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As the importance of the prevention and premanagement of cardiovascular and cerebrovascular
diseases continues to emerge, research is being conducted globally to create and compare risk factor
prediction models using health examination big data. In this study, health insurance data were used
to predict the incidence of cardiocerebrovascular disease using various models and compare the
performance of the models on samples with different initial risk levels. This study analyzed data from
410,859 individuals from the National Health Insurance Service between 2002 and 2019. This study
deployed various linear models to predict the occurrence of cardiocerebrovascular diseases in two
distinct samples. Models based on logistic regression analysis with penalty terms on the objective
function were used, and their predictive performances were compared using multiple evaluation
metrics, including the area under the receiver operating characteristic curve. The logistic regression
model incorporating variables selected by the LASSO algorithm exhibited superior predictive
performance relative to other models, although the differences were not statistically significant.

The models demonstrated improved performance for samples with higher incidence rates and initial
risk levels. This study predicted and compared the incidence of cardiocerebrovascular disease (CCVD)
in patients with different health conditions using national sample cohort data from the National
Health Insurance Service. The findings underscore the importance of developing diverse models to
predict diseases like CCVD, which have high medical costs and incidence rates, thus informing the
development of healthcare policies.
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Abbreviations

AUROC Area under the receiver operating characteristic curve
BMI Body mass index

CCVD Cardiocerebrovascular disease

DALY Disability-adjusted life-years

FN False negative

FP False positive

NHIS-NSC  National Health Insurance Service National Sample Cohort
SBP Systolic blood pressure

TN True negative

TP True positives

IHD Ischemic heart disease

AMI Acute myocardial infarction

Due to an aging population and shifts in health behaviors, the incidence of cardiovascular diseases is steadily
rising, contributing to an increasing burden in terms of both disease prevalence and medical expenses!~. In
Korea, the mortality rate from cardiovascular and cerebrovascular diseases has risen by 7% over the past decade,
with medical related to these conditions accounting for approximately 17% of the nation’s total healthcare costs*.
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Maintaining a healthy lifestyle is crucial for preventing cardiovascular and cerebrovascular diseases. Risk
factors, including smoking, unhealthy eating habits, physical inactivity, and alcohol consumption, have been
consistently linked to an increased likelihood of developing cardiovascular conditions®. As individuals age,
prolonged exposure to these harmful lifestyle behaviors, as well as environmental factors, further elevates the
risk of cardiovascular and cerebrovascular diseases. Consequently, as the population ages, both the incidence of
these diseases and the associated healthcare costs are expected to rise significantly®.

Lifestyle habits related to cardiovascular and cerebrovascular diseases are modifiable, and these diseases
can often be prevented through behavioral improvement®. Prevention and early management of cardiovascular
and cerebrovascular are cost-effective strategies for reducing future disease burdens and mitigating soaring
healthcare costs. Based on recent studies that utilize big data from both domestic and international healthcare
systems, the evidence supporting the prevention of chronic diseases through healthcare interventions and
behavioral changes has strengthened®.

Previous studies have primarily focused on utilizing large-scale health examination data to identify risk
factors for cardiovascular diseases and develop predictive models’~!°. However, most of these studies have
relied on simple regression analyses or machine learning techniques, which pose limitations due to increased
complexity in interpretation and issues related to overfitting. To address these challenges, this study employs
linear models and penalized linear models, specifically LASSO and Ridge regression, to predict the risk of
cardiocerebrovascular disease incidence. These models enhance interpretability through variable selection and
dimensionality reduction while mitigating overfitting and improving generalizability. Furthermore, to account
for the heterogeneity in individual health status and risk factors, this study incorporates underwriting criteria
commonly used in private health insurance to classify the sample into two groups: the standard risk group and
the simplified risk group, based on initial risk levels. This classification facilitates personalized risk prediction
and enables the development of differentiated risk management strategies, thereby enhancing the practical
applicability of the findings.

Accordingly, the objectives of this study are as follows. First, using NHIS big data, this study aims to predict
the incidence risk of cardiocerebrovascular diseases by applying various linear and penalized linear models.
Second, it seeks to identify key risk factors for each group categorized based on initial risk levels. By achieving
these objectives, this study aims to provide scientific evidence to support the development of more effective
strategies for the prevention and management of cardiocerebrovascular diseases.

