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SUMMARY

Predictors of immune checkpoint inhibitor response in cancer remain elusive. From a previous phase 2 neo-
adjuvant immunotherapy window-of-opportunity study, we present the single-cell RNA and T cell receptor
(TCR) sequencing analysis of 57 pre- and post-treatment tumor biopsies from head and neck cancer patients
treated with durvalumab (anti-PD-L1) alone or with tremelimumab (anti-CTLA-4), identifying key cellular and
molecular predictors of immune checkpoint inhibitor (ICl) response. Malignant cells and neutrophil senes-
cence promote ICl response. While CXCL13" exhausted T (Tex) cells enhance response through 4-1BB
signaling, anti-CTLA-4 induces 4-1BB* regulatory T cells (Tregs) restricting ICI efficacy. These opposing roles
of 4-1BB in different cellular contexts may explain the limited benefit of combinatorial immunotherapy
observed in clinical trials. We identify two subsets of tumor-reactive progenitor Tex (Tpex): ICl-responsive
Tpex1 and ICl-resistant Tpex2, a subset characterized by KLRB1 and IL17R. The balance of Tpex1 and
Tpex2 associates with ICI response across multiple cancers, offering insights into sustaining response.
This study was registered at ClinicalTrials.gov (NCT03737968).

INTRODUCTION which components of the tumor microenvironment (TME) dictate

treatment outcomes of ICls. Moreover, while it has been well

Head and neck cancer is a type of malignancy, with squamous cell
carcinoma accounting for over 90% of cases.' Recently approved
immune checkpoint inhibitors (ICls) such as nivolumab and pem-
brolizumab have changed treatment plan for recurrent and meta-
static head and neck squamous carcinoma (R/M HNSCC). Based
on the success of ICl in improving overall survival in R/M HNSCC,
various clinical trials are currently underway to investigate the po-
tential safety and effect of ICls in patients with early-stage HNSCC
(e.g., NCT03765918). However, despite much effort to find the
biomarker predicting ICl response, validated biomarkers for
immunotherapy have remained elusive, and it is also unclear

)
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documented that human papilloma virus (HPV) infection status
of the patients with oropharyngeal cancer is a significant predictor
of survival,® its association with ICl response has not been
determined.

Combination immunotherapy targeting multiple immune check-
points such as CTLA-4 and PD-(L)1, has been expected to in-
crease therapeutic efficacy,” given that the majority of patients
with head and neck cancer either fail to respond or relapse
with PD-(L)1 blockade as a single agent.>® This hypothesis was
evaluated in CheckMate 651 (NCT02741570)" and KESTREL
study (NCT02551159),% demonstrating that combined checkpoint
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Figure 1. Overall research design of HNSCC immunotherapy clinical trial
Study design and sampling scheme of the window-of-opportunity study. Study timeline for enrolled samples and their description of treatment, pathological

response, and the generated data type are illustrated.

blockade of PD-(L)1 and CTLA-4 has shown clinical benefit in
some subgroups of patients rather than overall populations.
Hence, it is important to understand cellular and molecular mech-
anisms of PD-(L)1 and CTLA-4 blockade either as a monotherapy
or combination to design effective treatment options for individual
patients.

Window-of-opportunity studies exploit the period between
cancer diagnosis and definitive treatment, to explore novel ther-
apeutic strategies. In this study, we analyzed the TMEs of pre-
and post-treatment tumor specimens to identify molecular and
cellular determinants of early ICI response and resistance. Pa-
tients received neoadjuvant durvalumab (D, anti-PD-L1 anti-
body) alone or in combination with tremelimumab (T, anti-
CTLA-4 antibody) in a prospective randomized phase 2 trial
(NCT03737968).° We employed integrative RNA and T cell re-
ceptor (TCR) profiling at the single-cell level, correlating TME
characteristics with pathologic tumor regression. Through this
approach, we illustrate key aspects of the tumor immune
ecosystem and provide insights into the mechanisms underlying
neoadjuvant ICI response and resistance in HNSCC.

We employed various computational approaches for single-
cell data analysis to explore the TME in ICI-treated patients
with HNSCC. To address cancer heterogeneity in assessing ma-

2 Cell Reports Medicine 6, 102408, October 21, 2025

lignant gene programs, non-negative matrix factorization (NMF)
approach has been applied to single-cell data analysis.'®"" In
addition, foundation models trained on millions of single cells, '
analogous to large language models, offer a powerful framework
for studying gene and cell functions in the TME. By re-training
these models on ICI response data, we can identify key genes
shaping their embeddings in the latent space. A network-based
approach'® to tumor-experienced CD8" T cells revealed central
genes that showed functional difference across ICl responses.
Furthermore, RNA velocity of tumor-reactive T cells,' identified
through clonotype sharing with exhausted subsets,'” revealed
the differential potential of progenitor exhausted T cells present
in baseline tumors. This population appears to be highly associ-
ated with neoadjuvant ICl response.'®

RESULTS

Window-of-opportunity study design for HNSCC
neoadjuvant ICI clinical trial

Patients diagnosed with HNSCC who underwent surgical resec-
tion at Severance Hospital (Seoul, Republic of Korea) between
January 2019 and December 2020 were enrolled in a previously
reported prospective randomized trial (NCT03737968, Figure 1).
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Clinical metadata are summarized in Table S1. We analyzed a to-
tal of 29 HNSCC patients with available single-cell transcrip-
tomic data. Patients received a single cycle of either intravenous
durvalumab (D, 1,500 mg; n = 13) or a combination of durvalu-
mab and tremelimumab (D + T, 1,500 mg + 75 mg; n = 16), fol-
lowed by curative surgery performed 2 to 8 weeks after ICI
administration. Computed tomography or magnetic resonance
imaging were performed at baseline and before the surgery. All
surgeries were conducted based on the original clinical and
radiological extent of the disease. Adjuvant chemoradiotherapy
was determined by a multidisciplinary team. Clinical and radio-
logic follow-up were performed every 3 months during the first
2 years and then every 6 months thereafter. No dose adjust-
ments were permitted for either neoadjuvant D + T or adjuvant
D treatment. A patient with a pathological tumor regression value
of >50% was defined as an ICI responder'®'%; otherwise, the
patient was classified as a non-responder.

We collected 28 pre-treatment tumor biopsies and 29 post-
treatment tumor samples from surgery, including 27 paired sam-
ples. The 57 tumor samples originated from various regions: oral
cavities (n = 4), oropharynx (n = 33), hypopharynx (n = 12), and
larynx (n = 8). To investigate the cellular and molecular mecha-
nisms of ICI responses within tumor tissue, we generated sin-
gle-cell RNA sequencing (scRNA-seq) and single-cell TCR
sequencing (scTCR-seq) data using the 10x Chromium Next
GEM (5’ v.2) platform.

The senescence program of malignant cells is
associated with early ICI responses

We first aimed to identify gene expression programs of malig-
nant cells associated with ICI response in HNSCC patients by
analyzing single-cell gene expression data from 57 tumor tis-
sues. Malignant cells were identified using marker genes and
the reference-based classification tool scATOMIC?® (STAR
Methods). To overcome transcriptional heterogeneity of malig-
nant cells (Figures 2A and S1A), a non-negative factorization
(NMF) method was applied to individual patients to retrieve
gene programs found across the entire sample cohort
(Figure S2A, STAR Methods). No specific copy-number variation
was associated with patient-level phenotypes (Figure S2B).
While these factorized gene sets exhibited high patient speci-
ficity as expected, we also found gene sets that significantly
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overlapped across patients (Figure 2B). We clustered these
gene sets into nine non-overlapping, functionally distinct meta-
programs (Figure S1B) and assessed their representative func-
tions through term enrichment and manual curation compared
to previously established tumor meta-programs.’®'" Functional
annotations of the identified nine meta-programs and their mem-
ber genes are summarized in Table S2.

