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As the importance of the prevention and premanagement of cardiovascular and cerebrovascular 
diseases continues to emerge, research is being conducted globally to create and compare risk factor 
prediction models using health examination big data. In this study, health insurance data were used 
to predict the incidence of cardiocerebrovascular disease using various models and compare the 
performance of the models on samples with different initial risk levels. This study analyzed data from 
410,859 individuals from the National Health Insurance Service between 2002 and 2019. This study 
deployed various linear models to predict the occurrence of cardiocerebrovascular diseases in two 
distinct samples. Models based on logistic regression analysis with penalty terms on the objective 
function were used, and their predictive performances were compared using multiple evaluation 
metrics, including the area under the receiver operating characteristic curve. The logistic regression 
model incorporating variables selected by the LASSO algorithm exhibited superior predictive 
performance relative to other models, although the differences were not statistically significant. 
The models demonstrated improved performance for samples with higher incidence rates and initial 
risk levels. This study predicted and compared the incidence of cardiocerebrovascular disease (CCVD) 
in patients with different health conditions using national sample cohort data from the National 
Health Insurance Service. The findings underscore the importance of developing diverse models to 
predict diseases like CCVD, which have high medical costs and incidence rates, thus informing the 
development of healthcare policies.
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Abbreviations
AUROC	� Area under the receiver operating characteristic curve
BMI	� Body mass index
CCVD	� Cardiocerebrovascular disease
DALY	� Disability-adjusted life-years
FN	� False negative
FP	� False positive
NHIS-NSC	� National Health Insurance Service National Sample Cohort
SBP	� Systolic blood pressure
TN	� True negative
TP	� True positives
IHD	� Ischemic heart disease
AMI	� Acute myocardial infarction

Due to an aging population and shifts in health behaviors, the incidence of cardiovascular diseases is steadily 
rising, contributing to an increasing burden in terms of both disease prevalence and medical expenses1–3. In 
Korea, the mortality rate from cardiovascular and cerebrovascular diseases has risen by 7% over the past decade, 
with medical related to these conditions accounting for approximately 17% of the nation’s total healthcare costs4.
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Maintaining a healthy lifestyle is crucial for preventing cardiovascular and cerebrovascular diseases. Risk 
factors, including smoking, unhealthy eating habits, physical inactivity, and alcohol consumption, have been 
consistently linked to an increased likelihood of developing cardiovascular conditions5. As individuals age, 
prolonged exposure to these harmful lifestyle behaviors, as well as environmental factors, further elevates the 
risk of cardiovascular and cerebrovascular diseases. Consequently, as the population ages, both the incidence of 
these diseases and the associated healthcare costs are expected to rise significantly6.

Lifestyle habits related to cardiovascular and cerebrovascular diseases are modifiable, and these diseases 
can often be prevented through behavioral improvement5. Prevention and early management of cardiovascular 
and cerebrovascular are cost-effective strategies for reducing future disease burdens and mitigating soaring 
healthcare costs. Based on recent studies that utilize big data from both domestic and international healthcare 
systems, the evidence supporting the prevention of chronic diseases through healthcare interventions and 
behavioral changes has strengthened6.

Previous studies have primarily focused on utilizing large-scale health examination data to identify risk 
factors for cardiovascular diseases and develop predictive models7–10. However, most of these studies have 
relied on simple regression analyses or machine learning techniques, which pose limitations due to increased 
complexity in interpretation and issues related to overfitting. To address these challenges, this study employs 
linear models and penalized linear models, specifically LASSO and Ridge regression, to predict the risk of 
cardiocerebrovascular disease incidence. These models enhance interpretability through variable selection and 
dimensionality reduction while mitigating overfitting and improving generalizability. Furthermore, to account 
for the heterogeneity in individual health status and risk factors, this study incorporates underwriting criteria 
commonly used in private health insurance to classify the sample into two groups: the standard risk group and 
the simplified risk group, based on initial risk levels. This classification facilitates personalized risk prediction 
and enables the development of differentiated risk management strategies, thereby enhancing the practical 
applicability of the findings.

Accordingly, the objectives of this study are as follows. First, using NHIS big data, this study aims to predict 
the incidence risk of cardiocerebrovascular diseases by applying various linear and penalized linear models. 
Second, it seeks to identify key risk factors for each group categorized based on initial risk levels. By achieving 
these objectives, this study aims to provide scientific evidence to support the development of more effective 
strategies for the prevention and management of cardiocerebrovascular diseases.