In this study, linear and penalized linear models were utilized to predict the incidence of cardiocerebrovascular
diseases. While various predictive models for major chronic diseases exist, ranging from linear models to
machine learning approaches, many lack external validation and are highly specific to the study context, which
limits their generalizability. Therefore, using a nationally representative sample and methodologies commonly
employed by insurers for risk assessment and underwriting, this study applies logistic regression models due to
their widespread use, interpretability, and computational efficiency.

Methods

Data source and study population

This study utilized the National Health Insurance Service National Sample Cohort (NHIS-NSC) as the primary
data source to develop predictive models for CCVDs (NHIS-2022-2-318, IRB No. P01-202206-01-031). The
NHIS covers over 97% of the population, and a random sample of 2% was extracted using the proportional
allocation method, taking into account factors such as sex, age, enrollment type, insurance premium quantile,
and region. Sampling was based on national health insurance enrollees in 2006, and data were collected from
various databases, including eligibility factors (sex, age, insurance premium, etc.), health checkup information
(body mass index [BMI], waist circumference, blood pressure, self-reported questionnaires, etc.), and hospital
utilization data (hospital admissions, diagnoses, prescriptions, etc.) from 2002 to 2019. Additional details
regarding the representativeness of the NHIS-NSC and supplementary information can be found in the available
sources'! (Supplementary material).

Ascertainment of cardiovascular diseases

In this analysis, cerebrovascular disease (160-169) and ischemic heart disease (120-125) were used as dependent
variables representing CCVDs. Subtypes of CCVDs were defined for additional analysis, including stroke (160-
166, excluding 164), cerebral hemorrhage (I60-162), and acute myocardial infarction (121-123). The baseline year
was 2014, and a 5-year follow-up period was used to predict newly diagnosed CCVDs. To ensure the exclusion of
patients with preexisting CCVD diagnoses, the washout period was defined as 2010-2014 (Fig. 1).

Sample selection

The features used in the prediction models included health checkup variables that were conducted biennially.
Initially, 418,208 participants with health checkup data available in either 2013 or 2014 and without a CCVD
diagnosis between 2010 and 2014 were extracted. Participants with missing major examination variables or
eligibility conditions were excluded, resulting in a total study population of 410,859 participants. Two groups
were created to develop CCVD prediction models for individuals eligible for both private insurance types. Based
on the conditions and operational definitions outlined in Tables 1, 126 and 413 samples met the criteria of
the standardized insurance application form (henceforth, “standard group”) and 268,912 samples fulfilled the
conditions of the simplified enrollment form (henceforth, “simplified group”) through restoration sampling.
The “standard” group includes individuals who answered “No” to both Question A and Question B, while
the “simplified” group includes those who answered “No” to both Question C and Question D. The standard
questions are stricter regarding hospitalization, surgery, and prescriptions compared to the simplified questions.
Therefore, the simplified group encompasses the standard group. The 15,534 individuals excluded from the
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Fig. 1. Data structure and research design.

Screening form | Question

A. Recent 5-Year medical procedures history

1) Hospitalization

2) Operation

3) Continued treatment for 7 days or more

B. Recent 5-Year medical procedures for 10 diseases
Standard

1) Diagnosis of confirmed disease

2) Treatment

3) Hospitalization

4) Operation
5) Medication

C. Recent 2-year hospitalization/operation due to disease or injury accident

Simplified

D. Recent 5-year diagnosis/hospitalization/operation due to cancer

Table 1. The standardized and simplified private health insurance enrollment form. 10 diseases include cancer,
leukemia, hypertension, angina, myocardial infarction, heart valve disease, cirrhosis, stroke, diabetes, AIDS/
HIV. The questions above are expected to be answered with ‘yes’ or ‘no.

sample are those who answered “Yes” to any of the simplified questions. A detailed discussion of screening for
simplified and standard private insurance enrollees can be found in the literature'2.

The items in this study were selected for two purposes: to mirror questionnaire responses typically provided
by potential insurees to insurers before commencing insurance contracts and to be operationally defined within
the dataset. Standard screening form questions typically mandate a longer period, often up to 5 years, during
which individuals must have experienced no medical issues, including hospitalizations, surgeries, or diagnosed
diseases. By contrast, simplified screening forms designed for individuals with substandard health conditions
require shorter intervals without hospitalization or surgery. Disease diagnosis is limited to severe conditions,
such as cancer.