We assumed that each individual cell exhibits a dominant
meta-program driving carcinogenesis. By analyzing the propor-
tion of the highest-scored representative meta-programs per pa-
tient, we observed a negative correlation between the “CC trans-
lation” meta-program and tumor regression, whereas the
“epithelial senescence” meta-program showed a positive corre-
lation (Figure S1C). Patients with higher tumor regression, indic-
ative of a better ICI response, tended to have malignant cells with
lower CC Translation and higher epithelial senescence meta-
program scores. Notably, epithelial senescence is associated
with reduced stemness, potentially leading to less aggressive tu-
mor in HNSCC.?>?® Additionally, we found that the epithelial
senescence meta-program was enriched for immune functions
(Figures S1D and S1E). When comparing groups by treatment
time and response, we observed that these two meta-programs
drove HNSCC malignancy and were clearly distinguished in pro-
portion based on ICI response (Figure 2C). Importantly, the
epithelial senescence program could predict IClI response at
baseline, with HPV-positive oropharynx samples displaying
notable high senescence program (Figure 2D). Within the HPV-
positive oropharyngeal cancer, the epithelial senescence pro-
gram exhibited a higher proportion both at baseline and post-
ICI treatment, in higher tumor regression sample compared to
low (Figure S2C).

To further investigate the core module of the epithelial senes-
cence program for ICI response, we dissected the meta-pro-
grams using the gene co-occurrence network of NMFs (STAR
Methods). This approach enabled us to identify 28 core genes
within the epithelial senescence meta-program, which we refer
to as the “senescence module” (Table S3). The expression vari-
ance of this module significantly decreases post-treatment
(Figure 2E), indicating that malignant cells with high senescence
module activity are sensitive to ICls. Additionally, the senes-
cence module score showed a significant association with tumor
regression (Figure S1F). Using publicly available tumor bulk RNA

Figure 2. Malignant senescence program associated with ICI sensitivity

(A) Uniform manifold approximation and projection (UMAP) of identified malignant cells pre-treatment (left) and post-treatment (right) colored by patient origin.
(B) Overlap of selected patient-specific NMF modules. Rows and column clustered with hierarchical clustering. Color indicates —log10 of p value calculated via
one-sided hypergeometric test (overlap of gene sets).

(C) Pie chart proportion of nine meta-programs in pre- and post-ICl responders and non-responder malignant cells. Each cell is labeled a meta-program with the
highest gene set module score of the nine.

(D) Scatterplot of arithmetic mean of epithelial senescence meta-program score for each pre-ICl patient sample and their tumor regression values post-ICI.
Pearson correlation coefficient and its p value are denoted.

(E) Variance of senescence module score for malignant cells in pre- or post-ICl samples. p value is calculated with Levene’s test.

(F) Variable importance score for each predictor (calculated as the mean decrease of Gini impurity when a variable is chosen to split a node) of 8 random forest
models. Data are represented as mean + SEM.

(G) Area under reciever operating characteristic (AUROC) curve for public signatures in NSCLC dataset, melanoma dataset, and GBM dataset. Dashed line
indicates random expectation value of 0.5. Gene signature scores are calculated via gene set variation analysis (GSVA) for each sample.

(H) ROC curve for ensemble random forest model without senescence module as a predictor (black, immune model) and with it (red). For both models, tumor
purity, stromal score, and immune signature (Ayer et al.”") were used as predictors. FPR, false positive rate; TPR, true positive rate
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sequencing (RNA-seq) data with response evaluation criteria in
solid tumors (RECIST) annotations, we found that incorporating
the senescence module score as a separate feature in the
random forest classifier improved the prediction of ICI response
(STAR Methods). We found that, while the representative im-
mune signature,”’ tumor purity, and stromal score®* were impor-
tant predictors, the senescence module score demonstrated
notable importance across most cohorts, despite the convoluted
expression of tumor biopsies (Figure 2F). In canonical “hot tu-
mors” such as non-small cell lung cancer (NSCLC) and mela-
noma, public immune signatures®'?*" performed well in
retrieving responders (Figure 2G). However, in the cold tumor
glioblastoma (GBM), the senescence module outperformed
other immune signatures in prediction accuracy. When we inte-
grated eight random forest classifiers from each cohort as an
ensemble model (STAR Methods), the addition of the senes-
cence module scores improved response prediction for sam-
ples, especially where response and non-response distinctions
are not clear (0.4 < FPR < 0.6, Figure 2H). These findings suggest
that gene expression programs within malignant cells of the TME
can influence ICl responses.

CXCL13" exhausted T cells and their 4-1BB signaling are
linked to early ICI response

Pre-existing resident memory CD8* T cells have been shown to
play critical role in neoadjuvant immunotherapy.'® To investi-
gate immune mechanisms predicting ICI response, we focused
on CD8" T cell subpopulations among all identified immune
cells (Figure S3A). We subclustered CD8" T cells into six
subtypes (Figure 3A) and identified differentially upregulated
genes across these subtypes (Table S4). Gene set enrichment
analysis of differentially expressed genes (DEGs) upregulated
in responders compared to non-responders at baseline re-
vealed significant enrichment of Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways related to immunity and im-
mune disorders. Notably, genes upregulated in CXCL13"* ex-
hausted T cells (CXCL13" Tex) were enriched in responder-
associated pathways such as PD-L1 expression and PD-1
checkpoint pathway in cancer and TCR signaling pathway for
CD8* T cell subtypes (Figure 3B). CXCL13* Tex cells expressed
tumor-experienced markers such as ENTPD? and ITGAE,**

Cell Reports Medicine

cytotoxic genes (PRF1, GZMA, and IFNG), and exhaustion
markers such as PDCD1 (Figure S4). These findings suggest
that CXCL13"* Tex cells are a key subset contributing to ICI
response.

Previous studies have reported that stress-related genes are
strongly associated with ICI resistance.®® Consistent with this,
we extracted the top expressed genes from the stressed T cell
(Tstr) subcluster (Figure S3B) and evaluated their gene set
enrichment scores across different groups (STAR methods).
Signature genes for this cell state indicative of ICI resistance®
were upregulated post-ICl treatment and significantly distin-
guished responders from non-responders at baseline and treat-
ment group post-therapy (Figures 3C and S3C). Independent dif-
ferential expression analysis using a negative binomial mixed
model (NEBULA)** with patient heterogeneity as a random effect
(STAR Methods) confirmed that stress-associated genes were
associated with ICl administration and response (Table S5).

Neoadjuvant ICI response is challenging to assess using con-
ventional radiologic RECIST criteria. Instead, post-treatment
TCR clonal expansion compared to baseline is often used as a
surrogate response metric.>> In our HNSCC cohort, most pa-
tients showed significant clonal expansion after a single treat-
ment cycle (Figure S5A). However, TCR expansion did not corre-
late with neoadjuvant tumor regression (Figure 3D) in any CD8*
T cell subtypes, regardless of whether patients received mono-
therapy or combination therapy (Figure S5B). Clonal expansion
was predominantly restricted to the CXCL13" Tex subset
(Figure S3D), confirming this subtype as tumor reactive. Analysis
of TCR clonotypes that emerged, persisted, or were lost after ICI
treatment revealed that persisting clonotypes were highly
expanded, but no significant differences were observed be-
tween response groups or treatment arms (Figure S3E).

Cell-cell interaction (CCI) analysis among CD8* T cell sub-
types revealed key genes contributing to ICI response. Top inter-
cellular ligand-receptor interactions, deconvolved for patient
heterogeneity (STAR Methods), showed notable differences be-
tween response groups (Figure 3E). In the non-responders, inter-
actions with KLRB1 (encoding CD161) in memory T cell (Tmem)
and Tstrincreased post-ICl treatment, supporting ICl resistance.
This aligns with our previous finding that CD161™ tissue-resident
memory T cells counteract clinical benefits in HPV-infected

Figure 3. ICI response predictors in CD8* T states

(A) UMAP of CD8™ T cells extracted, re-normalized, and re-clustered. Tex, exhausted T cell; Tmem, memory T cell; Teff, effector T cell; Tstr, stressed T cell; Tprolif,
proliferating T cell.

(B) Network representation of enriched KEGG pathway for pre-ICI CD8" T cells upregulated in responders (R) compared to non-responders (NR), visualized via
emapplot() of clusterProfiler package. Colors indicate the enriched subcluster within CD8" T cells. Size represents the overlapping genes in each term. Color
within the term node represents the contribution of that cluster to the term based on the number of overlapping genes from each cluster.

