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Abstract: Obesity recognition in adolescents is a growing concern. This study presents a deep
learning-based obesity identification framework that integrates smartphone inertial measurements
with deep learning models to address this issue. Utilizing data from accelerometers, gyroscopes,
and rotation vectors collected via a mobile health application, we analyzed gait patterns for obesity
indicators. Our framework employs three deep learning models: convolutional neural networks
(CNN:s), long-short-term memory network (LSTM), and a hybrid CNN-LSTM model. Trained on
data from 138 subjects, including both normal and obese individuals, and tested on an additional
35 subjects, the hybrid model achieved the highest accuracy of 97%, followed by the LSTM model at
96.31% and the CNN model at 95.81%. Despite the promising outcomes, the study has limitations,
such as a small sample and the exclusion of individuals with distorted gait. In future work, we aim
to develop more generalized models that accommodate a broader range of gait patterns, including
those with medical conditions.

Keywords: obesity recognition; gait analysis; deep learning; mobile health applications; Al

1. Introduction

According to the World Health Organization (WHO) [1], body mass index (BMI) serves
as a straightforward metric for weight-for-height assessment and is widely employed for
categorizing overweight and obesity in adolescents and adults. It is quantified as an
individual’s weight in kilograms divided by the square of their height in meters (kg/m?).
As age increases, the health risks associated with high BMI also increase [2]. A 2022 WHO
report [3] stated that one in eight people worldwide are living with obesity. Since 1990,
global adult obesity has more than doubled and adolescent obesity has quadrupled. In
the same year, 2.5 billion adults (18 years and older) were overweight, with 890 million of
them living with obesity. Additionally, 37 million children under 5 years were overweight,
and over 390 million children and adolescents aged 5-19 years were overweight, including
160 million living with obesity. A report from the Telegraph newspaper [4] highlighted that
obesity now poses a greater threat to global health than hunger, as per a new Lancet study.
Given the rapid rise in overweight and obesity, not only in adults but more importantly in
younger populations, it is crucial to explore possible ways for effective early identification
and intervention strategies. While traditional methods of obesity identification such as
the BMI provide a straightforward metric for categorizing individuals based on weight
and height, it is a relatively crude measure that fails to capture the nuanced biomechanical
changes associated with obesity, particularly those reflected in gait patterns. Obesity
is linked with numerous health conditions, including osteoarthritis [5], sleep apnea [6],
cancer [7], and mental illnesses such as depression [8] and anxiety [9].
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Gait is an essential function enabling movement within the environment and between
locations. It results from the coordinated movements of body segments, driven by the
interaction of internal and external factors, and is regulated by the neuromusculoskeletal
system. Normal gait is characterized by its stability and flexibility, allowing for adjustments
in speed and navigation across various terrains while maintaining energy efficiency. Obesity
has been found to influence an individual’s manner of walking, including joint and walking
velocities [10,11], ankle joint speed [12], peak extensor knee movements [13], and knee
joint loads [14]. Human balance is maintained by a complex set of sensorimotor and
musculoskeletal systems controlling vision, proprioception, vestibular function, muscle
contraction, and more. Balance is used to diagnose disorders and diseases related to the
nervous system [15], such as ataxia [16], cognitive deficits [17,18], Parkinson’s disease [19],
and vision problems [20]. Gait information can be captured using several sensing modalities
such as wearable sensors attached to the body, including accelerometers, gyroscopes, and
pressure sensors. While these sensors are effective, they may be inconvenient for daily use
and are often reliant on laboratory-based analysis systems, which, while accurate, are often
expensive, time-consuming, and impractical for large-scale or real-time monitoring. This
study seeks to address these limitations by exploring the use of smartphone inertial sensors
combined with deep learning models to identify obesity through gait analysis. Unlike
BMI, which offers a static measure, gait analysis provides more dynamic insights into how
obesity affects movements, potentially allowing for earlier detection. This method could
help raise awareness of weight changes and aid in obesity prevention by providing quick
alerts, enabling individuals to monitor their health more effectively. This study proposes a
novel framework for obesity identification in adolescents using gait data collected from
smartphone inertial sensors. The primary objective of this study is to investigate whether
gait patterns, captured smartphone inertial sensors, can be used to accurately identify
differences in gait patterns between a normal group and an obese group. Specifically, this
study evaluates the performance of three deep learning models: convolutional neural
networks (CNNSs), long short-term memory (LSTM), and a hybrid CNN-LSTM model.
These models are chosen for their ability to capture both spatial and temporal patterns in
sequential data, making them well suited for analyzing the complex gait patterns associated
with obesity. While deep learning models have been widely used in various domains, their
application in obesity identification using gait data remains underexplored. This study
contributes to the field by demonstrating how these models can be effectively applied to
real-world, smartphone-collected data, providing a more accessible and scalable approach
to obesity monitoring. By integrating deep learning with smartphone technology, this
research offers a practical solution that can be deployed in everyday settings, potentially
enabling continuous and non-intrusive monitoring of obesity risk in adolescents.