In this study, linear and penalized linear models were utilized to predict the incidence of cardiocerebrovascular 
diseases. While various predictive models for major chronic diseases exist, ranging from linear models to 
machine learning approaches, many lack external validation and are highly specific to the study context, which 
limits their generalizability. Therefore, using a nationally representative sample and methodologies commonly 
employed by insurers for risk assessment and underwriting, this study applies logistic regression models due to 
their widespread use, interpretability, and computational efficiency.

Methods
Data source and study population
This study utilized the National Health Insurance Service National Sample Cohort (NHIS-NSC) as the primary 
data source to develop predictive models for CCVDs (NHIS-2022-2-318, IRB No. P01-202206-01-031). The 
NHIS covers over 97% of the population, and a random sample of 2% was extracted using the proportional 
allocation method, taking into account factors such as sex, age, enrollment type, insurance premium quantile, 
and region. Sampling was based on national health insurance enrollees in 2006, and data were collected from 
various databases, including eligibility factors (sex, age, insurance premium, etc.), health checkup information 
(body mass index [BMI], waist circumference, blood pressure, self-reported questionnaires, etc.), and hospital 
utilization data (hospital admissions, diagnoses, prescriptions, etc.) from 2002 to 2019. Additional details 
regarding the representativeness of the NHIS-NSC and supplementary information can be found in the available 
sources11 (Supplementary material).

Ascertainment of cardiovascular diseases
In this analysis, cerebrovascular disease (I60–I69) and ischemic heart disease (I20–I25) were used as dependent 
variables representing CCVDs. Subtypes of CCVDs were defined for additional analysis, including stroke (I60–
I66, excluding I64), cerebral hemorrhage (I60–I62), and acute myocardial infarction (I21–I23). The baseline year 
was 2014, and a 5-year follow-up period was used to predict newly diagnosed CCVDs. To ensure the exclusion of 
patients with preexisting CCVD diagnoses, the washout period was defined as 2010–2014 (Fig. 1).

Sample selection
The features used in the prediction models included health checkup variables that were conducted biennially. 
Initially, 418,208 participants with health checkup data available in either 2013 or 2014 and without a CCVD 
diagnosis between 2010 and 2014 were extracted. Participants with missing major examination variables or 
eligibility conditions were excluded, resulting in a total study population of 410,859 participants. Two groups 
were created to develop CCVD prediction models for individuals eligible for both private insurance types. Based 
on the conditions and operational definitions outlined in Tables  1, 126 and 413 samples met the criteria of 
the standardized insurance application form (henceforth, “standard group”) and 268,912 samples fulfilled the 
conditions of the simplified enrollment form (henceforth, “simplified group”) through restoration sampling. 
The “standard” group includes individuals who answered “No” to both Question A and Question B, while 
the “simplified” group includes those who answered “No” to both Question C and Question D. The standard 
questions are stricter regarding hospitalization, surgery, and prescriptions compared to the simplified questions. 
Therefore, the simplified group encompasses the standard group. The 15,534 individuals excluded from the 
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sample are those who answered “Yes” to any of the simplified questions. A detailed discussion of screening for 
simplified and standard private insurance enrollees can be found in the literature12.

The items in this study were selected for two purposes: to mirror questionnaire responses typically provided 
by potential insurees to insurers before commencing insurance contracts and to be operationally defined within 
the dataset. Standard screening form questions typically mandate a longer period, often up to 5 years, during 
which individuals must have experienced no medical issues, including hospitalizations, surgeries, or diagnosed 
diseases. By contrast, simplified screening forms designed for individuals with substandard health conditions 
require shorter intervals without hospitalization or surgery. Disease diagnosis is limited to severe conditions, 
such as cancer.

Table 2 summarizes the descriptive statistics of the three samples; the incidence rate of the outcomes increased 
in the order of the standard group, the simplified enrollment group, and those without any screening process 
(referred to as the ‘all’ group). In particular, the standard group exhibited an incidence rate of approximately 
one-third of the overall incidence. The distribution of health checkup indicators and age followed a similar 
pattern. The standard group samples were characterized by younger age and exhibited lower levels of fasting 

Screening form Question

Standard

A. Recent 5-Year medical procedures history

1) Hospitalization

2) Operation

3) Continued treatment for 7 days or more

B. Recent 5-Year medical procedures for 10 diseases

1) Diagnosis of confirmed disease

2) Treatment

3) Hospitalization

4) Operation

5) Medication

Simplified
C. Recent 2-year hospitalization/operation due to disease or injury accident

D. Recent 5-year diagnosis/hospitalization/operation due to cancer

Table 1.  The standardized and simplified private health insurance enrollment form. 10 diseases include cancer, 
leukemia, hypertension, angina, myocardial infarction, heart valve disease, cirrhosis, stroke, diabetes, AIDS/
HIV. The questions above are expected to be answered with ‘yes’ or ‘no’.