(C) Boxplot of stress-associated heat shock protein (HSP) signature identified to be upregulated in Tstr, significantly less so in responders at baseline. p values
were calculated via Wilcoxon rank-sum test.

(D) The number of expanded T cell clonotypes in post- versus pre-treatment tumor biopsies, classified by expansion of frequency (above 2 red and above 5 green)
and expansion of proportion and frequency (blue). Overlaid scatterplot indicates tumor regression value post-therapy.

(E) Top 50 intracellular ligand-receptor pairs across CD8* T subclusters that significantly increased interaction post-therapy for each response group as
measured by MultiNicheNet. TNFSF9 and KLRB1 are highlighted in red.

(F) Feature plot of TNFSF9 expression in CD8* T cell UMAP dimension and violin plot of TNFSF9 expression for each subclusters (left) and feature plot of TNFRSF9
expression in CD8" T cell UMAP dimension and violin plot of TNFRSF9 expression for each subclusters (right). p values were calculated via Wilcoxon rank-sum
test for each cluster vs. all others, adjusted by Benjamini-Hochberg method.

(G) Cell-type-specific ligand-receptor pseudo-bulk (by patient) product value from MultiNicheNet of top 8™ to 11™ that showed statistically significant increase in
responder vs. non-responders post-therapy compared to baseline. Two-sided t test was additionally performed and denoted at the top of each group com-
parison (pre- vs. post-ICI). p value significance: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

1lh

6 Cell Reports Medicine 6, 102408, October 21, 2025



Cell Reports Medicine

patients.*® In contrast, responders showed increased interac-
tions involving TNFRSF9 (encoding 4-1BB) in CXCL13* Tex after
ICI treatment, suggesting a positive role in ICl response.
TNFRSF9 and its ligand TNFSF9 were predominantly expressed
in effector T cell (Teff), Tstr, and CXCL13"* Tex (Figure 3F). Differ-
ential ligand-receptor activity analysis in CXCL13* Tex using
MultiNicheNet (https://github.com/saeyslab/multinichenetr) re-
vealed that TNFSF9-TNFRSF9 activity increased more signifi-
cantly in responders following ICI treatment (Figure 3G). The dif-
ferential magnitude of the TNFSF9-TNFRSF9 interaction was
further validated using a dual immunohistochemistry assay
(Figure S6, STAR Methods). These findings suggest that 4-1BB
signaling in CXCL13" Tex contributes positively to early ICI
response.

Network and foundation models reveal key CXCL13* Tex
genes for early ICl response

Single-cell gene expression data enable the construction of cell-
type- or patient-specific gene networks, with topological anal-
ysis complementing expression-based research.®>”-*® To explore
gene regulatory mechanisms in CXCL13" Tex for early ICI
response, we built CXCL73* Tex gene networks for two
response groups and individual patients (Figure 4A, STAR
Methods). Responder-specific gene networks showed signifi-
cantly higher node-profile similarity compared to non-re-
sponders, particularly post-ICl treatment (Figure 4B). This
pattern aligns with the Anna Karenina principle in microbiome
research,®® where dysbiotic individuals exhibit more variability
in taxonomic profiles compared to healthy individuals due to
the presence of core taxa in healthy microbiomes. Similarly,
CXCL13" Tex gene networks in responders shared more com-
mon nodes, suggesting the existence of core regulatory genes
driving ICI response. Supporting this, T cell gene networks
from adjacent normal tissues in lung and colorectal cancer pa-
tients showed greater node-profile similarity compared to net-
works from tumor-infiltrating T cells (Figure S3F), indicating
shared regulatory structures in healthy cellular contexts.*®

To define genes that characterize CXCL13" Tex driving ICI
response, we identified the top 30 differential hub genes in the
responder CXCL13* Tex network at baseline compared to the
non-responder network, referred to as the “responder network
signature” (Figures 4C; Table S6). This signature includes key
genes for maintaining cellular cytotoxicity such as ZNF683,*
PRF1, IL2RB, and IFNG and immune activation and exhaustion
markers including LAG3, PDCD1, PRF1, and TBX21 that
contribute to anti-tumor immunity.

To validate the role of responder network signature genes in
maintaining the regulatory network, we simulated network state
alterations between responders and non-responders using “vir-
tual knockout” scheme from the Geneformer foundation
model,"? pre-trained on atlas-scale single-cell transcriptome
data. We fine-tuned the Geneformer model with our immune
cell scRNA-seq data, creating a CXCL13* Tex-specific model
where 24 out of 30 responder signature genes remained. In silico
gene perturbation of these 24 genes was performed to assess
whether responder CXCL13" Tex cells shifted toward a non-
responder embedding profile (Figure 4D). The fine-tuned model
efficiently distinguished immune cells of responders from non-
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responders (Figure 4E, STAR Methods). Compared to random
or housekeeping genes, perturbation of 19 out of 24 responder
signature genes significantly shifted responder CXCL13" Tex
cells toward a non-responder profile (Figures 4F; Table S7).
This finding suggests that the responder network signature
genes of CXCL13" Tex cells play key regulatory roles in promot-
ing ICl response.

An inhibitory progenitor Tex subset confers ICI
resistance

Not all tumor-infiltrating CD8" T cells are tumor antigen spe-
cific,*> and conventional expression-based clustering fails to
distinguish tumor-reactive subsets. Clonotype analysis enables
precise identification of tumor-specific T cells including progen-
itor Tex (Tpex).'®> We analyzed clonotypes within the CXCL13*
Tex subset and filtered for subpopulations sharing these clono-
types (STAR Methods). Subclustering analysis for tumor-reac-
tive CD8" T cells identified Tpex subsets (Tpex1 and Tpex2)
and Tex (Figures 5A and S7A; Table S8). Tpex subsets were
characterized by high GZMK expression and memory-associ-
ated genes (LMNA and AHNAK), while Tex exhibited high
expression of CXCL13, residency markers (ITGAE, ENTPD1,
and CXCR6), immune checkpoints (TIGIT, LAG3, and
HAVCR?2), dysfunction-associated genes (KRT86 and HSPB1),
and TNFRSF9 (Figures 5B, 5C, and S8).

Tpex1 corresponds to the previously reported Tpex, a key
determinant of successful immunotherapy.**** We identified a
subset, Tpex2, distinguished from Tpex1 by KLRB1 and IL7R
co-expression, which may play a role in establishing tumor-spe-
cific memory*® (Figures 5C and S7B). Consistent with previous
reports, Tpex1 was enriched in the tumor immune microenviron-
ment of early responders, while Tex and Tpex2 proportions
decreased (Figure S7C). Additionally, changes in the Tpex1-to-
(Tex + Tpex2) ratio between baseline and post-ICI treatment
correlated with tumor regression (Figure 5D). These findings sug-
gest that Tpex2 may inhibit ICI response.

Trajectory analysis identified three differentiation lineages from
Tpex1 (Figure S7D), two of which led to dysfunctional tumor-
reactive CD8" T cells with Tpex2 as an intermediate: Tpex1 —
Tpex2 — Tex (lineage 1, Figure S7E) and Tpex1 — Tpex2 —
HSP* cells (lineage 2, Figure S7F). Responders were enriched
in Tpex1, whereas non-responders had higher proportions of
Tpex2, Tex, and HSP* cells (Figures S7G and S7H). Along lineage
1, CXCR5, SOX4, CCR7, and BATF showed differential expres-
sion dynamics between responders and non-responders
(Figure S71, STAR Methods), while ICI resistance genes such as
KRT86® and HSPB1 were upregulated along lineage 2 in non-re-
sponders (Figure S7J). Key genes whose expression was signif-
icantly associated with pseudotime (adjusted p value < 0.05)
included previously identified Tpex markers such as TCF7
(Figure S9A; Table S9). Gene ontology enrichment analysis re-
vealed that these genes are involved in T cell activation and
CD8"* T cell-mediated anti-tumor responses (Figure S9B). RNA
velocity analysis indicated differential cellular transition toward
Tpex2 in tumor-reactive CD8" T cells across ICI response group
(Figure 5E). Cell-to-cell transition probability analysis (STAR
Methods) further revealed increased Tpex1-to-Tpex2 transition
and greater Tpex2 persistence in non-responders (Figure 5F).
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Figure 4. CXCL13* Tex network topology as a predictor for ICI response
(A) Conceptual depiction of the network analysis using scHumanNet performed for CXCL13* Tex cells.