2. Related Work and Literature Survey
2.1. Gait Analysis Techniques and Limitations

Human gait, a periodic motion of body segments, is analyzed through a process called
gait analysis. This technique has gained significant popularity due to its applications in
clinical diagnosis, robotics, sports, and biomechanics. It encompasses various methods for
studying human walking patterns and biomechanics.

One of the most notable techniques is motion capture [21], which use markers placed
on the body to track the movement of specific body segments during walking, providing
highly accurate data by capturing joint angles and movements in three dimensions. How-
ever, this method is expensive and requires a specialized laboratory environment. Force
plates [22] measure ground reaction forces and moments during walking, offering valuable
insights about balance, stability, and propulsion. Despite their benefits, force plates are also
costly and require careful setup and calibration. Electromyography (EMG) [23] measures
electrical activity in muscles during walking, providing information on muscle activation
patterns and timing. While it allows assessment of muscle recruitment, coordination, and
timing, it can be uncomfortable or intrusive due to the placement of electrodes on mus-



Int. J. Environ. Res. Public Health 2024, 21,1178 3of 14

cles and is prone to signal contamination from nearby muscles. Wearable sensors, such
as accelerometers [24], gyroscopes [25], and inertial measurement units (IMUs) [26], are
attached to the body to measure movement and orientation during walking. This technique
is portable and unobtrusive, allowing gait analysis in real-world settings, capturing spa-
tiotemporal parameters like step length, cadence, and gait agility. However, data quality
can be affected by sensor placement.

While these methods have significantly advanced our understanding of human gait,
they are not without limitations. The reliance on laboratory-based systems like motion
capture and force plates restricts the scalability of gait analysis, making it challenging
for widespread public health applications. Wearable sensors, despite their advantages,
are mainly used in clinical diagnosis, leaving a gap in research exploring their utility for
continuous, real-world obesity monitoring. This study aims to bridge this gap by lever-
aging smartphone-based inertial sensors, combining the portability of wearable devices
with the accessibility of everyday technology. This approach addresses the limitations
of previous studies by offering a more practical and widely applicable method for gait
analysis, particularly in the context of obesity detection.

2.2. Smartphone-Based Gait Analysis for Obesity Recognition

With the increasing number of studies involving gait analysis, some researchers have
applied it to obesity recognition, yielding promising results. Subhrangshu et al. [26]
developed a smartphone-based IoT framework attached to participants” chests. Using
machine learning and deep learning models, it monitored the gait of subjects and predicted
their BMI. Data from 30 different individuals were collected using smartphone inertial
sensors, such as the accelerometer and gyroscope. They employed an edge computing
technique using incremental machine learning coupled with the stochastic gradient descent
algorithm, achieving 98.6% accuracy. This study demonstrates the potential of smartphone-
based gait analysis for obesity detection, but is limited primarily to the small sample.

Murtha et al. [27] developed a framework for predicting weight gain in young adults
with overweight and obesity using electronic health records (EHRs) and machine learning
models. Analyzing data from 24,183 participants aged 18 to 39, they found that age, seXx,
and baseline BMI were the most important variables. However, the machine learning
models performed poorly, highlighting the limitations of using EHR data alone for obesity
recognition. This suggests that while EHRs provide valuable longitudinal data, they may
need to be complemented with more dynamic measures such as gait analysis for better
obesity prediction.