 

Fig. 1.  Data structure and research design.
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blood serum triglycerides, systolic blood pressure (SBP), and various other health checkup indicators or family 
history records than the other groups.

Variables
Predictor variables were selected as follows: sex and age information were extracted from the eligibility database. 
Fifteen variables were obtained from the checkup database, including BMI, waist circumference, SBP, diastolic 
blood pressure, hemoglobin, fasting blood serum, total cholesterol, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, triglyceride, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic 
transaminase, gamma-glutamyl transferase, urine dipstick test, serum creatinine, and estimated glomerular 
filtration rate.

Variables with specified thresholds were further processed to eliminate any variations in risk within the 
criteria defining the normal range for each index (Supplementary Table 1). Variables within the normal range 
were assigned a value of 0, whereas those beyond the normal range were adjusted to represent the absolute 
difference from the threshold value. This approach was adopted to estimate the incremental changes in risk 
beyond the normal range and capture the transition from no risk variation within the normal range to a 
potentially hazardous range. When the normal range provided was one-sided, a single variable indicating a 
deviation from the threshold value of the normal range was generated. For variables with a two-sided range, 
two variables representing the deviations from the minimum and maximum boundaries were generated. For 
example, if the normal range for BMI is 18.5–22.9, two variables—LOW_BMI and HIGH_BMI—were created 
to represent the distances from 18.5 to 22.9, respectively.

All Standard Simplified All Standard Simplified

I. Outcome II. Features (categorical)

Cerebrovascular 34,391 (8.37%) 3,200 (2.53%) 17,411 (6.47%) Gender

Stroke 21,043 (5.12%) 1,593 (1.26%) 10,418 (3.87%) Male 208,475 (50.74%) 67,343 (53.27%) 138,625 (51.55%)

Cerebral hemorrhage 2,697 (0.66%) 266 (0.21%) 1,332 (0.50%) Dipstick test

Ischemic heart disease 32,896 (8.01%) 2,898 (2.29%) 16,603 (6.17%) Weak positive 10,746 (2.62%) 3,039 (2.40%) 6,966 (2.59%)

Acute myocardial infarction 3,075 (0.75%) 252 (0.20%) 1,431 (0.53%) Positive (+ 1) 6,093 (1.48%) 1,259 (1.00%) 3,740 (1.39%)

II. Features (continuous) Positive (+ 2) 2,390 (0.58%) 378 (0.30%) 1,336 (0.50%)

Age (years) 50.18 (14.33) 43.16 (12.11) 48.50 (14.08) Positive (+ 3) 668 (0.16%) 90 (0.07%) 324 (0.12%)

Waist Circumference (cm) 80.53 (9.45) 78.84 (9.42) 80.26 (9.49) Positive (+ 4) 151 (0.04%) 17 (0.01%) 75 (0.03%)

BMI (kg/m2) 23.84 (3.35) 23.41 (3.33) 23.81 (3.37) Family history

SBP (mmHg) 121.91 (14.71) 118.99 (13.33) 121.65 (14.60) Stroke 25,467 (6.20%) 6,270 (4.96%) 16,136 (6.00%)

DBP (mmHg) 75.84 (9.90) 74.64 (9.48) 75.82 (9.90) Heart disease 15,331 (3.73%) 4,551 (3.60%) 9,991 (3.72%)

Hemoglobin (g/dL) 14.02 (1.63) 14.18 (1.66) 14.09 (1.63) Hypertension 56,527 (13.76%) 14,716 (11.64%) 37,189 (13.83%)

Fasting blood serum (mg/dL) 99.16 (24.01) 93.95 (15.10) 98.42 (22.95) Diabetes 42,806 (10.42%) 12,513 (9.90%) 28,160 (10.47%)

Total Cholesterol (mg/dL) 194.83 (39.18) 195.75 (37.39) 195.16 (38.99) Cancer/etc 56,411 (13.73%) 16,811 (13.30%) 35,907 (13.35%)

Triglyceride (mg/dL) 129.71 (94.64) 122.72 (92.77) 129.18 (95.18) Smoking status

HDL-Cholesterol (mg/dL) 55.43 (15.28) 56.76 (15.35) 55.61 (15.06) Quit smoking 64,262 (15.64%) 17,248 (13.64%) 40,731 (15.15%)

LDL-Cholesterol (mg/dL) 114.38 (41.91) 115.62 (43.42) 114.74 (42.96)  < 20 cigarettes/day 54,239 (13.20%) 21,103 (16.69%) 38,028 (14.14%)

Serum creatinine (mg/dL) 0.88 (0.41) 0.87 (0.35) 0.88 (0.38)  ≥ 20 cigarettes/day 37,179 (9.05%) 11,572 (9.15%) 24,177 (8.99%)