(B) Similarity of patient-specific network nodes calculated with pairwise Euclidean distance from adjacency matrix of a union gene set. p values were calculated
via two-sided t test. Additionally, difference of variance was tested with Fligner-Killeen (F-K) test, and its p values are denoted.

(C) Cell-type-specific network of responder CXCL13" Tex from pre-ICl treatment group. Gene nodes are colored according to each different subcommunity
determined by Louvain clustering with top 3 nodes depicted for each community. The 30 genes ordered by centrality in a responder community that decreased in
centrality in the corresponding non-responder network are summarized as a table below (green) and termed responder network signature.

(D) Conceptual depiction of the in silico perturbation analysis using a fine-tuned (all immune cells) Geneformer foundation model. For each gene perturbed, the
embedding shift of responder cells (CXCL13" Tex only) toward non-responder cells was measured through cosine similarity.

(E) Two-dimensional UMAP representation of fine-tuned Geneformer embeddings (512 dimensions) with immune cells as input, labeled for ICI response status.
(F) Cosine similarity of shifted embedding for each gene set. 100 random genes were sampled from perturbed genes as control. The 21 genes of the immune
hub signature show positive shift toward non-response when perturbed. p value significance: “o < 0.05, *p < 0.01, **p < 0.001, and ****p < 0.0001; ns,

non-significant.
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Tex exhibited distinct transition probabilities toward Tpex1 and
Tpex2, with a higher likelihood of transitioning to Tpex1 and a
lower likelihood to Tpex2 in responders, underscoring their
opposing roles in ICl response (Figure 5G). Consistent with prior
reports on Tpex stemness during ICI therapy,*” we observed
increased stemness in both Tpex1 and Tpex2 post-treatment
compared to other subsets (Figure S7K), suggesting their contri-
bution to early ICI response.

Overall, our results suggest that Tpex2 may confer ICI resis-
tance during human neoadjuvant immunotherapy. To assess
whether Tpex2 is resistant to ICI response across cancer types
beyond HNSCC, we analyzed single-cell transcriptome data
from ICl-treated samples of various cancers and compared tu-
mor-reactive CD8* T cell subsets using a label transfer approach
(STAR Methods). Notably, ICl-resistant Tpex2 subsets were
more abundant in non-responders in both pre- and post-treated
samples across multiple cancer types (Figure 5H), suggesting
that Tpex2-mediated ICI resistance may be generalized to
diverse cancer types.

Addition of anti-CTLA-4 to anti-PD-L1 promotes 4-1BB*
Tregs restricting ICI response
While a previous study showed that addition of anti-CTLA-4 to
anti-PD-L1 enhanced activation of CD4* T cells in HNSCC,*®
this combination unexpectedly led to the expansion of tumor-
associated regulatory T cells (Tregs) due to disruption of a
CTLA-4-dependent feedback loop, which may limit the overall
therapeutic efficacy.’® To explore the mechanisms underlying
this contradictory role of CTLA-4 inhibition, we performed sin-
gle-cell analysis, identifying seven CD4" T cell subsets
(Figures 6A and S10A; Table S10). We found that CTLA-4, the
target gene of tremelimumab, is prominently expressed in Treg
subsets, particularly in 4-1BB* Tregs and proliferating Tregs
(Figures 6B and S10B). Notably, the immunosuppressive
4-1BB* Tregs®® exhibited highest clonal expansion, followed
by the cytotoxic CXCL13" CD4" T cell subset (upregulating
IFNG, GZMB, TOX2, and KLRB1) (Figure 6C), highlighting its
key role in modulating immune responses during neoadjuvant
ICI therapy. The proportion of 4-1BB* Tregs was significantly
increased with D + T treatment, but not with D treatment alone
(Figure S10C), suggesting that this subset is a primary target of
additional tremelimumab treatment. However, its increased pro-
portion in non-responders but not in responders (Figure S10D)
suggests a potential counteractive effect on early ICI responses.
The high clonal expansion of CXCL13" CD4" T cells likely ac-
counts for their increased proportion following D + T treatment

Cell Reports Medicine

compared to D alone (Figure 6D), suggesting a role in
enhancing anti-tumor effects. Cellular transition probability
analysis confirmed a higher likelihood of naive CD4" T cells
differentiating into CXCL73* CD4* T cells, indicating favorable
CD4™* T cell state changes in D + T (Figure 6E). However, overall
cellular transition analysis revealed a rapid shift of CD4* T cells
toward immunosuppressive 4-1BB* Tregs in D + T (Figure 6F).
Notably, CTLA-4 and KLRB1 were among the top velocity
genes (Table S11). Differential expression analysis between
D + T and D revealed upregulation of interleukin-2 (IL-2)-
signaling pathway genes, suggesting that IL-2 signaling drives
the rapid transition of the CD4* compartment toward immune
suppression via 4-1BB* Tregs (Figures 6G; Table S12). IL-2
signaling, known to promote Treg-mediated immune suppres-
sion,®" was significantly more upregulated in 4-1BB* Tregs in
D + T compared to D (Figure 6H). Glycolysis, known to exacer-
bate Treg suppressive functions, was not downregulated in
4-1BB* Tregs under D + T, providing mechanistic insights
into our observed clinical inefficiency® (Figure 6l). In addition,
CD8* Tpex subsets exhibited a lower increase in stem-like
signature (Figure S7L), reflecting an unfavorable immunosup-
pressive TME post-D + T. Overall, our findings suggest that
while CTLA-4 blockade combined with PD-L1 inhibition ex-
pands CXCL13* CD4" T cells to enhance immunotherapy, IL-
2-driven activation of suppressive 4-1BB* Tregs counteracts
this effect, ultimately limiting the benefit of dual immuno-
therapy. Thus, CTLA-4 blockade exerts a dual effect—
enhancing anti-tumor immune responses while concurrently
promoting immunosuppressive mechanisms.

Neutrophil senescence and CCls are involved in ICI
responses

Myeloid and B cells within the tumor also influence ICl response.
Through subclustering analysis, we identified eight myeloid cell
subsets (Figure S11A; Table S13) and seven B cell subsets®®
(Figures S12A and S12B; Table S14). Notably, the senescence
module genes previously identified in malignant cells were prom-
inently expressed in neutrophils (Figure S11B). Moreover, the
senescence module score of neutrophils was significantly higher
post-D+T compared to post-D (Figure S11C), suggesting a pre-
viously underappreciated role of neutrophils in immunotherapy.
Furthermore, interferon-stimulated genes, including [RF1,
ISG20, IFIT2, IFIT3, and STAT3, were among the DEGs in neutro-
phils. Gene set enrichment analysis using Reactome pathways®*
revealed that neutrophil DEGs were significantly enriched in the
interferon signaling pathway (p < 0.001, hypergeometric test). A

Figure 5. Identification of ICI-resistant Tpex subpopulation

(A) Conceptual depiction of TCR-based selection and identification of tumor-specific exhausted T cells (Tex) and progenitor exhausted T cells (Tpex).

(B) Dot plot of selected genes significantly upregulated in specific subsets of tumor-specific CD8* T cells.

(C) Average expression genes in Tex and Tpex (Tpex1 + Tpex2). Red dots indicate significantly upregulated genes in each group calculated by two-sided t test.
Key genes associated with memory/exhaustion/dysfunction are highlighted in green.

(D) Scatterplot of ratio differences (post-ICI minus pre-ICl) for patients with TCR information. Pearson correlation coefficient and its p value is depicted. Ratio were

calculated as Tpex1/(Tpex2 + Tex).

(E) RNA velocity streamline plot for tumor-reactive CD8* T cells in non-responder group (left) and responder group (right).
(F) Cell transition probability density for Tpex1 to Tpex2 (left) and persistence of Tpex2 (right).