Steinberg et al. [28] and Rosso et al. [29] conducted studies exploring the relationship
between BMI and gait characteristics. Steinberg et al. found that overweight individuals
exhibited greater hip joint angles and shorter knee and ankle trajectories, while Rosso et al.
identified specific joint kinematic parameters associated with BMI. These studies reinforce
the link between BMI and altered gait patterns, but primarily focus on controlled environ-
ments, limiting their applicability to real-world settings. Lee et al. [30,31] investigated the
relationship between obesity and walking patterns. They developed an mHealth applica-
tion to collect gait data from 244 high school students. Using rotation vector sensor data
and applying feedforward deep neural networks and deep convolutional neural networks,
the models distinguished walking patterns between non-obese and obese groups with
90.5% accuracy, indicating a relationship between walking patterns and obesity.

Building on these findings, our study expands on the work of Lee et al. [31] by using
smartphone-based gait analysis to explore relationships between gait characteristics and
BMI. Gait data were collected from 244 first-year high school students using an mHealth
application installed on a smartphone, and a sample of 173 students. By leveraging
smartphone-based IMUs, along with a hybrid deep learning model, we achieved a higher
accuracy of 97%. The remainder of this paper is organized as follows. Section 3 introduces
the dataset acquisition method and deep learning techniques used, Section 4 reports the
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experiments and results, Section 5 provides a discussion of the findings, and Section 6
concludes with suggestions for future work.

3. Methodology
3.1. Data Collection and Participants Demographic

In this study, we calculated the body mass index (BMI) for each participant using the
BMI calculator provided by the Centers for Disease Control and Prevention (CDC) [32],
following a similar approach to Lee et al. [31]. Participants self-reported their height and
weight for BMI calculations. As shown in Figure 1,BMI was categorized into four groups
based on the CDC’s BMI-for-age growth charts: BMI 1 represents the underweight category
with BMI percentage below the 5th percentile (BMI% < 5th percentile); BMI 2 represents the
normal-weight category with BMI percentage between the 5th and the 85th percentile (5th
percentile < BMI% < 85th percentile); BMI 3 represents the overweight category with BMI
percentage between the 85th percentile and the 95th percentile (85th percentile < BMI% <
95th percentile) and BMI 4 represents the obese category with BMI percentage above the
95th percentile (BMI% > 95th percentile).

obese

0 5

D BMI1: underweight, less than the 5th percentile

D BMI2: healthy weight, 5th percentile up to the 85th percentile
I:] BMI3: overweight, 85th to less than the 95th percentile

|. BMI4: has obesity, equal to or greater than the 95th percentile

Figure 1. CDC BMI percentile calculator for children and teens (Courtesy of [31]).

To capture and analyze gait patterns, a mobile health application was developed by
Lee et al. [30]. This application was originally designed to measure and detect differences in
walking movements between patients with traumatic brain injuries and healthy individuals.
The application leverages smartphone inertial sensors to collect gait data, making it highly
suitable for real-time gait analysis. The smartphone-based inertial motion sensors used
included an accelerometer, gyroscope, and rotation vector. These sensors are commonly
used together in gait analysis, motion tracking, and activity recognition, providing a
comprehensive understanding of gait and body movements. The rotation vector [33]
allows basic analysis by calculating the variation in X, Y, and Z rotations, which shows
walking movements over time. A total of 244 first-year high school students were initially
enrolled in the data collection phase. However, 71 students were excluded from this study
due to preexisting medical conditions that could distort gait patterns, resulting in a final
sample of 173 participants. During the data collection process, all participants wore the
smartphone in a waistband pocket positioned at the center of the body, with the smartphone
device placed horizontally and facing forward. The participants walked in a straight line
along a 78-foot course, turned around, and returned to the starting point. The smartphone
collected data at a sampling rate of 100 Hz, providing the foundation for analysis using
deep learning models described in the following sections. The demographic information of
the students is presented in Table 1.



Int. J. Environ. Res. Public Health 2024, 21,1178 5of 14

Table 1. Demographic information of the student participants.

Characteristics ((n)\;e;;;l) (B <1\;I({/01) (>];‘1>flaid (>8B5¥Ia3nd (E;gcly:l)
- <85%) <95%)
Gender
Female 86 2 58 2 3
Male 84 2 53 14 12
Race
Hispanic 18 0 18 4 1
White 136 4 86 27 20
Black 3 0 0 3 0
Asian 4 0 2 1 1
Other 12 0 5 1 0
Total 173 4 111 36 22

3.2. Data Preprocessing

The data collected around the rotation vector sensor, especially the rotation matrix,
are the main data used for the purpose of this study. In the preprocessing step, we applied
denoising to the data, as smartphone inertial sensors are commonly prone to external noise.
To address this, we used a moving average filter algorithm [34]. The moving average filter
is a common technique used in signal processing to smooth out fluctuations or noise in a
dataset, particularly in time series data. It works by calculating the average value of a series
of data points within a specified window size and replaces the original value with this
calculated average. The moving average filter process is described by the formula below.
This process is performed iteratively across the entire dataset, creating a smoothed version
of the original signal. In our case, we applied the moving average with a rolling window of
size 15, meaning that at each iteration, the average of the 15 points are computed and this
process is repeated across the entire dataset.