SGOT (U/L) 25.47 (17.85) 23.86 (13.93) 24.97 (15.59) Drinking status

SGPT (U/L) 24.95 (24.43) 23.86 (22.46) 24.69 (22.22) Drinker (≥ 2 times/week) 55,619 (13.54%) 16,204 (12.82%) 36,089 (13.42%)

GGT (U/L) 35.98 (49.49) 32.65 (39.95) 35.11 (45.74) Exercise

eGFR (mL/min/1.73m2) 90.15 (23.57) 93.19 (22.09) 90.76 (23.03) More than once a week 378,004 (92.00%) 113,879 (90.08%) 246,036 (91.49%)

Sample size (N) 410,859 126,413 268,912 Sample size (N) 410,859 126,413 268,912

Table 2.  Summary statistics. Abbreviations: SBP for systolic blood pressure, DBP for diastolic blood pressure, 
HDL for high-density lipoprotein, LDL for low-density lipoprotein, SGOT for serum glutamic-oxaloacetic 
transaminase, SGPT for serum glutamic pyruvic transaminase, GGT for gamma-glutamyltranspeptidase, 
eGFR for estimated glomerular filtration rate. Continuous variables are reported as mean(sd), while category 
variable statistics are presented as N(%). Gender, and dipstick test variables are categorized as female/male 
and negative/weak positive/positive(+1)/positive(+2)/positive(+3)/positive(+4), respectively. Each items of the 
family history questionnaire is expected to be answered by no/yes. Smoking status, alcohol consumption and 
exercise is categorized by non-smoker/currently quit smoking/smokes less than 20 cigarettes per day/smokes 
more or equal to 20 cigarettes per day, drinks once or less per week/drinks twice or more per week, none/
moderate or vigorous exercise more than once a week, respectively. The number and the proportion of the first 
category is omitted in the table.
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Statistical analysis
To predict the 5-year cumulative incidence of CCVDs, we utilized logistic regression and penalized logistic 
regression models, which offer the advantage of interpretability compared with black-box models. While 
complex models may improve predictive power, they often obscure the relationships between risk factors and 
outcomes. Logistic regression, widely used for binary outcomes, provides clear insights into variable importance, 
making it well-suited for clinical applications, without any severe loss of predictive ability.

To predict the 5-year cumulative incidence of CCVDs, we utilized logistic regression and penalized logistic 
regression models, which offer the advantage of interpretability compared with blackbox models. Logistic 
regression is widely used to predict binary outcomes using multiple variables. The logistic regression model is 
represented by the following equation:

	
yi = log

(
pi

1 − pi

)
= Xiβ + ϵi

By examining the signs and magnitudes of the coefficient vector ( β ) in the model, the marginal effects of each 
risk factor can be calculated, enabling a straightforward interpretation of the impact that each predictor has on 
the likelihood of developing CCVDs. Penalized logistic regression further enhances the prediction performance 
by incorporating l1 or l2 penalty terms into the objective function, reducing the size of the coefficient vector, 
and addressing the issue of overfitting. A nonnegativity constraint was also imposed on the coefficient vector, 
except for sex, as the features were preprocessed to indicate the absolute distance from the normal range of each 
health checkup variable, as previously discussed. Therefore, the objective function is given by:

	
β̂ = argminβ

{1
2

∑
N
i (yi − Xiβ )2 + λ 1||β ||1 + λ 2||β ||2

}
s.t. β ≥ 0

In the LASSO model, the l1 penalty ( λ 1) shrinks some coefficients to zero, allowing for the identification of 
the most influential predictors. This feature facilitates variable selection and the identification of key risk factors 
associated with CCVDs. Conversely, the ridge model, with its l2 penalty ( λ 2), reduces the size of the coefficients 
without reducing them to zero. These regularization techniques help reduce data dependency and improve the 
generalizability of the model. Both models provide interpretable results while effectively addressing the issues of 
multicollinearity and overfitting13–15. For model training and validation, the study population was divided into 
an 80% training set and a 20% test set. The training set was further divided into 10 folds for hyperparameter 
tuning using 10-fold cross-validation (Fig. 2).

Fig. 2.  Sample selection, and data training process.
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Evaluation metrics, such as the area under the receiver operating characteristic curve (AUROC), accuracy 
([TN + TP]/[TN + FN + FP + TP]), recall (TP/[TP + FN]), and specificity (TN/[TN + FP]), were employed to 
compare the predictive powers between samples and models, where TN, TP, FN, and FP are the number of true 
negatives, true positives, false negatives, and false positives, respectively. Given the threshold dependency of 
these metrics and the imbalanced distribution of the outcome variables, a cutoff value was selected to optimize 
both recall and specificity. Specifically, the threshold was selected from the upper-left part of the receiver-
operator curve, where the distance from the diagonal line was maximized16.

