensive
instruction incorporating the CAD-RADS 2.0 guidelines

and definitions. The instruction was then refined through
iterative testing using the development set to maximize the
mean accuracy across all CAD-RADS components in the few-
shot setting. For this process, we used three representative
models (Claude-3.5-Sonnet, GPT-40, and Gemini-1.5-Pro)
and selected the instruction that achieved the highest
average accuracy across these models. Once optimized, the
instruction remained unchanged throughout all subsequent
experiments (the detailed instruction structure is shown in
Supplementary Fig. 1). The two radiologists had no prior
exposure to the external test set (169 reports), which
prevented data leakage.

Prompting Strategies

We evaluated the LLMs in two base prompt configurations
using the optimized instruction: zero-shot prompting
(without example cases) and few-shot prompting (with
the three selected examples). To guide the model's step-
by-step reasoning process in CAD-RADS 2.0 component
extraction, we implemented CoT prompting by augmenting
the base prompt with explicit reasoning paths. For few-
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shot CoT prompting, these three examples were enhanced
with explicit reasoning paths, leading to CAD-RADS
extraction, generated using Claude-3.5-Sonnet (example
reasoning structure in Supplementary Fig. 2). For zero-
shot CoT prompting, where example reasoning paths were
not available, we followed the zero-shot CoT technique by
adding “Let’s think step by step.” at the end of the prompt
[33]. The detailed preparation process for the CoT example
is described in Supplementary Text 2.

LLM Evaluation for CAD-RADS 2.0 Extraction

We evaluated five proprietary LLMs (GPT-40, GPT-4, 01-mini,
(Claude-3.5-Sonnet, and Gemini-1.5-Pro) accessed through
their official APIs in October 2024, and one open-source model
(DeepSeek-R1-Distill-Qwen-14B; DeepSeek-14B) evaluated
in a local environment. Each model received standardized
inputs consisting of the optimized instruction, prompting
strategy-specific prompts, and individual CCTA reports, and
was required to output CAD-RADS 2.0 components (stenosis
severity, plague burden, and modifiers) in the JSON format.
All evaluations followed the Minimum Reporting Items for
Clear Evaluation of Accuracy Reports of Large Language
Models in Healthcare guidelines [39], including setting the
temperature to 0 and ensuring independence between CCTA
reports. Further details of the experimental setup, including
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output formatting protocols, are provided in Supplementary
Text 3.

The accuracy of the LLMs was assessed both overall and
separately for three CAD-RADS 2.0 components: stenosis
severity categories, plaque burden scores, and each of the
six modifiers. Cases with modifier N (non-diagnostic) were
excluded from the stenosis severity extraction accuracy,
and cases with modifier S (stent) or without explicitly
stated calcium scores were excluded from the plaque burden
extraction accuracy.

Institution-Wise Analysis

To evaluate the generalizability of the model across
different reporting patterns, we conducted detailed
institution-wise accuracy analyses at five external
institutions. We selected four representative LLMs: GPT-40,
which demonstrated the highest accuracy in our external
test set; GPT-4, which has been extensively validated in
various medical applications and is the most widely adopted
model; Claude-3.5-Sonnet, which demonstrated the highest
accuracy in our internal test set; and Gemini-1.5-Pro, which

Korean Journal of Radiology

showed the lowest accuracy in our external test set.

Statistical Analysis

McNemar's test was used to assess the significance
of accuracy differences between 1) pairwise model
comparisons on identical test datasets and 2) models with
and without CoT prompting. Statistical significance was
set at P < 0.05. The Bonferroni correction was applied to
account for multiple comparisons. All statistical analyses
were performed by D.M. using Python (version 3.10.11;
https://www.python.org) with statsmodels (version 0.14.2;
https://www.statsmodels.org).

RESULTS

Dataset Characteristics

CCTA report generation and data collection are
illustrated in Figure 2 and the distribution of CAD-RADS
2.0 components is shown in Table 1. Since this study used
synthetic data, conventional demographic characteristics
such as age and sex distribution could not be represented.