SMAk = p”*k+1+pn—kk+2+...+p”

L E 0

i=n—k+1

3.3. Data Normalization

The data were then normalized using the MinMaxScaler algorithm from the sklearn
library. The MinMaxScaler [35] algorithm is a normalization technique, widely employed
in data preprocessing, offering a systematic approach to scale numeric features within
a predetermined range. The method operates by rescaling the features of the dataset to
fit within a specified interval, typically between 0 and 1. The operational mechanism of
MinMaxScaler hinges upon a simple transformation process. It computes the minimum
and the maximum values of each feature within the dataset, and subsequently applies a
linear transformation to map feature values to the designated range. Mathematically, this
transformation is represented as follows:

X = Xmin

Xscaled = —— (2)
scate Xmax — Xmin

3.4. Data Segmentation

The input to the model consists of sequence data, which is a short time series extracted
from the raw sensor data. During data collection, the data were recorded continuously.
In order to preserve the temporal relationship between the data points collected while
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providing sufficient data points for model training, time series segmentation was applied
to the continuous data. A sliding window method was employed to segment the entire
data into sequential segments. A fixed window size of 100 data points is used with an
overlap of 50%. The segmentation process is shown in Figure 2.

t+ 1

1000

1200 1400 1600 1800 2000

data points

Figure 2. Data segmentation process. The orange frame highlights the overlapping area used in
data segmentation, with the arrow indicating that this overlap is applied consistently throughout
the dataset.

3.5. Deep Learning Models

Deep learning has played a significant role in classification and recognition in various
time series-related tasks. In this study, deep learning models were implemented to classify
data between normal and overweight/obese groups. The models were deep convolutional
neural networks (DCNNSs), long short-term memory (LSTM), and a hybrid combination of
deep convolutional neural networks and long short-term memory.

3.5.1. Deep Convolutional Neural Networks

Deep convolutional neural networks (DCNNs) have become fundamental in deep
learning, revolutionizing various domains of artificial intelligence. Prominent applications
of CNNs include image classification and segmentation, object detection, video processing,
natural language processing, and speech recognition. The powerful capability of DCNNs
is mainly attributed to multiple feature extraction stages that can automatically learn
representations from data. However, although CNNs can learn complex objects or patterns
in images or videos, they may not be suitable for numerous applications involving 1D
signals. To address this issue, 1D CNNs have been proposed, achieving state-of-the-art
results in several applications ranging from personalized biomedical data classification to
anomaly detection and classification.

This study used 1D CNNSs, with the model architecture presented in Figure 3.The
architecture comprises four convolutional layers, two dropout layers, two max-pooling
layers, and two dense layers (linear layers). The first CNN layer comprises 32 filters with a
kernel size of 5, a stride of 1, and no padding, followed by an ReLU activation function [36].
The first layer accepts input data in the shape of batch size, number of features, and
sequence length. The second convolutional layer has 64 filters, a kernel size of 3, a stride of
1, and a dropout layer [37] with a dropout rate of 0.5, which deactivates 50% of neurons
during training. The third convolutional layer has 128 filters, a kernel size of 5, a stride of
1, and no padding, followed by ReLU activation. The fourth convolutional layer also has
128 filters, but uses a kernel size of 3, a stride of 1, and no padding. This layer is followed
by a max-pooling layer with a kernel size of 2 and a stride of 2, and another dropout layer
with a 0.5 dropout rate. Finally, two fully connected layers are applied, with the sigmoid
activation function used in the last layer for predicting the target variable. The model
architecture is outlined in Algorithm 1.
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Max Pooling
Dropout
Max Pooling
Dropout

Output

Figure 3. CNN model architecture diagram.