Results
Predictive performance
We use two samples in this analysis: the standard group and the simplified group. The standard group underwent 
a stricter screening process, resulting in a lower CCVD incidence rate, younger age distribution, and generally 
healthier checkup indices. In contrast, the simplified group exhibited a higher incidence rate and a less favorable 
health profile. These differences in initial risk factors, influenced by the screening process, are expected to impact 
the predictive performance of our models. Accordingly, we fitted and trained the models separately for each 
group. The training process for the models in each group was initiated via feature selection using the LASSO 
algorithm. Subsequently, logistic and ridge regressions were conducted separately to fit the selected variables. 
For comparison, logistic regression without penalty was also performed. Table  3 provides a comprehensive 
comparison of the predictive performances of these models. Within the table, “Logit” refers to a model trained 
with logistic regression without any penalty; “LASSO” refers to a model trained solely using the LASSO 
algorithm; and “LASSO & Logit” and “LASSO & Ridge” refer to models that employ logistic and ridge regression 
on the predictors selected by the LASSO algorithm, respectively. For a comprehensive evaluation of the models, 
AUROC, accuracy, recall, and specificity were used as evaluation metrics. After assessing the overall predictive 
ability, the optimal threshold to calculate accuracy, recall, and specificity was selected using the AUROC and 
its confidence interval17, regardless of the cutoff value of the models. Finally, the geometric mean of recall and 
specificity was calculated to evaluate the overall classification ability of the model.

When comparing the evaluation metrics of the four models, specifically focusing on the AUROC, both 
logistic regression without any penalty and nonnegativity-constrained logistic regression with variables selected 
using the LASSO algorithm exhibited superior predictive performance. However, it is worth noting that the 
differences in these performance measures were statistically insignificant. This trend remained consistent 
regarding the geometric mean. Except for cerebral hemorrhage in the standard group and ischemic heart disease 
in the simplified group, these two models generally outperformed the other models.

Outcome Model

Standard Simplified

AUROC (CI) Cut-off Acc Rec Spec G. Mean AUROC (CI) Cut-off Acc Rec Spec G. Mean

CBVD

Logit 0.753 (0.734–0.772) 0.026 0.696 0.702 0.696 0.699 0.791 (0.784–0.799) 0.050 0.646 0.810 0.634 0.717

Lasso 0.748 (0.729–0.767) 0.026 0.611 0.777 0.607 0.687 0.790 (0.783–0.797) 0.056 0.667 0.780 0.660 0.717

Lasso & Logit 0.753 (0.734–0.772) 0.026 0.694 0.705 0.694 0.699 0.791 (0.784–0.798) 0.053 0.662 0.790 0.653 0.718

Lasso & Ridge 0.746 (0.727–0.765) 0.026 0.688 0.696 0.688 0.692 0.790 (0.782–0.797) 0.069 0.699 0.745 0.696 0.720

Stroke

Logit 0.783 (0.757–0.809) 0.010 0.623 0.810 0.621 0.709 0.812 (0.803–0.820) 0.043 0.755 0.727 0.756 0.742

Lasso 0.775 (0.748–0.801) 0.011 0.629 0.796 0.627 0.706 0.809 (0.800-0.817) 0.039 0.719 0.758 0.718 0.738

Lasso & Logit 0.784 (0.757–0.810) 0.011 0.663 0.777 0.661 0.717 0.812 (0.803–0.820) 0.036 0.712 0.776 0.709 0.742

Lasso & Ridge 0.782 (0.755–0.808) 0.014 0.684 0.752 0.683 0.717 0.809 (0.800-0.817) 0.045 0.741 0.738 0.741 0.739

CH

Logit 0.726 (0.639–0.814) 0.003 0.767 0.625 0.767 0.692 0.774 (0.748-0.800) 0.005 0.662 0.773 0.661 0.715

Lasso 0.710 (0.617–0.804) 0.003 0.736 0.650 0.736 0.692 0.764 (0.737–0.790) 0.005 0.622 0.788 0.621 0.700

Lasso & Logit 0.725 (0.635–0.814) 0.002 0.697 0.675 0.697 0.686 0.773 (0.747–0.799) 0.005 0.707 0.723 0.707 0.715

Lasso & Ridge 0.705 (0.610–0.801) 0.002 0.854 0.500 0.854 0.653 0.769 (0.743–0.795) 0.005 0.667 0.759 0.666 0.711