(G) Reverse transition of Tex to Tpex1 (left) and Tpex2 (right), for non-responder and responder group. p values are calculated via Kolmogorov-Smirnov test.
(H) Proportion of tumor-specific CD8"* T subclusters identified via Seurat label transfer algorithm. Datasets were divided by cancer type, ICl treatment, and
response group as annotated by the original authors. p value significance: *p < 0.05, *p < 0.01, ***p < 0.001, and ****p < 0.0001; ns, non-significant.
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Figure 6. Combinatorial ICI effect inhibition in the CD4* T compartments

(A) UMAP of CD4* T cells extracted, re-normalized, and re-clustered.

(B) CTLA-4 expression colored in the CD4" T cell UMAP dimension.

(C) Percentage of clones that are expanded (n > 1) and that are single (n = 1) for three CD4* T cell types. p values are calculated via Wilcoxon rank-sum test.

(legend continued on next page)
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therapy-induced neutrophil acquired an interferon gene signa-
ture, which is crucial for effective immunotherapy.®*°® Notably,
combinatory immunotherapy enhances neutrophil senescence
more than monotherapy, driven by interferon signaling. This
highlights a mechanistic role of interferon-stimulated neutrophils
in immunotherapy response through senescence induction.

Finally, we analyzed changes in CCls across all immune
cell subsets using MultiNicheNet (STAR Methods). Notably,
interactions involving tumor-associated macrophages, Tstr,
and 4-1BB* Tregs were increased in non-responders but
decreased in responders, suggesting their role in ICl resistance
(Figure S11D). These findings underscore the importance of
CCls with immunosuppressive cell subsets in driving resistance
to ICl therapy.

DISCUSSION

In this study, we identified key factors influencing the response to
neoadjuvantimmunotherapy with durvalumab (anti-PD-L1) mono-
therapy and its combination with tremelimumab (anti-CTLA-4) in
HNSCC. We report enhanced activation of CD8* T cell
TNFRSF9 and senescent malignancy in ICI responders, with the
addition of possible neutrophil activation mediated by interferon
pathways. In addition, we observed key immune suppressive ac-
tivity in specific subset of TNFRSF9* Tregs, which may be a suit-
able target in parallel with ICls, instead of complete Treg depletion
and inducing severe immune-related adverse events (irAEs).
Lastly, our findings suggest that Tpex can be further divided into
two subtypes, with one conversely contributing to ICl resistance.
Strikingly the balance of these two subtypes of Tpex could predict
therapy response across multiple tumor types.

Using NMF and a network-based computational approach, we
identified core gene signatures in both malignant cells and CD8*
T cells. Our results highlight not only the pre-existing immunolog-
ical states of CD8* T cells that enhance ICI responsiveness but
also the intrinsic properties of malignant cells that predispose
them to ICl-induced clearance. Notably, while the senescence
module was initially identified in malignant cells, we also
observed its upregulation in neutrophils of the responder group.
This aligns with prior reports of ICI-elicited neutrophil accumula-
tion during successful immunotherapy.®>°® However, the asso-
ciation between combinatorial ICI treatment and neutrophil
senescence requires further investigation.

Early post-ICI T cell expansion relative to baseline has been es-
tablished as a strong indicator of response,***¢ as expanded sam-
ples exhibit heightened cellular cytotoxicity and enhanced immune
cell interactions within the TME. However, in this neoadjuvant
study, we found that early CD8" T cell expansion did not correlate

Cell Reports Medicine

with tumor regression. In addition, tumor regression (and propor-
tion of CXCL13* Tex) was not correlated with the interval between
ICl administration and surgery. This suggests that, in the neoadju-
vant setting, successful immunotherapy may rely more on the pre-
existing state of tumor-infiltrating T cells rather than “clonal
replacement.” In addition, the expansion of bystander CD8*
T cells may obscure early T cell responses post-ICl treatment.

Our findings underscore the importance of identifying Tpex
population in neoadjuvant immunotherapy, which was computa-
tionally feasible through single-cell TCR profiling. Notably, we
observed that the ICl-resistant Tpex2 and ICl-responsive Tpex1
subpopulations could explain response heterogeneity across
multiple cancer types, highlighting their pivotal roles in the pan-
cancer ICl context. Based on these findings, we propose a predic-
tor model that categorizes tumor-specific CD8" T cells into Tpex1
(stem-like precursors associated with favorable ICI response),
Tpex2, and Tex (cell states linked to ICI resistance). Evaluating
the baseline ratio of these subsets may predict immune microen-
vironments conducive to successful ICI treatment.

Limitations of the study

Our study has several limitations. The short observation window
between baseline and post-ICl treatment may not capture the full
spectrum of immune adaptation to checkpoint inhibitors. Some
patients may require a longer duration for their immune environ-
ment to fully respond, restricting our findings to predisposed dif-
ferences that define early ICI responses. Moreover, due to sam-
ple availability for translational analysis, we analyzed 29 patients
with available single-cell transcriptomic data, although 45 pa-
tients were enrolled in the clinical study and there were no signif-
icant differences in baseline characteristics between patients
with and without available samples for translational analysis
(Table S15). Due to the known gender bias of head and neck can-
cer toward male, our cohort mostly consisted of male subjects.
In addition, our results do not address long-term therapeutic ef-
fects, resistance mechanisms, or irAEs,”” which are critical for
sustained ICI efficacy. Finally, future studies should integrate
epigenetic and spatial transcriptional analyses of the TME to bet-
ter characterize the differentiation trajectory of Tpex1 toward
Tpex2. Understanding this suppressive transition will be essen-
tial for identifying mechanisms to sustain ICI responses and pre-
vent tumor relapses.

RESOURCE AVAILABILITY

Lead contact
Requests for further information and resources should be directed to and will
be fulfilled by the lead contact, Hye Ryun Kim (nobelg@yuhs.ac).

(D) Mosaic plot of post-ICI CD4* T cells that express CTLA-4 (expression above 0). The yellow line indicates the expected ratio. Pearson residual p values are

colored red or blue if significantly depleted or enriched, respectively.

(E) Transition probability density of selected cell-to-cell transitions for monotherapy (D) and combination group (D + T). p values are calculated via Kolmogorov-

Smirnov test.

(F) RNA velocity streamline plot for CD4* T cells in monotherapy group (left) and combination group (right).

(G) Volcano plot of differentially expressed genes in 4-1BB* Tregs with positive log fold values for combination group. Genes above 0.25 log2 fold change and
under adjusted p value (Benjamini-Hochberg) of 0.05 are colored in red. Green text indicates genes associated with IL-2 signaling.

(H) Split violin plot for module score of “IL-2-STATS5 signaling” term (collected from BioPlanet 2024) in CD4* T cell subclusters divided by therapy group.

(I) Top 10 enriched terms (from BioPlanet database) of 4-1BB* upregulated DEGs in combination group, sorted by g value, adjusted via Benjamini-Hochberg
method. The red dashed line indicates adjusted p value of 0.05 p value significance: *p < 0.05, *p < 0.01, **p < 0.001, and ***p < 0.0001; ns, non-significant.
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Materials availability
This study did not generate new, unique reagents.

Data and code availability

® Theraw and processed scRNA-seq and scTCR-seq data generated in this
study have been deposited in the Gene Expression Omnibus database
(https://www.nicbi.nim.nih.gov/geo/) under GEO: GSE286827. Cell types
identified in this study and their clonotypes (i.e., tumor-specific CD8"
T cells) are also made available.

@ This paper does not report original code.

® Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Pre- and/or post-treatment head and neck cancer tissues were obtained from 29 patients (27 male and 2 female) who underwent
surgery between January 2019 and December 2020 at Yonsei University Severance Hospital. The cohort had a median age of 60
years 13 patients were enrolled in the monotherapy group, and 16 patients were enrolled in the combination therapy group. The
studies were approved by the Institutional Review Board of Yonsei University Severance Hospital with IRB No 4-2018-0787. Written
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informed consent was obtained prior to enroliment and sample collection at Yonsei University Severance Hospital. The research con-
formed to the principles of the Helsinki Declaration.

METHOD DETAILS

Generation of scRNA-seq and scTCR-seq data

Libraries were prepared as previously described method.® Briefly, freshly harvested tumor tissues were processed using a gentle-
MACS dissociator (Miltenyi Biotec, Gladbach Bergisch, Germany, Cat#130-093-235) and the Human Tumor Dissociation Kit (Miltenyi
Biotec, Cat#130-095-929) following the manufacturer’s protocol. Tissue-infiltrating lymphocytes were isolated using a Ficoll gradient
(Sigma-Aldrich), and single-cell suspensions were counted using trypan blue.