Table 2 summarizes the descriptive statistics of the three samples; the incidence rate of the outcomes increased
in the order of the standard group, the simplified enrollment group, and those without any screening process
(referred to as the ‘all’ group). In particular, the standard group exhibited an incidence rate of approximately
one-third of the overall incidence. The distribution of health checkup indicators and age followed a similar
pattern. The standard group samples were characterized by younger age and exhibited lower levels of fasting
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| Anl | standard Simplified | Anl | standard | simplified
1. Outcome I1. Features (categorical)
Cerebrovascular 34,391 (8.37%) | 3,200 (2.53%) | 17,411 (6.47%) | Gender
Stroke 21,043 (5.12%) | 1,593 (1.26%) | 10,418 (3.87%) | Male ‘ 208,475 (50.74%) ‘ 67,343 (53.27%) ‘ 138,625 (51.55%)
Cerebral hemorrhage 2,697 (0.66%) | 266 (0.21%) 1,332 (0.50%) | Dipstick test
Ischemic heart disease 32,896 (8.01%) | 2,898 (2.29%) | 16,603 (6.17%) | Weak positive 10,746 (2.62%) 3,039 (2.40%) 6,966 (2.59%)
Acute myocardial infarction | 3,075 (0.75%) | 252 (0.20%) 1,431 (0.53%) | Positive (+1) 6,093 (1.48%) 1,259 (1.00%) 3,740 (1.39%)
1I. Features (continuous) Positive (+2) 2,390 (0.58%) 378 (0.30%) 1,336 (0.50%)

Age (years) 50.18 (14.33) 43.16 (12.11) | 48.50 (14.08) Positive (+3) 668 (0.16%) 90 (0.07%) 324 (0.12%)
Waist Circumference (cm) 80.53 (9.45) 78.84 (9.42) 80.26 (9.49) Positive (+4) 151 (0.04%) 17 (0.01%) 75 (0.03%)

BMI (kg/m?) 23.84 (3.35) 23.41 (3.33) 23.81(3.37) Family history

SBP (mmHg) 121.91 (14.71) | 118.99 (13.33) | 121.65 (14.60) | Stroke 25,467 (6.20%) 6,270 (4.96%) 16,136 (6.00%)
DBP (mmHg) 75.84(9.90) | 74.64(9.48) |7582(9.90) | Heart disease 15,331 (3.73%) | 4,551 (3.60%) 9,991 (3.72%)
Hemoglobin (g/dL) 14.02 (1.63) 14.18 (1.66) 14.09 (1.63) Hypertension 56,527 (13.76%) 14,716 (11.64%) 37,189 (13.83%)
Fasting blood serum (mg/dL) | 99.16 (24.01) 93.95 (15.10) | 98.42 (22.95) Diabetes 42,806 (10.42%) | 12,513 (9.90%) 28,160 (10.47%)
Total Cholesterol (mg/dL) 194.83 (39.18) | 195.75 (37.39) | 195.16 (38.99) | Cancer/etc 56,411 (13.73%) | 16,811 (13.30%) | 35,907 (13.35%)

Triglyceride (mg/dL)

129.71 (94.64)

122.72 (92.77)

129.18 (95.18)

Smoking status

HDL-Cholesterol (mg/dL) 55.43 (15.28) 56.76 (15.35) | 55.61 (15.06) Quit smoking 64,262 (15.64%) | 17,248 (13.64%) | 40,731 (15.15%)
LDL-Cholesterol (mg/dL) 114.38 (41.91) | 115.62 (43.42) | 114.74 (42.96) | <20 cigarettes/day 54,239 (13.20%) | 21,103 (16.69%) | 38,028 (14.14%)
Serum creatinine (mg/dL) 0.88 (0.41) 0.87 (0.35) 0.88 (0.38) >20 cigarettes/day 37,179 (9.05%) 11,572 (9.15%) 24,177 (8.99%)

SGOT (U/L)

25.47 (17.85)

23.86 (13.93)

24.97 (15.59)

Drinking status

SGPT (U/L) 24.95(24.43) | 23.86(22.46) |24.69(22.22) | Drinker (>2 times/week) | 55,619 (13.54%) | 16,204 (12.82%) | 36,089 (13.42%)
GGT (U/L) 35.98 (49.49) | 32.65(39.95) |35.11(45.74) | Exercise

eGFR (mL/min/1.73m?) 90.15(23.57) | 93.19(22.09) |90.76 (23.03) | More than once a week | 378,004 (92.00%) | 113,879 (90.08%) | 246,036 (91.49%)
Sample size (N) 410,859 126,413 268,912 Sample size (N) 410,859 126,413 268,912