IHD

Logit 0.736 (0.716–0.755) 0.024 0.673 0.690 0.673 0.681 0.773 (0.766–0.781) 0.054 0.653 0.782 0.645 0.710

Lasso 0.729 (0.709–0.749) 0.021 0.589 0.765 0.585 0.669 0.772 (0.764–0.779) 0.054 0.634 0.804 0.623 0.708

Lasso & Logit 0.738 (0.718–0.757) 0.023 0.657 0.715 0.656 0.685 0.773 (0.765–0.780) 0.052 0.639 0.795 0.629 0.707

Lasso & Ridge 0.733 (0.714–0.752) 0.023 0.587 0.783 0.582 0.675 0.772 (0.764–0.779) 0.059 0.637 0.796 0.627 0.706

AMI

Logit 0.812 (0.761–0.863) 0.002 0.708 0.815 0.708 0.760 0.828 (0.808–0.848) 0.005 0.708 0.815 0.708 0.759

Lasso 0.786 (0.734–0.838) 0.002 0.598 0.852 0.597 0.713 0.822 (0.802–0.843) 0.006 0.725 0.790 0.724 0.756

Lasso & Logit 0.807 (0.757–0.857) 0.001 0.662 0.870 0.662 0.759 0.826 (0.806–0.846) 0.005 0.682 0.847 0.681 0.759

Lasso & Ridge 0.792 (0.741–0.843) 0.002 0.724 0.778 0.724 0.751 0.821 (0.801–0.841) 0.006 0.679 0.836 0.679 0.753

Table 3.  Evaluation metrics for all models. Abbreviation: AUROC stands for area under receiver-operator 
curve, Acc for accuracy, Rec for recall, Spec for specificity, G. Mean for geometric mean of recall and 
specificity. CBVD refers to cerebrovascular disease, CH to cerebral hemorrhage, IHD to ischemic heart disease, 
and AMI to accute myocardial infarction. The 95% confidence interval for AUROC was determined using the 
DeLong’s test. The optimal cut-off point is selected from the receiver-operator curve to maximize the distance 
from the diagonal line following Youden’s method.
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The AUROC of the simplified group—with a larger number of observations and incident cases—generally 
outperformed that of the standard group. This trend was also reflected in the geometric mean of recall and 
specificity, indicating that models of simplified samples were more balanced regarding the tradeoff between 
accuracy in positive and negative cases.

Regression coefficients
The coefficients that exhibited the highest overall AUROC values, estimated by the logistic regression models 
using variables selected by the LASSO algorithm, are shown in Table 4. Although logistic regression without 
constraints also demonstrated strong predictive performance, we encountered an issue with negative coefficients 
in this model. Because all variables were treated as risk factors, the presence of negative coefficients contradicted 
our expectations. Consequently, we focused our discussion solely on the regression results obtained from the 
logistic regression with variable selection.

Variables excluded through the LASSO algorithm for certain outcomes are denoted by a dash (-), whereas 
variables excluded for all outcomes are not included in the table. Several notable findings emerged from this study. 
Overall, models with heart disease outcomes (IHD and AMI) and those fitted to the standard group experienced 
more frequent variable exclusions. Furthermore, when comparing the coefficient values across different diseases, 
apart from cerebral hemorrhage, the simplified group consistently exhibited higher coefficients for all diseases. 
This implies that within the simplified enrollment group, the estimated incidence rate experiences a more 
significant increase with each unit increase in risk factors, such as screening indicators (e.g., blood pressure 
or age). This suggests that the same increase in these risk factors results in a greater escalation of risk within 
the simplified enrollment group, which already exhibits a higher prevalence of existing risk factors. These 
findings highlight the interplay between risk factors, disease incidence, and choice of insurance enrollment 
type. Specifically, individuals within the simplified enrollment group, who often possess a greater burden of risk 
factors, tend to experience a more pronounced increase in their estimated risk of various diseases.

Variable importance
Table 5 shows the variable importance of the logistic regression for the selected variables. The variable importance 
for each feature was calculated by conducting a logistic regression while normalizing the variables. Age has 
consistently emerged as the most important variable across all models. This finding is reasonable, considering 
that age is a factor that depreciates other health assets that are not measured in health checkups and self-reported 
questionnaires. Considering this, the importance of variables other than age, as shown in the table, is presented 
as relative importance; the importance of age was set at 100.