Algorithm 1 Convolutional neural network model

X input shape: (batch_size, num_features, sequence length)
Model <- class CNNModel (nn.Module):
# Initialization
1. Conv1_layer = nn.Sequential (nn.Conv1d)
input size, output size = 32, kernel size = 5, stride = 1, padding = 0),
nn.ReLU)
2. Conv2_layer = nn.Sequential
nn.Convld (input size = 32, output size = 64, kernel size = 5, stride = 1, padding = 0),
nn.RelLU,
nn.MaxPoolld (kernel size = 3, stride = 1),
dropout_layer = nn.Dropout (rate = 0.5)
3. Conv3_layer = nn.Sequential
nn.Conv1d (input size = 64, output size = 128, kernel size = 5, stride = 1, padding = 0),
nn.ReLU
4. Conv4_layer = nn.Sequential
nn.Conv1d (input size = 128, output size = 128, kernel size = 3, stride = 1, padding = 0),
nn.RelLU,
nn.MaxPoolld (kernel size = 2, stride = 2),
dropout_layer = nn.Dropout (rate = 0.5)
5. fully connected layer = nn.Linear (input size, output size)
6. fully connected layer2 = nn.Linear (input size, number of class)

3.5.2. Long Short-Term Memory

Recurrent neural networks (RNNs) represent a class of artificial neural networks specif-
ically designed to handle sequential data with temporal dependencies. Unlike traditional
feedforward neural networks, RNNs possess internal memory mechanisms, enabling them
to retain past input information and influence future predictions. This unique architecture
makes RNNs well suited for a wide range of sequential data tasks, including natural lan-
guage processing, time series prediction, and classification. However, RNNs or very deep
networks are difficult to train, as they often suffer from issues like exploding or vanishing
gradients. To overcome this challenge, when learning long-term dependencies, the LSTM
architecture was proposed. The learning ability of LSTM impacted several fields from both
a practical and theoretical perspective, leading it to become a state-of-the-art model. The
LSTM model architecture is presented in Figure 4. It consists of an LSTM layer that takes
batch size, sequence length, and number of channels as input data, with the number of
channels representing the number of features in the data. This is followed by four layers,
128 hidden neurons, a dropout layer, and two dense layers. The input data are passed to
the LSTM layer, followed by a dense layer. A dropout rate of 0.5 is then applied, turning
off 50% of the neurons during the training stage to prevent the model from overfitting. The
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dropout layer is followed by a dense layer, where the sigmoid activation function is applied
on the last output element for the prediction of the target variable. The model architecture
is outlined in Algorithm 2.

Dropout
EG
Dropout
EG
Output

Figure 4. LSTM model architecture diagram.

Algorithm 2 LSTM model

Input

X input shape: (batch_size, sequence_length, num_features)

# Define the LSTM model class

Model <- class LSTMModel(nn.Module):

1. Create an LSTM layer with input size, hidden size, and number of layers.

2. Create a fully connected layer (fc) with output size, typically for regression tasks.

3. Implement a dropout layer to mitigate overfitting.

4. Apply an activation function, specifically sigmoid, to the final fully connected layer.

3.5.3. Hybrid Model

We inspired ourselves from the DeepConvLSTM [38] for implementing this hybrid
model. The model constructed herein integrates both the DCNN and the LSTM layers,
blending spatial and temporal feature extraction capabilities. The hybrid model architecture
is presented in Figure 5. Comprising four convolutional layers and two LSTM layers, the
model exhibits a multi-step process to ingest and analyze sequential data. Initially, the input
data undergo convolutional operations across multiple layers, leveraging kernel-based
feature extraction to discern spatial patterns. Subsequently, the processed features are fed
into the LSTM layers, where temporal dependencies are captured and learned iteratively
over sequential input sequences. The LSTM architecture, characterized by its memory
cell and gate mechanisms, facilitates the retention and propagation of information across
time steps, enabling the model to discern intricate temporal dynamics within the data.
Following LSTM processing, the model employs fully connected layers to distill the learned
representations into predictive outputs. Regularization techniques, including dropouts,
are employed to mitigate overfitting and enhance model generalization. Ultimately, the
model yields predictions via a final sigmoid activation function, encapsulating the culmina-
tion of feature extraction and temporal analysis. The model architecture is presented in
Algorithm 3.
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Figure 5. Hybrid model architecture diagram.