Table 1. Distribution of CAD-RADS 2.0 components across different datasets and institutions

Internal dataset (n = 150)

External test dataset (n = 169)

CADRADSIZ.0 Category Development Internal test Total Institution A Institution B Institution C Institution D Institution E
components
set (n =100) set(n=50) (n=169) (n=30) (n=29) (n=30) (n=27) (n=53)
Stenosis 0 9.0 (9) 6.0(3)  5.9(10) 6.7 (2) 20.7 (6) 0 (0) 7.4 (2) 0 (0)
severity 1 19.0 (19) 10.0 (5)  14.8 (25) 0 (0) 20.7 (6) 10.0 (3) 25.9 (7) 17.0 (9)
2 21.0 (21) 38.0 (19) 26.0 (44) 43.3(13)  20.7 (6) 20.0 (6) 18.5 (5) 26.4 (14)
3 16.0 (16) 8.0 (4)  27.2 (46) 26.7 (8) 20.7 (6) 43.3 (13) 18.5 (5) 26.4 (14)
4A 20.0 (20) 26.0 (13) 14.8(25) 3.3(1) 13.8 (4) 26.7 (8) 14.8 (4) 15.1 (8)
4B 9.0 (9) 8.0 (4) 3(9) 3.3(1) 0 (0) 0 (0) 14.8 (4) 7.5 (4)
5 6.0 (6) 4.0 (2) 5.9 (10) 16.7 (5) 3.4 (1) 0 (0) 0 (0) 7.5 (4)
Plaque burden None 40.0 (40) 16.0 (8)  24.3 (41) 43.3(13)  37.9 (11) 3.3 (1) 29.6 (8) 15.1 (8)
P1 21.0 (21) 30.0 (15) 24.3 (41) 13.3 (4) 24.1 (7) 26.7 (8) 25.9 (7) 28.3 (15)
P2 16.0 (16)  22.0 (11) 20.7 (35) 13.3 (4) 24.1(7) 30.0 (9) 14.8 (4) 20.8 (11)
P3 10.0 (11) 26.0 (13) 23.1(39) 20.0(6) 10.3 (3) 33.3 (10) 14.8 (4) 30.2 (16)
P4 12.0 (12) 6.0 (3) 7.7 (13) 10.0 (3) 3.4 (1) 6.7 (2) 14.8 (4) 5.7 (3)
Modifiers E 2.0 (2) 2.0 (1) 4 (4)  3.3(1) 6.9 (2) 0 (0) 0 (0) 1.9 (1)
14.0 (14) 2.0 (1) 2(2) 0 (0) 0 (0) 0 (0) 0 (0) 3.8 (2)
11.0 (11) 4.0 (2) 2(1) 6.7(2) 0 (0) 0 (0) 0 (0) 0 (0)
HRP 0 (0) 10.0 (5) 1(7) 0 (0) 3.4 (1) 6.7 (2) 7.4 (2) 3.8 (2)
S 12.0 (12) 12.0 (6)  16.0 (27) 36.7 (11)  17.2 (5) 0 (0) 22.2 (6) 9.4 (5)
I 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Values are presented as percentage of total cases in each column with number of cases in parentheses. Age and sex demographics are not
presented as this study utilized synthetic data generated from modified real-world data to protect patient privacy.

CAD-RADS = Coronary Artery Disease-Reporting and Data System, Institution A = Incheon Sejong Hospital, Institution B = Korea
University Anam Hospital, Institution C = Chonnam National University Hwasun Hospital, Institution D = Seoul St. Mary’s Hospital,
Institution E = Severance Hospital, E = exceptions, N = non-diagnostic study, G = grafts, HRP = high-risk plaque, S = stent, I = ischemia
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In terms of stenosis severity, 2 and 4A categories were
predominant in the internal test set, accounting for 64.0%
of the cases. In the external test set, categories 0, 4B, and
5 each represented only 5.3%-5.9% of the cases. P4 plaque
burden was relatively uncommon across both datasets,
comprising 6.0% and 7.7% of the internal and external test
sets, respectively. Notably, a HRP modifier was absent in
the development set, while it appeared in 4.1%-10.0% of
cases in the test sets, and no cases with the I modifier were
present in any dataset.

LLM Accuracy in Extraction of CAD-RADS 2.0 Component:
Overall

Table 2 presents the optimal accuracy achieved by
each model across all evaluated prompting strategies,
representing the clinical benchmark for automated CAD-
RADS 2.0 extraction.