A notable finding demonstrated in the table is the elevated importance of variables related to smoking 
status and family history of stroke. Additionally, sex, BMI, and SBP showed high levels of importance. When 
comparing the two groups, the rankings of variable importance exhibited similar patterns for all variables, except 

Standard Simplified

CBVD Stroke CH IHD AMI CBVD Stroke CH IHD AMI

Gender -0.216 0.018 0.010 0.212 0.549 -0.046 0.190 0.139 0.234 0.692

Age 0.072 0.077 0.055 0.059 0.076 0.080 0.085 0.060 0.068 0.073

High BMI 0.019 0.036 0.042 0.042 - 0.023 0.023 0.010 0.064 0.047

High SBP 0.009 0.014 0.023 0.005 0.026 0.003 0.007 0.008 0.001 -

High DBP 0.005 0.007 0.031 0.013 0.006 0.008 0.010 0.022 0.006 0.013

Low HGB - - 0.381 - - - 0.023 0.172 - -

High FBS 0.001 0.002 - 0.001 0.007 0.002 0.003 0.001 0.002 0.005

Low HDL 0.004 0.003 - 0.009 0.026 0.005 0.005 0.003 0.011 0.023

High SGOT 0.002 0.002 0.002 - - - 0.000 0.002 - -

High SGPT - 0.000 - - - 0.000 0.001 - - -

High GGT 0.001 0.002 0.003 - - 0.001 0.001 0.002 - -

High CRTN - - - - - 0.032 0.031 0.064 - -

Low eGFR 0.022 0.019 0.037 - - 0.006 0.007 0.010 0.013 0.024

Dipstick test - - 0.113 0.070 - 0.088 0.105 0.149 0.084 0.024

Smoker 0.055 0.094 0.113 0.044 0.507 - 0.015 0.006 0.059 0.244

High risk drinker 0.089 0.180 0.294 - - 0.028 0.064 0.135 - -

Family history: stroke 0.405 0.391 0.591 0.227 - 0.445 0.506 0.354 0.230 0.170

Family history: heart disease 0.152 0.361 - 0.334 0.610 0.059 0.083 - 0.606 0.622

Family history: hypertension 0.059 0.200 - 0.172 - 0.192 0.215 0.200 0.247 0.153

Constant -7.331 -8.629 -9.531 -7.092 -11.936 -7.386 -8.536 -8.629 -7.093 -10.689

Table 4.  Logistic regression coefficients for variables selected by Lasso algorithm in standard and simplified 
groups. Abbreviations are in accordance with those found in Tables 2 and 4. Variables not selected by the Lasso 
algorithm in any case are excluded from this table.
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cerebrovascular disease. Notably, for ischemic heart disease, the variable importance scores were remarkably 
similar between the two groups.

Discussion
This study employed various linear models to predict the incidence of CCVDs in two distinct samples. The 
logistic regression model with penalty terms demonstrated a superior fit regarding predictive performance 
compared to other penalized models, albeit without statistical significance. Furthermore, the model with the 
selected variables and penalty exhibited superior explainability compared to the model without any penalty. 
Notably, the overall model performance improved as the incidence rate of the samples and the prevalence of the 
target diseases increased.

These findings underscore the significance of customizing risk assessments to accommodate nuanced 
variations across individuals with different initial health statuses and diseases with varying risk factors. Such 
tailored approaches hold promise for enhancing disease prediction and developing insurance products. 
Moreover, they emphasize the need for further research and the refinement of predictive modeling techniques 
tailored to specific health conditions within various demographic groups.

Furthermore, by analyzing regression coefficients that are not excluded, it is essential to secure smoking habits 
or family history information related to the same area in advance to predict the risk factors for cardiovascular 
and cerebrovascular diseases. This is because, in almost all models, the family history of the risk-secured area 
appears as a variable with great significance. Several clinical studies have shown that family history is a major risk 
factor for cardiovascular disease18,19. Previous studies related to the predictive model in Korea did not consider 
family history7,10; therefore, accurate comparisons could not be made. However, in overseas studies, family 
history was a significant variable in the cardiovascular disease prediction model using machine learning20.

In situations where the prevalence of cardiovascular disease and medical expenses continue to increase, 
it is essential to secure a quantitative and objective basis. Cardiovascular diseases account for approximately 
17% of Korea’s total medical expenses, and the burden of medical expenses due to cardiovascular diseases is 
significant4. In the United States, the estimated total cost of cardiovascular disease and related costs as of 2010 
was $315.4  billion21, while in Russia, cardiovascular disease-related costs accounted for 0.19% of the gross 
domestic product as of 200922.

These findings have significant implications for public health policy and insurance risk management. First, the 
predictive models developed in this study can support personalized health management and policy interventions 
by assessing CCVD risk in advance. They enable early identification of high-risk individuals based on health 
screening data, facilitating timely preventive measures such as lifestyle modifications and medical treatments. 
Raising awareness of personal health risks can also encourage proactive health behaviors, ultimately improving 
public health and reducing healthcare costs.Second, these models can enhance insurers’ risk assessment and 
product development. By integrating predictive modeling into underwriting, insurers can quantify health risks, 
adjust premiums accordingly, and offer incentives for health management. For instance, premium discounts 
for high-risk individuals engaging in health programs can reduce insurer risk while promoting policyholders’ 
health, leading to more precise risk management and tailored insurance products.