Algorithm 3 CNN-LSTM

Input
X input shape: (batch_size, num_features, sequence length)
# Define the Hybrid model class
Model <- class HybridModel (nn.Module):
# CNN architecture
# Initialization
1. Conv1_layer = nn.Sequential (nn.Conv1d)
input size, output size = 128, kernel size = 5, stride = 1, padding = 0,
nn.ReLU
2. Conv2_layer = nn.Sequential (nn.Conv1d)
input size = 128, output size = 128, kernel size = 5, stride = 1, padding = 0,
nn.ReLU, nn.MaxPoolld (kernel size = 3)
3. dropout_layer = nn.Dropout (rate = 0.5)
4. Conv3_layer = nn.Sequential (nn.Convld)
input size, output size = 128, kernel size = 5, stride = 1, padding = 0, nn.ReLU
5. Conv2_layer = nn.Sequential (nn.Conv1d)
input size = 128, output size = 128, kernel size = 5, stride = 1, padding = 0,
nn.ReLU, nn.MaxPoolld (kernel size = 3)
6. dropout_layer = nn.Dropout (rate = 0.5)
7. fully connected layer = nn.Linear (input size, output size)

8. fully connected layer2 = nn.Linear (input size, output size)

# LSTM architecture
1. Create an LSTM layer with input size, hidden size, and number of layers.

2. fully connected layer = nn.Linear (output size, output size)

# Concatenate

1. Concatenate output size from CNN layers and LSTM layers.

2. Apply the sigmoid activation function to the concatenated output.
3. Return the final output.

3.5.4. Training and Evaluation

The dataset used in this study is a sample (n = 173) of data collected from first-year high
school students. Among the collected datasets, 4 (2%) belong to the underweight category,
111 (64%) to the normal category, 36 (20%) to the overweight category, and 22 (12%) to
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the obese category. In response to the heavy imbalance between the categories, we first
combined the underweight and normal-weight groups and then merged the overweight
and obese groups, resulting in two categories of data—the underweight/normal group
(n = 115) representing 66% and the overweight/obese group (n = 58) representing 34%
of the data—creating a binary classification problem (normal vs. obese). Overall, 80%
of the data was used for training and the remaining 20% for testing the performance of
the models.

In addition, for training the models, identification values were assigned for each
group, “0” for the normal group and “1” for the overweight/obese group. The models
and the training step were implemented using the PyTorch framework [39]. Each model
was compiled using the binary cross-entropy loss [40] function, which is well-suited for
binary classification tasks, and the Adam [41] (adaptive moment estimation) optimizer,
used to minimize the cost of the model, was chosen for its efficiency in handling sparse
gradients and its adaptive learning rate capabilities. The learning rate was set to 0.003 and
the training process was conducted over 50 epochs.

4. Results

When the data were trained using the LSTM model, a rapid decrease in loss was
observed within the first five epochs, along with high accuracy on both the training and
the validation set. This highlights that the model was able to identify meaningful patterns
in both the normal group and the overweight/obese group. Similarly, when the data were
trained on the CNN and the hybrid model, a rapid decrease in loss and a rapid increase
in accuracy, was observed indicating that both models effectively extracted meaningful
patterns from the data across both groups.

During the training phase, the best model with the lowest loss on the validation set
was saved and used to perform predictions for unseen test data. For the CNN model,
the best validation loss was obtained after 26 iterations, with a value of 2.98 x 10~7 and
an accuracy of 99.99%. For the LSTM model, the best validation loss was achieved after
38 iterations, with a value of 2.32 x 107> and an accuracy of 99.95%. Lastly the hybrid
model reached its best validation loss after 10 iterations, with a value of 2.98 x 10~7 and an
accuracy of 99.99%. The results of the validation process are presented in Table 2. Figure 6.
shows the validation accuracy of each model.

1.000

0.995 A

0.990 -

o

()

[o0)

V]
L

0.980 -

0.975 1

Validation Accuracy

0.970 -

—e— CNN+LSTM
—m— CNN
—&— LSTM

0.965 -

0.960 f : : . : : : : :
0 5 10 15 20 25 30 35 40
Epochs

Figure 6. Validation accuracy per model.
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Table 2. Results of evaluation metrics on validation set.