Samples diluted to cell count of 10,000 with nuclease-free water were prepared using the Chromium controller, following the pro-
tocol outlined in the 10x Chromium Next GEM Single Cell 5’ v2 Cell Surface Protein User Guide (CG000330). With a master mix,
diluted samples loaded alongside Single Cell 5’ Gel Beads and Partitioning Oil into a Next GEM Chip K. The resulting cDNA molecules
were pooled and underwent PCR enrichment. The amplified cDNA was then size-selected to create 5’ Gene Expression libraries, V(D)
J Enriched Libraries, and Cell Surface Protein libraries.

Quantification of the purified libraries was performed using gPCR following the KAPA gPCR Quantification Protocol Guide. Library
quality was assessed with the Agilent 4200 TapeStation. Sequencing was conducted on the lllumina HiSeq platform according to the
specified read length in the user guide.

Preprocessing and cell type annotation of scRNA-seq data

Quality control was performed for individual sequencing batches based on mitochondrial gene percentage, sequencing depth per
cell, and the number of expressed feature genes per cell. Doublet cells were identified and removed using scDblFinder
(v1.16.0),° and cells with a read depth below 1,000 were excluded.

Malignant and immune cell compartment were delineated through a two-step process. First, Harmony(v1.2.1)°° was applied to
correct for platform- and patient-specific batch effect across the dataset. Epithelial clusters expressing malignant cell marker genes
(e.g., KRT5, KRT14, KRT16, KRT17)°° were identified using the standard normalization, dimension reduction, and Louvain clustering
pipeline provided by the Seurat(v4.4.0) package.®’ Next, to distinguish malignant from normal epithelial cells, we employed
scATOMIC(v2.0.3),°° a pan-cancer reference-based classification tool that integrates CNV and expression profile using a pre-trained
random forest model. Identified malignant cells underwent preprocessing with log normalization and dimension reduction. From the
4,000 variable genes extracted, those associated with ribosome, mitochondria, immunoglobulin, and T cell receptors were bla-
klisted.®® For downstream analysis, 35 principal components (PCs) were used for non-linear UMAP dimension reduction. Finally,
SCEVAN(v1.0.0)®® was applied to malignant cells to assess chromosomal amplification and deletion.

For the remaining immune and stromal cells, SCT normalization®* was performed using 4,000 variable genes (excluding blacklisted
genes) and 35 PCs. A resolution of 0.4 was chosen to define 20 broad immune and stromal cell subtypes. Marker genes were identified
using FindMarkers() with the Wilcoxon rank-sum test and Benjamini-Hochberg P-value adjustment. For immune subclusters of CD8*
T cells, CD4* T cells, Macrophages, and B cells, normalization was performed per sequencing batch using either log normalization
via the NormalizeData() or SCT transformation via SCTransform(). Cell cycle gene effects were regressed out using ScaleData(). The
top 4,000 variable genes were selected after applying the same blacklisting procedure across all immune subsets. Dimension reduction
was performed using 30 PCs. To identify biologically relevant immune subclusters, we performed two rounds of clustering for each im-
mune subset, initially matching the original broad selection criteria (CD8* T, CD4* T, macrophage, and B cells). Misclassified cells were
removed, and the remaining cells were reprocessed. This step was particularly crucial for distinguishing CD4* T cells from CD8" T cells,
as many ambiguous cells were mislabeled during the initial broad immune cell classification. The absolute count of all identified cell
types analyzed in our study is given per sample in Table S1.

Identifying malignant cell programs

Malignant cell programs exhibit high heterogeneity depending on the origin of patients. To identify consistent cellular programs
across patients, we partitioned malignant cell dataset into functional gene programs using consensus non-negative factorization
(cNMF), following approaches inspired by Gavish et al.’® and Barkley et al."’

We leveraged the cNMF package® to determine the optimal K parameter (ranging from 2 to 10) for each sequencing batch,
using a diagnostic plot that evaluate data stability and error scores. For each malignant cell batch, cells with zero reads and
genes with zero reads were filtered out. Sequencing batches with more than 100 remaining cells after filtering were included
in the cNMF analysis. The cnmf prepare command was run with n-iter = 100 and numgenes = 4000. After examining the diag-
nostic plots generated for each batch, the K parameter was individually selected and used for the cnmf consensus command,
with a density threshold of 0.01. Only coding genes from the Consensus Coding Sequences (CCDS) database®® were consid-
ered for the analysis.

The cNMF Z score output of variable genes ("over dispersed genes" identified by cNMF) was used to extract modules from
individual samples. A gene was included in a sample-specific module if (1) its rank among cells was above the average and (2)
it had the highest rank among the K modules. Using this approach, we identified 209 modules from 57 samples. To retain only
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modules with notable overlaps across samples, we filtered out patient-specific gene programs by calculating pairwise Jaccard
indices. Modules were retained if they had a Jaccard index score of at least 0.05 with at least 50 other modules (approximately
the top 25% of the data). This resulted in 70 modules that were consistently detected across multiple samples, which were used to
construct the meta-module cancer program. A heatmap of the 70 modules was generated based on hypergeometric test P-values
(-log10), using the entire CCDS coding gene space as the total gene space. The result confirmed significant overlap between mod-
ules across patients.

To define distinct functional meta-programs incorporating the filtered consensus modules, we developed a computational frame-
work to construct non-overlapping gene sets from the 70 modules. First, the top 100 genes by Z score were extracted from each
module to ensure equal weights across modules with varying gene sets. Next, a co-occurrence matrix was generated for each
gene, representing the ratio of co-occurrence frequency to the sum of individual frequencies. The resulting adjacency matrix was
then used to construct a gene-gene network. Non-overlapping network community detection was performed using the Louvain al-
gorithm, with a resolution parameter of 1.2, resulting in nine meta-programs. The functional roles of each gene set were analyzed
using gene set analysis (GSA) on KEGG, GOBP, and MsigDB databases. The genes within each of the nine meta-programs, sorted
by degree centrality, are listed in Table S2. Meta-program names were assigned based on enriched functional terms from these da-
tabases and gene overlap with meta-program identified by Gavish et al.

Identification of meta-programs associated with ICI response

Meta-programs associated with ICI tumor regression were evaluated with the assumption that each malignant cell is driven by a sin-
gle representative malignancy program. Meta-program scores were calculated for individual cells using the top 50 genes (ranked by
degree centrality) with the AddModuleScore() function. Each cell was then assigned to one of the nine meta-programs based on its
highest enrichment score. Pie charts were generated for individual patients and treatment response groups based on this classifi-
cation. For each patient, the proportion of cells assigned to each meta-program was calculated. Pearson correlation coefficients
were used to identify the meta-programs most strongly associated with ICI response. The "CC Translation" program showed the
strongest negative correlation, indicating an association with ICI nonresponse, while "Epithelial Senescence" program showed
the strongest positive correlation, indicating an association with ICI response.

To derive the senescence program signature genes, we manually reviewed the top central genes of the Epithelial senescence pro-
gram for functions related to tumor suppression and/or immune system upregulation, based on prior research. We found that the
transcription factor ELF3 (ranked 3rd by centrality) was strongly associated with age,®” as expected. PDZK1IP1 (ranked 5th by cen-
trality) is supported in the literature as a tumor suppressor gene®®°® and was also part of the MP19 Epithelial Senescence program
proposed by Gavish et al.’® Upon examining the direct network neighbors of PDZK1IP1, we identified genes such as TNFSF10,
OAS1, CXCL17 and others that are known to be involved in immune system regulation. Based on these findings, we defined this sub-
set of genes as the "senescence program" and used this term throughout the manuscript. The enrichment of the senescence pro-
gram in individual cells was calculated using the AddModuleScore() function. The variance of the enrichment scores was calculated
with the var() function from base R, and the difference of variance (pre-vs. post-ICl treatment) was statistically tested using the lev-
eneTest() function from car package.