Table 2. Summary statistics. Abbreviations: SBP for systolic blood pressure, DBP for diastolic blood pressure,
HDL for high-density lipoprotein, LDL for low-density lipoprotein, SGOT for serum glutamic-oxaloacetic
transaminase, SGPT for serum glutamic pyruvic transaminase, GGT for gamma-glutamyltranspeptidase,
eGEFR for estimated glomerular filtration rate. Continuous variables are reported as mean(sd), while category
variable statistics are presented as N(%). Gender, and dipstick test variables are categorized as female/male
and negative/weak positive/positive(+1)/positive(+2)/positive(+3)/positive(+4), respectively. Each items of the
family history questionnaire is expected to be answered by no/yes. Smoking status, alcohol consumption and
exercise is categorized by non-smoker/currently quit smoking/smokes less than 20 cigarettes per day/smokes
more or equal to 20 cigarettes per day, drinks once or less per week/drinks twice or more per week, none/
moderate or vigorous exercise more than once a week, respectively. The number and the proportion of the first
category is omitted in the table.

blood serum triglycerides, systolic blood pressure (SBP), and various other health checkup indicators or family
history records than the other groups.

Variables

Predictor variables were selected as follows: sex and age information were extracted from the eligibility database.
Fifteen variables were obtained from the checkup database, including BMI, waist circumference, SBP, diastolic
blood pressure, hemoglobin, fasting blood serum, total cholesterol, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, triglyceride, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic
transaminase, gamma-glutamyl transferase, urine dipstick test, serum creatinine, and estimated glomerular
filtration rate.

Variables with specified thresholds were further processed to eliminate any variations in risk within the
criteria defining the normal range for each index (Supplementary Table 1). Variables within the normal range
were assigned a value of 0, whereas those beyond the normal range were adjusted to represent the absolute
difference from the threshold value. This approach was adopted to estimate the incremental changes in risk
beyond the normal range and capture the transition from no risk variation within the normal range to a
potentially hazardous range. When the normal range provided was one-sided, a single variable indicating a
deviation from the threshold value of the normal range was generated. For variables with a two-sided range,
two variables representing the deviations from the minimum and maximum boundaries were generated. For
example, if the normal range for BMI is 18.5-22.9, two variables—LOW_BMI and HIGH_BMI—were created
to represent the distances from 18.5 to 22.9, respectively.
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Statistical analysis

To predict the 5-year cumulative incidence of CCVDs, we utilized logistic regression and penalized logistic
regression models, which offer the advantage of interpretability compared with black-box models. While
complex models may improve predictive power, they often obscure the relationships between risk factors and
outcomes. Logistic regression, widely used for binary outcomes, provides clear insights into variable importance,
making it well-suited for clinical applications, without any severe loss of predictive ability.

To predict the 5-year cumulative incidence of CCVDs, we utilized logistic regression and penalized logistic
regression models, which offer the advantage of interpretability compared with blackbox models. Logistic
regression is widely used to predict binary outcomes using multiple variables. The logistic regression model is
represented by the following equation:

yi—log< pi )—XZ,B + €;
1—pi

By examining the signs and magnitudes of the coefficient vector (3 ) in the model, the marginal effects of each
risk factor can be calculated, enabling a straightforward interpretation of the impact that each predictor has on
the likelihood of developing CCVDs. Penalized logistic regression further enhances the prediction performance
by incorporating 1 or l2 penalty terms into the objective function, reducing the size of the coefficient vector,
and addressing the issue of overfitting. A nonnegativity constraint was also imposed on the coefficient vector,
except for sex, as the features were preprocessed to indicate the absolute distance from the normal range of each
health checkup variable, as previously discussed. Therefore, the objective function is given by:

§ = argming {33° M= Xif )+ MallB 1l + Xallg |l } 5.8 2 0

In the LASSO model, the [1 penalty (X 1) shrinks some coefficients to zero, allowing for the identification of
the most influential predictors. This feature facilitates variable selection and the identification of key risk factors
associated with CCVDs. Conversely, the ridge model, with its I2 penalty ( A 2), reduces the size of the coefficients
without reducing them to zero. These regularization techniques help reduce data dependency and improve the
generalizability of the model. Both models provide interpretable results while effectively addressing the issues of
multicollinearity and overfitting!*~!%. For model training and validation, the study population was divided into
an 80% training set and a 20% test set. The training set was further divided into 10 folds for hyperparameter
tuning using 10-fold cross-validation (Fig. 2).