Peak Accuracy Summary

Proprietary LLMs showed robust accuracy across all
components. The highest accuracies for stenosis severity
were 0.980 (48/49, internal) and 0.946 (158/167,
external). Plague burden extraction showed exceptional
results, with multiple models achieving perfect scores
(43/43) in internal testing and up to 0.993 (137/138)

Table 2. Peak accuracy summary across all prompting strategies

Min et al.

in external testing. Modifier detection demonstrated a
consistently high accuracy, with the mean accuracy across
the six modifiers exceeding 0.989 in both test sets (49.5/50,
internal; 167.2/169, external).

Analysis across all 36 model-component-test
combinations revealed that few-shot CoT prompting
achieved peak accuracy in 61.1% (22/36) of the cases,
demonstrating its superiority over other approaches. When
considering CoT strategies collectively (combining few-
shot CoT and zero-shot CoT), they proved optimal in 86.1%
(31/36) of the cases, confirming the substantial benefit of
explicit reasoning guidance for CAD-RADS extraction tasks.
Additionally, few-shot prompting methods were optimal in
75.0% (27/36) of the cases, further highlighting the value
of providing examples to guide model performance.

Model-Specific Accuracy Characteristics
Claude-3.5-Sonnet and 01-mini achieved superior
accuracy in internal testing, with Claude-3.5-Sonnet
reaching 0.980 (48/49) stenosis accuracy, and 01-mini
demonstrating consistent accuracy across datasets, achieving
0.980 (48/49) in internal testing and 0.946 (158/167)
in external testing for stenosis severity. Open-source
DeepSeek-14B demonstrated promising accuracy as an
open-source alternative with stenosis accuracies of 0.898

Stenosis severity Plaque burden Modifiers (averaged)

Model Internal External Internal External Internal External
(n =49) (n =167) (n=43) (n =138) (n=50) (n =169)
GPT-40 0.837 (41) 0.940 (157) 1.000 (43) 0.993 (137)  0.993 (49.7)  1.000 (169.0)
(multiple methods)  (multiple methods)  (multiple methods) (few-shot CoT) (few-shot CoT) (few-shot CoT)
GPT-4 0.816 (40) 0.928 (155) 1.000 (43) 0.971 (134) 0.997 (49.8)  0.989 (167.2)
(few-shot CoT) (few-shot CoT) (few-shot CoT) (few-shot CoT) (few-shot CoT) (few-shot CoT)
Claude-3.5-Sonnet 0.980 (48) 0.904 (151) 1.000 (43) 0.986 (136)  0.993 (49.7)  0.992 (167.7)
(few-shot CoT) (few-shot) (few-shot CoT) (few-shot CoT) (few-shot CoT) (few-shot CoT)
Gemini-1.5-Pro 0.918 (45) 0.856 (143) 0.953 (41) 0.942 (130) 0.997 (49.8)  0.993 (167.8)
(multiple methods) (few-shot CoT) (few-shot CoT) (zero-shot CoT)  (zero-shot) (few-shot)
ol-mini 0.980 (48) 0.946 (158) 0.977 (42) 0.993 (137)  0.997 (49.8)  0.995 (168.2)
(multiple methods)  (multiple methods)  (multiple methods) (few-shot CoT) (few-shot) (few-shot)
DeepSeek-14B 0.898 (44) 0.820 (137) 0.907 (39) 0.935 (129) 0.990 (49.5)  0.992 (167.7)

(zero-shot CoT) (zero-shot CoT) (zero-shot CoT) (few-shot CoT) (few-shot CoT)

Values are presented as accuracy with number of correct predictions in parentheses. For modifiers, values represent averaged accuracy
across six modifiers with average number of correct predictions shown in parentheses. Parentheses also indicate the prompting method
that achieved peak accuracy for each model-component combination. Multiple methods indicate tied accuracy. Internal test set: n = 49
for stenosis severity (excluding modifier N cases), n = 43 for plaque burden (excluding modifier S cases and cases without calcium scores),
n = 50 for modifiers. External test set: n = 167 for stenosis severity (excluding modifier N cases), n = 138 for plaque burden (excluding
modifier S cases and cases without calcium scores), n = 169 for modifiers. CoT = chain-of-thought, DeepSeek-14B = DeepSeek-R1-Distill-
Qwen-14B

(multiple methods)
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(44/49, internal) and 0.820 (137/167, external).