Standard Simplified

CBVD Stroke CH IHD AMI CBVD Stroke CH IHD AMI

Gender 8.708 0.281 0.000 10.192 17.751 1.400 7.705 6.841 10.572 28.746

High BMI 3.731 8.019 14.937 12.057 - 4.962 5.483 2.644 18.852 11.978

High SBP 6.195 10.644 26.774 2.975 20.512 2.152 6.036 9.433 0.000 -

High DBP 1.015 2.454 21.899 5.039 0.775 2.499 4.203 13.919 2.111 7.264

Low HGB - - 41.153 - - - 0.939 11.989 - -

High FBS 0.837 2.544 - 1.253 15.123 5.247 9.177 1.893 5.533 21.070

Low HDL 2.688 2.249 - 8.468 22.517 3.534 4.536 2.969 10.814 21.826

High SGOT 2.864 1.387 5.330 - - - 0.000 6.668 - -

High SGPT - 0.000 - - - 0.000 0.911 - - -

High GGT 4.679 7.995 29.530 - - 2.629 2.582 14.093 - -

High CRTN - - - - - 0.360 1.066 3.816 - -

Low eGFR 5.024 4.367 19.468 - - 1.437 2.353 4.853 4.706 11.789

Dipstick test - - 6.427 1.971 - 3.489 5.158 10.129 3.718 0.000

Smoker 4.097 7.874 13.751 3.737 51.699 - 1.047 - 4.809 24.014

High risk drinker 2.372 6.108 15.497 - - 0.101 1.993 5.405 - -

Family history: stroke 12.008 11.178 25.602 6.720 - 12.825 15.183 13.094 6.704 3.833

Family history: heart disease 2.599 7.860 - 8.595 13.239 0.326 1.440 - 15.567 14.618

Family history: hypertension 1.087 6.236 - 5.872 - 6.310 7.567 7.103 9.748 4.399

Table 5.  Variable importance of logistic regression for variables selected by Lasso algorithm in standard and 
simplified groups. Abbreviations are in accordance with those found in Tables 2 and 4. Variables not selected 
by the Lasso algorithm in any case are excluded from this table.
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This study has some limitations. First, as CCVDs were identified solely based on the International Classification 
for Diseases, Version 10 (ICD-10) codes, not all individuals with cardiovascular diseases were identified. Second, 
in the analysis group definition stage, the exclusion of low and high age groups was significant. This is related 
to the characteristics of patients undergoing health examinations, and there are reasons for their weakness 
regarding the purpose of prevention and access to examination reservations. This caused bias in this study, and 
it will thus be necessary to supplement our findings through customized DBs—such as elderly cohort DBs—for 
analyses that control for age in future studies.

Third, the data used in this study exhibit class imbalance between CCVD occurrence and non-occurrence 
cases. This imbalance may affect the model’s predictive performance, particularly recall, and performance 
improvement could be expected through techniques such as oversampling. However, in this study, oversampling 
was not applied to maintain the interpretability of the model and the consistency of variable selection. This 
remains a limitation that should be considered when interpreting the results.

Finally, although this study accounted for various confounders measured in the data, the possibility of 
residual confounding cannot be completely ruled out. Despite these limitations, this study is noteworthy because 
it compares the predictions of various models using the latest data.

Conclusion
This study utilized NHIS sample cohort data to predict CCVDs incidence and compare model performance 
across different health conditions. The logistic regression model with LASSO-selected variables showed the best 
predictive performance, particularly in the simplified group with higher incidence rates and risk levels. Age, 
smoking status, family history of stroke, sex, BMI, and systolic blood pressure were identified as key risk factors, 
emphasizing the need for personalized risk assessment and diverse predictive models for effective CCVDs 
prevention and management.

This study contributes to CCVDs prevention and management strategies through several strengths. First, 
using NHIS data, the study developed a robust predictive model representative of the Korean population, 
enhancing generalizability. Second, by classifying samples into standard and simplified groups, key risk factors 
were identified based on health status. Third, the application of penalized linear models, balancing interpretability 
and predictive performance, enhances practical utility. Collectively, these findings provide scientific evidence to 
support effective prevention and management strategies for CCVDs.

Data availability
Raw data were obtained from the Korean National Health Insurance System. The data supporting the findings of 
this study are available from the corresponding author upon request.
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