NHIS-NSC
Raw Data
s i 1) Eligible for NHIS in 2014 & had health
Baseline ' check-up record in 2013 or in 2014 without !
Data i any missing variables !
A i 2) No pre-existing diagnosis of CCVDs '
Generation ' :
E l 1) & 2) satisfied: N = 410,859
e e e e e e e e e S et
Sample 1 a) Fulfills standard enroliment form: N = 126,413 :
Grouping i b) Fulfills simplified enrollment form: N = 268,912 E
K-fold cross validation
> i > o 0 o o —
Train Set Fold 1 Fold 2 Fold 3 Fold K E,

Train-test split in 8:2 ratio [ Fold 1 I [ Fold 2 I l Fold 3 I —’EZ

- £ = 3K, E/K
> Test Set
[ Fold1 || Fold2 || Fold3 | .. Fold K > Ex
: ]t /
Used only for final evaluation - -
of the model N R e e P e e e e = \M d_l_ i Evaluation metric E; is calculated
s oae!
Model Train Validation for each fold, and averaged for

each hyper-parameter

Fig. 2. Sample selection, and data training process.
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Evaluation metrics, such as the area under the receiver operating characteristic curve (AUROC), accuracy
([TN+TP]/[TN+FN+FP+TP]), recall (TP/[TP+FN]), and specificity (TN/[TN+FP]), were employed to
compare the predictive powers between samples and models, where TN, TP, FN, and FP are the number of true
negatives, true positives, false negatives, and false positives, respectively. Given the threshold dependency of
these metrics and the imbalanced distribution of the outcome variables, a cutoff value was selected to optimize
both recall and specificity. Specifically, the threshold was selected from the upper-left part of the receiver-
operator curve, where the distance from the diagonal line was maximized'®.

Results

Predictive performance

We use two samples in this analysis: the standard group and the simplified group. The standard group underwent
a stricter screening process, resulting in a lower CCVD incidence rate, younger age distribution, and generally
healthier checkup indices. In contrast, the simplified group exhibited a higher incidence rate and a less favorable
health profile. These differences in initial risk factors, influenced by the screening process, are expected to impact
the predictive performance of our models. Accordingly, we fitted and trained the models separately for each
group. The training process for the models in each group was initiated via feature selection using the LASSO
algorithm. Subsequently, logistic and ridge regressions were conducted separately to fit the selected variables.
For comparison, logistic regression without penalty was also performed. Table 3 provides a comprehensive
comparison of the predictive performances of these models. Within the table, “Logit” refers to a model trained
with logistic regression without any penalty; “LASSO” refers to a model trained solely using the LASSO
algorithm; and “LASSO & Logit” and “LASSO & Ridge” refer to models that employ logistic and ridge regression
on the predictors selected by the LASSO algorithm, respectively. For a comprehensive evaluation of the models,
AUROQ, accuracy, recall, and specificity were used as evaluation metrics. After assessing the overall predictive
ability, the optimal threshold to calculate accuracy, recall, and specificity was selected using the AUROC and
its confidence interval'’, regardless of the cutoff value of the models. Finally, the geometric mean of recall and
specificity was calculated to evaluate the overall classification ability of the model.

When comparing the evaluation metrics of the four models, specifically focusing on the AUROC, both
logistic regression without any penalty and nonnegativity-constrained logistic regression with variables selected
using the LASSO algorithm exhibited superior predictive performance. However, it is worth noting that the
differences in these performance measures were statistically insignificant. This trend remained consistent
regarding the geometric mean. Except for cerebral hemorrhage in the standard group and ischemic heart disease
in the simplified group, these two models generally outperformed the other models.