Statistical analysis using McNemar’s test revealed
significant accuracy differences between models under few-
shot CoT prompting for stenosis severity and plaque burden
but not for modifiers (P > 0.230). In the internal test set,
(Claude-3.5-Sonnet and o1-mini significantly outperformed
GPT-40 in terms of stenosis severity (both P = 0.013). In
external testing, GPT-40 significantly outperformed Gemini-
1.5-Pro (P =0.033) and DeepSeek-14B (P < 0.001) in terms
of stenosis severity. When compared to DeepSeek-14B, all
models except Gemini-1.5-Pro significantly outperformed
DeepSeek-14B in terms of stenosis severity (all P < 0.012).
For plaque burden assessment, GPT-40, Claude-3.5-Sonnet,
and ol1-mini significantly outperformed DeepSeek-14B (all
P < 0.007), whereas GPT-4 and Gemini-1.5-Pro showed no
significant differences.

LLM Accuracy in Extraction of CAD-RADS 2.0 Component:
Specific Components

Stenosis Severity

This was the most challenging component of the three
tests, with accuracies ranging from 0.673 (33/49) to 0.980
(48/49) (Table 3). CoT effectiveness varied across models,
with GPT-4 showing the most notable improvement through
CoT, increasing the external accuracy by 0.126 (zero-shot,
P < 0.001) and 0.192 (few-shot, P < 0.001). In contrast,
01-mini showed a minimal CoT response (difference = -0.041
to +0.020), suggesting pretrained reasoning capabilities.
The accuracy consistency between the test sets varied
substantially, with 01-mini maintaining stable accuracy
(0.980 [48/49] to 0.946 [158/167]), whereas Gemini-1.5-
Pro showed significant variation (0.918 [45/49] to 0.856
[143/167]).

Plaque Burden

Plaque burden extraction demonstrated superior accuracy
compared to stenosis severity, with accuracies ranging
from 0.698 (30/43) to 1.000 (138/138) (Table 4). CoT
prompting showed substantial benefits, with Claude-3.5-
Sonnet exhibiting notable improvement through zero-shot
CoT (difference = +0.239, P < 0.001, external), and GPT-
4 achieving perfect internal accuracy (43/43) with few-
shot CoT (difference = +0.163, P = 0.016). Few-shot CoT
prompting generally provided stable accuracy, with multiple
proprietary models achieving perfect or near-perfect
accuracy in both test sets: GPT-40 (1.000 [43/43], 1.000
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Table 3. Stenosis severity extraction accuracy across prompting methods

GPT-4 Claude-3.5-Sonnet Gemini-1.5-Pro 01-mini DeepSeek-14B

GPT-40

Prompting

External Internal External Internal External Internal External Internal External Internal External

Internal

method

0.808 (135)

0.857 (42)

0.837 (41) 0.904 (151) 0.735 (36) 0.796 (133) 0.898 (44) 0.826 (138) 0.918 (45) 0.784 (131) 0.980 (48) 0.946 (158)

Zero-shot

0.837 (41) 0.940 (157) 0.796 (39) 0.922 (154) 0.918 (45) 0.898 (150) 0.918 (45) 0.767 (128) 0.939 (46) 0.946 (158) 0.898 (44) 0.820 (137)

Zero-shot CoT

0.210 0.549 <0.001 1.000 0.023 1.000 0.743 0.625 1.000 0.625 0.831

1.000

P-value

0.707 (118)

0.816 (40) 0.880 (147) 0.673 (33) 0.737 (123) 0.898 (44) 0.904 (151) 0.714 (35) 0.773 (129) 0.959 (47) 0.922 (154) 0.837 (41)

Few-shot

Korean Journal of Radiology
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0.773 (129)

0.857 (42)

0.714 (35) 0.940 (157) 0.816 (40) 0.928 (155) 0.980 (48) 0.886 (148) 0.857 (42) 0.856 (143) 0.980 (48) 0.898 (150)

Few-shot CoT

0.021 0.065 <0.001 0.125 0.664 0.065 0.020 1.000 0.481 1.000 0.035

0.227

P-value

Values are presented as accuracy with number of correct predictions in parentheses. Statistical significance was assessed using McNemar’s test comparing each prompting method to

DeepSeek-R1-Distill-Qwen-14B

its baseline (zero-shot for zero-shot CoT comparison, few-shot for few-shot CoT comparison). P-values <0.05 are considered statistically significant. Internal test set: n = 49 (excluding

cases with modifier N). External test set: n = 167 (excluding cases with modifier N). CoT = chain-of-thought, DeepSeek-14B

oo
N
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LLMs for CAD-RADS 2.0 Extraction From Coronary CT Reports

[138/138]), GPT-4 (1.000 [43/43], 0.971 [134/138]), and
Claude-3.5-Sonnet (1.000 [43/43], 0.986 [136,/138]).