Assessment of senescence program for ICl response predictions

To assess the effect of signature genes in bulk RNA cohorts, we collected publicly available studies from the Tumor Immunotherapy
Gene Expression Resource (TIGER).”” Immune signatures known to be associated with ICI response were obtained from individual
studies.”’ In addition to those in the TIGER database, we gathered data from three other studies: Hsu 2021 (HCC),”® Ende 2021
(EAC),”® Rose 2021 (UC).”* All cohorts were further divided into their ICI treatment group (e.g., anti-CTLA-4, anti-PD-1). After data
collection, we applied the following filtering criteria: datasets with fewer than 10,000 genes were excluded; samples with an unknown
response status (e.g., UNK) were discarded, and only those labeled as "responder" or "non-responder" were retained. We selected
16,247 coding genes as the total gene space, assigning a value of 0 for genes not present in a sample. Datasets with fewer than 30
samples were also excluded. In addition, we removed VanAllen and Braun data, as they showed no predictive power for any of the
signatures tested (average AUROC approximately 0.5). As a result, we proceeded with 8 bulk cohorts, comprising a total of 549
samples.

Eight random forest (RF) classifiers with a maximum tree depth of 5 were constructed with 7-fold cross validation, where the clas-
sifier was trained on 7 studies and tested on 1 other study. We selected Ayer et al. gene set®' as the representative immune gene set,
as it has consistently demonstrated strong predictive performance across multiple independent bulk RNA-seq studies. The
ESTIMATE algorithm®* was used to infer stromal, immune, and tumor purity. Stromal score, tumor purity, and Ayer module score
were used as the predictor for each of the 8 RF models, which were compared to models that included the senescence program
as an additional predictor. The senescence program score and Ayers signature were measured using GSVA’® and the tree models
were constructed with the rpart package in R (v4.1.23). The final ensemble model was created by averaging the probability scores
from the eight individual RF classifiers, which was used to assess the performance changes when adding the senescence program as
a predictor. We observed that 7 out of 8 individual RF models showed similar or improved performance when the senescence pro-
gram was included as a predictor.
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Composition analysis of immune cells with Pearson residual

To investigate proportional changes between sample groups (e.g., Mono vs. Combination therapy) across cell subsets defined by
clustering, we evaluated deviations in the observed cell count for each group from the expected count for a subset using Pearson
residual (rj):

O; —Ej
VEi
where i and j represent indices for each group and cell subsets, respectively, and O and E represent the observed and expected cell
counts, respectively. The expected cell count for a group i of a subset j was calculated by the following equation:
Ti

Ej=——xT,
! Ttot !

rij =

where Ty, Tj, and T; represent total cell count for the entire dataset, total cell count for a group /, and total cell count for a subset j,
respectively. The advantage of the Pearson residual is that the sign of the residual indicates the direction of the difference of the
observed count from the expected count (i.e., positive for augmentation and negative for depletion compared to expected count).
Pearson residual (r) follows an approximately normal distribution; thus, scores larger than 2 or smaller than —2 are significant by
p < 0.05. We considered only cell subsets with r > 3.5 (augmentation) and r < —3.5 (depletion) for follow-up functional interpretation.
We visualized the results of the goodness of fit test using a mosaic plot, in which subsets with deviation in observed cell counts from
the expected cell counts are indicated by blue (augmentation), red (depletion), or gray (no significant change) colors. The goodness of
fit for all subsets was also evaluated by the chi-square statistic (p value).

Identification of marker genes for each cell type

To minimize technical artifacts associated with sequencing depth across patients and platforms, we applied SCT normalization to
identify marker genes for each cell type. Marker gene identification was performed using the FindAlIMarkers() function from the Seurat
package with default parameters. For differential expression analysis comparing ICI response and treatment arms, we used the Find-
Markers() function with default parameters.

Given the large sample size (n = 57) and the multi-subject nature of our study, we applied a negative binomial mixed model
(NEBULA)** proposed by He et al. to identify genes associated with ICI response and treatment arms. NEBULA accounts for both
cell-level and subject-level overdispersion, reducing false-positive findings compared to the naive Wilcoxon rank sum test commonly
used in single-cell studies at the patient level.”® We specifically used NEBULA-HL, which is based on the standard h-likelihood
method as it demonstrated the highest performance in an independent benchmark study.’” Assuming that each predictor indepen-
dently effects gene expression, we modeled gene expression using the following formula:

Expression ~ celltype + ICI time + ICI type + ICl response,

where individual gene expression is modeled based on ICl time indicating pre or post treatment, cell type indicating the subclusters
of celltypes (e.g., Tstr of CD8" T cells), ICI type indicating mono (D) or combination (D + T) therapy, and ICI response indicating the
responder (R) or non-responder (NR) label. A summary of significant genes (p < 0.05) identified by NEBULA-HL is provided in
Table S5.

Differentially expressed genes along cell lineages

To identify DEGs between responder and non-responder cell groups within the activated CD8* T cell lineages (from Tpex to HSP and
Tpex to Tex), we used the ConditionTest() function from tradeSeq (v1.12.0).”® For log2 fold change (/2fc), a threshold of 1 was set to
detect genes with at least a 2-fold change. The Wald test was used to assess significance, and P-values were adjusted using the
Benjamini-Hochberg method, retaining genes with g < 0.05. The significance determined by the Wald test provided evidence of
gene expression differences associated with ICI response along the identified tumor-reactive CD8" T cell trajectory.

RNA velocity analysis

RNA velocity was analyzed using the scVelo'* package (v0.2.4). Briefly, scVelo quantifies the time-dependent relationship between
unspliced and spliced mRNA without assuming a steady state. RNA velocity was inferred using the "dynamic" model, with n_pcs = 30
and n_neighbors = 30 specified in the scv.pp.moments() function. The transition probability matrix was computed using scv.utils.
get_transition_matrix() function and subsequently normalized. For each "start" cell, the transition probabilities of all target cells
were summed to account for differences in cell abundance. Instances of zero probabilities were excluded. The resulting probability
matrix was visualized as a density plot for selected T cell subsets using the ggplot2 package in R. Significant differences between
density distributions were assessed using a two-sided Kolmogorov-Smirnov test.

Stemness signature analysis

The stemness signature genes from Sade-Feldman et al.*” were used to score tumor-reactive T cells using the AddModuleScore()
function in the Seurat package. As proposed by Tirosh et al.,”® the average expression of the stemness signature genes was
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computed and adjusted by subtracting the aggregated expression of control feature sets. Control feature sets were defined by
binning all analyzed genes into 25 bins based on the aggregate expression levels. For each gene in the stemness signature set,
100 genes were selected from the same expression bin to construct a control gene set. This approach ensures that the control feature
sets have a comparable expression distribution to the stemness gene set (or any gene set under investigation). In addition, since each
gene in the stemness signature set is matched with 100 control genes, the control gene set is 100-fold larger, making its average
expression comparable to the mean of 100 randomly selected gene sets of the same size as the stemness signature set.

Pseudotime analysis

Pseudotime analysis was performed using Slingshot® (v2.0.0) and tradeSeq”® (v1.12.0). Log normalized gene expression values
were used to infer pseudotime, with dimensionality reduction performed using Harmony, followed by UMAP embedding. For
CD8* T cells, the start.clus parameter was set to Tpex1, and end.cluster parameter was set to Tex. To identify genes associated
with pseudotime, the evaluateK() function from the tradeSeq package was used to determine the optimal k parameter. Based on
this evaluation, nknots = 6 was selected for fitGAM|).

Cell-cell interaction analysis

Similar to the DEG analysis, the multiple-sample and multi-condition design of our study posed challenges in calculating differential
cell-cell interactions. To address this, we utilized the MultiNicheNet package (v.2.0.0) (https://github.com/saeyslab/multinichenetr).
MultiNicheNet accounts for inter-sample heterogeneity using mixed models and pseudobulk aggregation.®' Cell-cell interactions
were considered differential between groups if they met the following parameter threshold: min_cells = 10, min_sample_prop =
0.5, fraction_cutoff = 0.05, logFC_threshold = 0.5, scenario = "regular". For cases where the distribution of DE p-values was not uni-
form, we set empirical_pval = TRUE, following the recommendations of the MultiNicheNet developers. Among CD8" T cell subclus-
ters, the TNFSF9-TNFRSF9 interaction between CXCL13* Tex cells and other CD8" subsets ranked within top 10 interactions, as
determined using the get_top_n_Ir_pairs() function, with rank_per_group = TRUE for post responder group. We only considered up-
regulated interactions in the post-ICl treatment group, as "downregulation" of cell-cell interactions can be misleading due to variation
in baseline expression across human samples. Notably, an observed decrease in interaction post-treatment may also be interpreted
as an increase in pre-treatment depending on the reference baseline.