Model Loss Accuracy

CNN 298 x 1077 0.9999

LSTM 2.32 x 107° 0.9995
CNN-LSTM 2.98e x 1077 0.9999

The predictions for the test data are presented in Table 3. The testing data consisted
35 datasets, with 23 subjects in the normal group and 12 subjects in the overweight/obesity
group. As in the training set, we applied data windowing extracting 100 samples with 50%
overlap. The predictions for the test data using the deep convolutional neural network
model yielded an accuracy of 95.81%, the LSTM model achieved an accuracy of 96.31%, and
the hybrid model reached an accuracy of 97%. The hybrid model consistently outperformed
the CNN and LSTM models, likely due to its ability to capture both spatial and temporal
features in the gait data. The CNN layers extract spatial features from the input sequences,
while the LSTM layers capture temporal dependencies, leading to superior overall perfor-
mance. Although the CNN model achieved strong results during training, it struggled
to generalize as well on unseen data, likely because it lacked the ability to fully account
for the sequential nature of the gait data, which explains its slightly lower performance
on the test data. The LSTM model performed well in capturing temporal dependencies,
but without the spatial feature extraction capabilities of the CNN, its performance was
marginally lower than the hybrid model. This suggests that the combination of spatial and
temporal feature extraction is crucial for better accuracy in identifying overweight/obesity
from gait data.

Table 3. Results of evaluation metrics on test set.

Model Accuracy Precision Recall F1

Leeetal. [31] 90.5 X X X
CNN (ours) 95.81 0.99 87.78 93.49
LSTM (ours) 96.31 0.99 89.23 94.31
CNN-LSTM (ours) 97 0.99 91.23 95.41

Bold values highlight superior results compared to previous studies.

5. Discussion

This study explored the use of three deep learning models for addressing obesity
recognition in adolescents using gait data collected through smartphone inertial sensors.
The three models, namely, CNN, LSTM, and a hybrid model, were trained on data from
138 participants, with 92 in the normal group and 46 in the overweight and obese group.
They were tested on 35 participants” data, with 23 in the normal group and 12 in the
overweight and obese groups. The results indicated that the hybrid model outperformed
both CNN and LSTM models in classifying obesity based on gait patterns. This suggests
that integrating both spatial and temporal feature extraction is critical for capturing the
complex differences between normal and overweight/obese gait. The hybrid model’s
superior performance may be due to its ability to process the sequential nature of gait data
while also recognizing spatial features within each segment. Notably, while the CNN model
achieved great results on the training set, it did not generalize as well on the test set as the
LSTM model, possibly due to its limitation in handling temporal dependencies inherent in
sequential data. Our findings are consistent with those of Steinberg et al. [28], who also
found significant differences in gait patterns between overweight/obese and normal-weight
individuals. However, while Steinberg’s study focused primarily on hip joint angles and
knee trajectories, our study extends these findings by demonstrating that these differences
can be effectively captured using smartphone-based inertial sensors combined with deep
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learning models. In contrast, Murtha et al. [27] observed limited success in predicting
weight gain using health records, suggesting that static health data may not capture the
dynamic characteristics needed for accurate obesity prediction. Building on the work of Lee
et al. [31], our study shows that the CNN model alone is insufficient for capturing all the
gait patterns and characteristics between normal and overweight/obese groups. However,
by using LSTM and a hybrid model, we achieved better accuracy. Despite these promising
results, this study has several limitations that should be considered. First the sample,
particularly in the obese category, was relatively small, which may limit the generalizability
of our findings. Future work should aim to include larger and more diverse samples
to validate these results. Additionally, the use of a single smartphone model for data
collection may introduce device-specific biases, so testing across multiple devices would
be beneficial to ensure robustness. Another limitation is the exclusion of participants with
potentially abnormal gait conditions. While this was necessary to focus on obesity-related
gait differences, it also means that our findings may not apply to populations with other
gait-affecting conditions.

6. Conclusion

This study explored the relationship between BMI and walking patterns. Building
on the work of Lee et al. [31], walking data were collected from 244 first-year high school
students using a mobile health application, with a sample of 173 students included in
this study. The smartphone was placed inside a pocket bag and worn at the center of the
body by the participants. They were instructed to walk over a 78-foot course in a straight
line and then return to the starting point. We used the smartphone’s inertial sensor data,
specifically the nine-channel rotation matrix from the rotation vector, to analyze the gait
patterns. Three deep learning algorithms were employed: convolutional neural network
(CNN), long short-term memory (LSTM) network, and a hybrid model combining CNN
and LSTM. The highest accuracy was achieved with the hybrid model, at 97%, followed by
the LSTM model at 96.31% and the CNN model at 95.81%. All of our models outperformed
the results obtained by Lee et al. [31].
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