Modifiers

Modifiers achieved the highest accuracies among all
the components, ranging from 0.880 (44.0/50) to 1.000
(169.0/169) (Table 5). Several models achieved near-perfect
baseline accuracy with zero-shot prompting, indicating high
intrinsic capability. Despite the high baseline accuracy,
Claude-3.5-Sonnet and DeepSeek-14B showed significant
CoT benefits, with DeepSeek-14B improving from 0.880
(44.0/50) to 0.990 (49.5/50, P < 0.001) during internal
testing. Modifier extraction demonstrated the smallest
accuracy gap between the internal and external test sets
(less than 0.028), indicating its robust generalizability.
Confusion matrices illustrating the classification patterns
of the representative models under few-shot CoT prompting
are shown in Supplementary Figures 3-5.

Institution-Wise Accuracy

As shown in Figure 3, institution-wise analysis using
few-shot CoT prompting revealed a generally consistent
accuracy across institutions B through E, with accuracies
ranging from 0.815 (22/27) to 1.000 (30/30) for stenosis
severity. Institution A showed a notably lower accuracy
in stenosis severity extraction across all models, with
Claude-3.5-Sonnet demonstrating an accuracy of 0.700
(21/30), and DeepSeek-14B showing an accuracy of 0.300
(9/30). For plague burden, GPT-40 achieved accuracy
of 1.000 (138/138) across all institutions, while GPT-
4 and Claude-3.5-Sonnet maintained accuracies >0.956
(43/45). DeepSeek-14B showed variable accuracy, with
perfect accuracy at Institutions A (18/18) and B (24/24)
but reduced accuracy (0.767 [23/30] to 0.822 [37/45]).
The decline in accuracy for stenosis severity at institution
A is likely attributable to its distinct reporting style
(Supplementary Table 1).

Error Analysis

Analysis of model errors across four representative LLMs
(GPT-4, Claude-3.5-Sonnet, Gemini-1.5-Pro, and DeepSeek-
14B) revealed five predominant error types in stenosis
severity extraction: numerical threshold misapplication,
qualitative term misinterpretation, multivessel classification
errors, omission of explicit diagnostic criteria, and
interpretational ambiguity (Table 6). The most frequent
errors included numerical threshold misapplication

kjronline.org https://doi.org/10.3348/kjr.2025.0293
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(Gemini-1.5-Pro, 3.7%), qualitative term misinterpretation
(DeepSeek-14B, 10.6%), and omission of explicit diagnostic
criteria (GPT-4 and DeepSeek-14B, 3.2%). Representative
examples of these error patterns are listed in Table 7.

DISCUSSION

We systematically evaluated the accuracy of various LLMs
in extracting CAD-RADS 2.0 components from multicenter
CCTA reports.

Our study is the first comprehensive evaluation of
the accuracy of LLMs in accordance with CAD-RADS 2.0,
which encompasses not only stenosis severity, but also
plaque burden assessment and various modifiers. Through
a systematic evaluation of multiple prompting strategies
ranging from zero-shot to few-shot CoT approaches,
proprietary LLMs demonstrated robust extraction accuracy
across all CAD-RADS 2.0 components. Peak accuracy
reached 0.980 (48/49) and 0.946 (158/167) for stenosis
severity in the internal and external test sets, respectively,
with multiple models achieving perfect accuracy (43/43)
for plaque burden in internal testing and up to 0.993
(137/138) in external testing. The open-source model
DeepSeek-14B showed promising accuracy as an open-
source alternative with stenosis accuracies of 0.898 (44/49,
internal) and 0.820 (137/167, external) and demonstrated
robust modifier extraction capabilities (0.990 [49.5/50],
internal; 0.992 [167.7/169], external), suggesting the
potential for accessible, cost-effective solutions in clinical
implementations.

Previous studies demonstrated the potential of LLMs in
CAD-RADS extraction [37,38]. Silbergleit et al. [37] reported
an accuracy of 0.870 for CAD-RADS scores using LLMs;
however, their study was conducted using a relatively small
dataset (n = 100) from a single institution and focused
solely on stenosis severity without incorporating advanced
prompt engineering techniques. Camur et al. [38] evaluated
LLMs through multiple-choice questions based on CAD-RADS
2.0 guidelines, but these questions were not derived from
actual radiologic reports.