Dual immunohistochemistry staining

Paraffin-embedded post-surgery tumors were sectioned by 2—-4 um thick slice on coated-slide, then de-paraffinized, and rehydrated
by gradient ethanol solutions. Heat-induced antigen retrieval was performed with low pH citrate buffer. Samples were then incubated
with anti-human CD137 (gene symbol; TNFRSF9, CST, Cat#34594S, Clone#D2Z4Y; diluted 1:50), or anti-human 4-1BB ligand (gene
symbol; TNFSF9, Invitrogen, Cat#14-9056-82, Clone#5G11; diluted 1:150). Secondary antibody incubation and chromogenic reac-
tion were performed with SignalStain IHC Dual Staining Kit (AP, Rabbit, Red/HRP, Mouse, Brown, CST, Cat#36084) according to the
manufacturer’s protocol. The images were acquired by slide scanning microscope (Olympus, BX43).

Analysis of tumor-specific CD8* T cell subsets

To analyze pan-cancer tumor-specific CD8"* T cell subsets and their relationship with immunotherapy response, we performed scRNA-
seq analysis using datasets from multiple cohorts, focusing exclusively on tumor biopsy samples. The analyzed datasets included
GSE123813,%” SRP308561,%> GSE120575,"” GSE176021,%* GSE179994,"'° GSE207422,%° SCP1288,%° and GSE169246,%” covering
cancer types such as basal cell carcinoma (BCC), non-small cell lung cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), mela-
noma (Mela), squamous cell carcinoma (SCC), and triple-negative breast cancer (TNBC).

For some datasets (GSE123813, SRP308561, GSE120575, GSE207422, and GSE169246), pre-processed and quality-controlled
data from the respective studies were used. However, additional quality control (QC) steps were required for the remaining datasets.
Using the ddqc R package,®® QC metrics were computed with the ddgc.metrics() function, and the filtering thresholds were adjusted
from the default value of 2 to 1 to enforce stricter cell selection criteria. Doublets were identified using scDblFinder,*® with a uniform
doublet rate of 0.06.

Gene symbols were standardized to GRCh38-based official symbols using the limma and org.Hs.e.g.,.db R packages to ensure
consistency across datasets. The alias2SymbolTable() function was used to map gene aliases to their official symbols, enhancing
annotation accuracy.

CD8* T cells were initially identified using Celltypist,” with the prediction label "T cells" extracted from the collected datasets. To
obtain tumor-specific CD8" TILs, we applied the following filtering criteria: cells with CD8A expression > 0, CD4 expression = 0, and
ITGAE and ENTPD1 expression > 0.°? For label transferring, the Seurat integration method was used with the TransferData() function
and default parameters. For each cell, a score for the input query cell type was calculated, and the maximum score was selected as
the final predicted cell type.

189

scTCR-seq data analysis and identification of tumor-reactive T cells
For the analysis of TCR sequence reads, we used 10x output filtered_contig_annotation.csv files. Barcodes were mapped to the GEX
transcriptomes and included as columns in the metadata slots of Seurat objects. Clonotype was defined using the "CTstrict" method
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from the scRepertoire (v1.3.3) package (https://github.com/BorchlLab/scRepertoire), which combines the V gene with a >85%
normalized Levenshtein distance of the CDR3 region sequence. The expansion status of clonetypes was determined using the ta-
ble() function in base R (v4.0.3). Expanded clonotypes were classified as those containing either five or more cells belonging to
the same clonotype, or fewer than five but more than one cell with the same clonetype.

Tumor-reactive T cell extraction, leveraging TCR information, was inspired by Liu et al.'® Among CD8" T cells, we separately iden-
tified cells with identical clones from the exhausted subset (CXCL13* Tex cells), under the assumption that these represent cells that
confidently encountered tumor antigens. Including CXCL13"* Tex cells, we extracted these T cells and preprocessed the data with
Seurat pipeline, allowing us to categorize tumor-reactive T cells into various cellular states.

Network analysis of CXCL13* Tex cells

False positives from standard DEG analysis, particularly when working with large patient cohorts in scRNA-seq data, can complicate
the interpretation of results. To extract biologically relevant genes associated with ICI response, we leveraged scHumanNet, '® a cell-
type specific gene network modeling method from our previous work. scHumanNet complements DEG analysis by identifying genes
with statistically distinct network topology between different groups within a given cell type. Genes exhibiting differential hubness
often reflect critical functional differences, and we hypothesized that differential hub genes in CXCL13* Tex cells between responders
and non-responders would reveal key functional differences related to varied ICl responses, particularly in neoadjuvant settings. This
hypothesis is supported by the observation of persistent clonal expansion (clones present in both pre- and post-ICI conditions),
which account for most of the expanded T cells in our dataset and has also been observed by others.”' These findings suggest
that pre-existing resident CD8" T cells are the key cell type involved in neoadjuvant ICI response.

We focused on genes modeled in both the response and non-response network (pre-ICl treatment), as group specific genes did
not show significant enrichment of T cell functions. We hypothesized that genes with decreased network centrality in non-responders
compared to responders are critically dysregulated and associated with the maintenance of ICI response. Differences in centrality
ranks have previously been shown to identify biologically important genes.’® In the responder CXCL13* CD8 T cells, we identified
a subcommunity containing 129 genes highly relevant to T cell functions. Within this subcommunity, we extracted 43 genes with
higher centrality (percentile rank to normalize for node size difference) compared to non-responder network. By ranking these genes
based on their network centrality, we defined the top 30 genes as the "responder signature", which is summarized in Table S6.

CXCL13* Tex cell type specific networks were constructed for each patient. To assess the similarity of networks, we first con-
structed a binary vector by taking the union of all nodes from each patient-specific network as the total vector space. We then calcu-
lated the Euclidean distance between nodes, assigning a value of 1 in the node existed in the network and 0 if it did not. The edges of
the network are determined by the modeled nodes, based on the reference interactome algorithm implemented in scHumanNet.

Geneformer foundation model fine-tuning analysis

We leveraged the Geneformer foundation model'” to assess the effect of signature genes we derived in the context of neoadjuvant
immunotherapy response. The model was pretrained with data from 30 million cells using a 12-layer transformer architecture. We
fine-tuned this model with our input data, which comprised of 172,478 immune cells (macrophages, B cells and T cells). Before to-
kenizing the data, we filtered the genes to include only coding genes from the CCDS database (version 20221007). Fine-tuning was
performed by retraining the last 4 layers of the Geneformer model, with the objective of classifying cells as responders versus non-
responders. Changing the last n-layer parameter (freeze_layer) had minimal effect on the overall classification performance, with the
total AUC achieving approximately 0.99. Hyperparameters included a max input size of 2,048, max learning rate of 0.00005, warmup
steps of 10,000. 10 epoch, a linear scheduler, and 0.001 weight decay. We used the AdamW stochastic optimizer. For each gene, we
modeled the embedding shift of CXCL13* Tex cells from the responder state to the non-responder state by removing the expression
rank. We used 3,804 housekeeping genes, downloaded from Eisenberg et al.,°" as control. Additionally, we randomly sampled 100
genes from the resulting perturbation output (perturb_data()) of the Geneformer package for comparison. A positive value of the
cosine similarity shift indicates a shift of immune cells toward the non-responder state.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R v4.0.3. The statistical methods and details of data presentation are provided in the figure
legends. Software packages and their versions used for each analysis are described in the Methods section. Statistical significance
was defined as p-values or FDR <0.05 (*, p < 0.05; **, p < 0.01; ***, p < 0.001; and ****, p < 0.0001). The number of samples or inde-

pendent experiments is indicated in the main text or figure legends.

Additional resources
This trial was registered at ClinicalTrials.gov: NCT03737968.
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