An analysis of the prompt engineering effectiveness
provides practical insights. CoT prompting demonstrated
variable effectiveness across different models and
components. GPT-4 showed the most substantial
improvements with CoT prompting in the few-shot setting,
exhibiting accuracy increases for stenosis severity of
0.143 (internal) and 0.192 (external, P < 0.001) along
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Institution
mm A(n=30) mm B(n=29) mmm C(n=30) mmm D(n=27) mmm E(n=53)
GPT-40
100 0.033 0.966 0.967 (926 0.922 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
- 0.75
]
S 0.50
o
2
0.25
0
Stenosis severity Plaque burden Modifiers (averaged)
GPT-4
.000 1.000 1.000 1.000 0.994
1.00 0.900 0.967 0.852 0.922 0.958 0.967 0.956 0.983 0.983 0.987
> 0.75
©
S 0.50
S
= 025
0 .
Stenosis severity Plague burden Modifiers (averaged)
Claude-3.5-Sonnet
0.966 1.000 1.000 (958 0.967 1.000 1.000 0.978 0.994 1.000 0.988 0.997
1.00
0.700 0.815
0.75 .
g
S 0.50
o
<
0.25
0 Stenosis severity Plaque burden Modifiers (averaged)
Gemini-1.5-Pro
0.958 0.952 0.956 0.983 0.994 (.972 0.994 0.987
100 0833 0.862 0.833 g.815 L 202 0.833 0.900
> 0.75
©
S 0.50
S
= 025
0 ) . .
Stenosis severity Plague burden Modifiers (averaged)
DeepSeek-14B
1.000 1.000 0.972 1.000 1.000 0.994 0.994
1.00 0.897 0.900 2
0.815 0:88 0.767 0.810 0.822
0.75
g
S 0.50
E 0.300
=
0
Stenosis severity Plague burden Modifiers (averaged)

Fig. 3. Institution-specific analysis of model accuracy in CAD-RADS 2.0 component extraction across five external institutions. Evaluated
models were GPT-40, GPT-4, Claude-3.5-Sonnet, Gemini-1.5-Pro, and DeepSeek-14B. All results were obtained using few-shot chain-of-
thought prompting. CAD-RADS = Coronary Artery Disease-Reporting and Data System, DeepSeek-14B = DeepSeek-R1-Distill-Qwen-14B,
Institution A = Incheon Sejong Hospital, Institution B = Korea University Anam Hospital, Institution C = Chonnam National University
Hwasun Hospital, Institution D = Seoul St. Mary’s Hospital, Institution E = Severance Hospital
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Table 6. Distribution of error types in extraction of stenosis severity

Korean Journal of Radiology

KJR

GPT-4 Claude-3.5-Sonnet Gemini-1.5-Pro DeepSeek-14B
Error type
(errors = 21) (errors = 20) (errors = 27) (errors = 45)
Numerical threshold misapplication 2.3 (5) 0.5 (1) 3.7 (8) 3.2 (7)
Qualitative term misinterpretation 0.9 (2) 4.2 (9) 2.3 (5) 10.6 (23)
Multi-vessel classification errors 1.4 (3) 0.9 (2) 0.5 (1) 0.9 (2)
Omission of explicit diagnostic criteria 3.2 (7) 1.9 (4) 2.3 (5) 3.2 (7)
Interpretational ambiguity 1.4 (3) 1.4 (3) 2.3 (5) 0.9 (2)
Others 0.5 (1) 0.5 (1) 1.4 (3) 1.9 (4)

Values are presented as percentage of total 216 test cases with number of errors in parentheses. The test cohort comprised 49 cases from
internal test set and 167 cases from external test set, excluding cases with modifier N.

DeepSeek-14B = DeepSeek-R1-Distill-Qwen-14B

with notable plaque burden improvements of 0.163
(internal, P = 0.016) and 0.152 (external, P < 0.001). Zero-
shot CoT also proved effective for GPT-4, improving the
external stenosis accuracy by 0.126 (P < 0.001). Similarly,
Claude-3.5-Sonnet benefited significantly from zero-shot
CoT in plaque burden extraction, achieving a remarkable
improvement of 0.239 in external testing (P < 0.001). In
contrast, reasoning-enhanced models showed divergent
patterns: o1-mini demonstrated minimal response to CoT
prompting across all conditions (difference = -0.041 to
+0.020), possibly due to its multi-step internal reasoning
architecture, while DeepSeek-14B, which employs single-
inference reasoning, showed substantial CoT benefits
particularly in modifier extraction (improvement of 0.110

in both test sets, P < 0.001). These contrasting patterns
suggest that the effectiveness of CoT prompting may depend
on the underlying reasoning architecture, although further
research is required to validate this hypothesis and develop
tailor-prompting strategies for different model types.

The error analysis revealed systematic limitations in the
application of CAD-RADS 2.0 by LLMs, even with few-shot
CoT prompts. We identified five error types, of which three
were the most prevalent: numerical threshold misapplication
(3.7% in Gemini-1.5-Pro), qualitative term misinterpretation
(10.6% in DeepSeek-14B), and omission of explicit
diagnostic criteria (3.2% in GPT-4 and DeepSeek-14B).

A detailed analysis of representative cases demonstrated
these limitations. In qualitative term misinterpretation,
models incorrectly categorized “moderate stenosis” as CAD-
RADS 2 despite clear definitional guidelines specifying

it as CAD-RADS 3. This error was particularly pronounced
for DeepSeek-14B, potentially reflecting the impact of

the model scale. In cases of diagnostic criteria omission,
models often failed to apply CAD-RADS 4B classification
when left main stenosis was reported as 50%-60%, despite

kjronline.org https://doi.org/10.3348/kjr.2025.0293

explicit instructions specifying that left main stenosis >50%
warrants a 4B classification. The models also exhibited
numerical threshold errors, such as misclassification of a
69% stenosis into the 70%-99% range. These consistent
patterns across models suggest that despite their promising
capabilities, current LLMs still struggle with the reliable
application of standardized diagnostic criteria, necessitating
careful validation before clinical implementation.

The demonstrated performance of LLMs in CAD-RADS 2.0
extraction suggests a notable potential for clinical integration.
When integrated into picture archiving and communications
system (PACS) environments, these models automatically
generate CAD-RADS values from radiology reports, enabling
immediate verification and correction during report
entry. The system can also cross-reference radiologist-
provided assessments with model-generated values and
flag discrepancies for quality assurance. Furthermore,
with recent advancements in automated coronary analysis
software that generate structured reports from CCTA images
[40], our approach can leverage these outputs to produce
CAD-RADS classifications directly from automated reports.
This would enable the automatic display of standardized
CAD-RADS information on PACS worklists immediately upon
scan acquisition, even before formal radiologist review.
This seamless integration could enhance efficiency, support
immediate patient care prioritization, and improve the
reliability of CAD-RADS reporting.

Our study has several limitations. First, although our
CCTA reports were generated by experienced cardiothoracic
radiologists to reflect daily clinical practice scenarios,
they may not fully capture the complexity and variability
of real-world clinical reports. Second, although our multi-
institutional dataset provides insights into the model’s
generalizability, the relatively small sample size (219
reports) and single-country origin may limit the broader
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LLMs for CAD-RADS 2.0 Extraction From Coronary CT Reports

applicability of our findings. Third, we could not evaluate
the “ischemia” modifier (I) because the institutions did

not perform CT-derived fractional flow reserve assessment,
and plaque burden assessment was limited to cases with
documented calcium scores. Fourth, as the reports from
each institution were generated by a single cardiothoracic
radiologist, our findings may not fully represent institutional
reporting variability. Fifth, because we used external

APIs provided by proprietary LLMs, our methodology may
not be directly applicable in clinical practice because of
data privacy and security concerns related to externally
transmitting patient data [41]. Finally, given the rapid pace
of technological advancements, the models evaluated in
this study have already been succeeded by newer versions
(e.g., Gemini 2.5), potentially limiting the generalizability
and long-term applicability of our results.

In conclusion, our multi-institutional study demonstrated
that LLMs can achieve high accuracy in extracting CAD-RADS
2.0 components from semi-structured CCTA reports, particularly
when used with CoT-prompting techniques. These findings
suggest significant potential for improving standardization
and consistency in CCTA reporting, which could reduce the
workflow burden and enhance diagnostic clarity.
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