Standard Simplified
Outcome | Model AUROC (CI) Cut-off | Acc | Rec | Spec | G. Mean | AUROC (CI) Cut-off | Acc | Rec | Spec | G. Mean
Logit 0.753 (0.734-0.772) | 0.026 0.696 | 0.702 | 0.696 | 0.699 0.791 (0.784-0.799) | 0.050 0.646 | 0.810 | 0.634 | 0.717
CBVD Lasso 0.748 (0.729-0.767) | 0.026 0.611 | 0.777 | 0.607 | 0.687 0.790 (0.783-0.797) | 0.056 0.667 |0.780 | 0.660 | 0.717
Lasso & Logit | 0.753 (0.734-0.772) | 0.026 0.694 | 0.705 | 0.694 | 0.699 0.791 (0.784-0.798) | 0.053 0.662 | 0.790 | 0.653 | 0.718
Lasso & Ridge | 0.746 (0.727-0.765) | 0.026 0.688 | 0.696 | 0.688 | 0.692 0.790 (0.782-0.797) | 0.069 0.699 |0.745 | 0.696 | 0.720
Logit 0.783 (0.757-0.809) | 0.010 0.623 | 0.810 | 0.621 | 0.709 0.812 (0.803-0.820) | 0.043 0.755 [ 0.727 | 0.756 | 0.742
Lasso 0.775 (0.748-0.801) | 0.011 0.629 | 0.796 | 0.627 | 0.706 0.809 (0.800-0.817) | 0.039 0.719 | 0.758 | 0.718 | 0.738
Stroke Lasso & Logit | 0.784 (0.757-0.810) | 0.011 0.663 | 0.777 | 0.661 | 0.717 0.812 (0.803-0.820) | 0.036 0.712 [ 0.776 | 0.709 | 0.742
Lasso & Ridge | 0.782 (0.755-0.808) | 0.014 0.684 | 0.752 | 0.683 | 0.717 0.809 (0.800-0.817) | 0.045 0.741 | 0.738 | 0.741 | 0.739
Logit 0.726 (0.639-0.814) | 0.003 0.767 | 0.625 | 0.767 | 0.692 0.774 (0.748-0.800) | 0.005 0.662 | 0.773 | 0.661 | 0.715
cH Lasso 0.710 (0.617-0.804) | 0.003 0.736 | 0.650 | 0.736 | 0.692 0.764 (0.737-0.790) | 0.005 0.622 | 0.788 | 0.621 | 0.700
Lasso & Logit | 0.725 (0.635-0.814) | 0.002 0.697 | 0.675 | 0.697 | 0.686 0.773 (0.747-0.799) | 0.005 0.707 | 0.723 | 0.707 | 0.715
Lasso & Ridge | 0.705 (0.610-0.801) | 0.002 0.854 | 0.500 | 0.854 | 0.653 0.769 (0.743-0.795) | 0.005 0.667 | 0.759 | 0.666 | 0.711
Logit 0.736 (0.716-0.755) | 0.024 0.673 | 0.690 | 0.673 | 0.681 0.773 (0.766-0.781) | 0.054 0.653 [ 0.782 | 0.645 | 0.710
HD Lasso 0.729 (0.709-0.749) | 0.021 0.589 | 0.765 | 0.585 | 0.669 0.772 (0.764-0.779) | 0.054 0.634 | 0.804 | 0.623 | 0.708
Lasso & Logit | 0.738 (0.718-0.757) | 0.023 0.657 | 0.715 | 0.656 | 0.685 0.773 (0.765-0.780) | 0.052 0.639 [0.795 | 0.629 | 0.707
Lasso & Ridge | 0.733 (0.714-0.752) | 0.023 0.587 | 0.783 | 0.582 | 0.675 0.772 (0.764-0.779) | 0.059 0.637 | 0.796 | 0.627 | 0.706
Logit 0.812 (0.761-0.863) | 0.002 0.708 | 0.815 | 0.708 | 0.760 0.828 (0.808-0.848) | 0.005 0.708 | 0.815 | 0.708 | 0.759
AMI Lasso 0.786 (0.734-0.838) | 0.002 0.598 | 0.852 | 0.597 | 0.713 0.822 (0.802-0.843) | 0.006 0.725 [ 0.790 | 0.724 | 0.756
Lasso & Logit | 0.807 (0.757-0.857) | 0.001 0.662 | 0.870 | 0.662 | 0.759 0.826 (0.806-0.846) | 0.005 0.682 | 0.847 | 0.681 | 0.759
Lasso & Ridge | 0.792 (0.741-0.843) | 0.002 0.724 | 0.778 | 0.724 | 0.751 0.821 (0.801-0.841) | 0.006 0.679 | 0.836 | 0.679 | 0.753

Table 3. Evaluation metrics for all models. Abbreviation: AUROC stands for area under receiver-operator
curve, Acc for accuracy, Rec for recall, Spec for specificity, G. Mean for geometric mean of recall and
specificity. CBVD refers to cerebrovascular disease, CH to cerebral hemorrhage, IHD to ischemic heart disease,
and AMI to accute myocardial infarction. The 95% confidence interval for AUROC was determined using the
DeLongs test. The optimal cut-off point is selected from the receiver-operator curve to maximize the distance
from the diagonal line following Youden’s method.
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The AUROC of the simplified group—with a larger number of observations and incident cases—generally
outperformed that of the standard group. This trend was also reflected in the geometric mean of recall and
specificity, indicating that models of simplified samples were more balanced regarding the tradeoff between
accuracy in positive and negative cases.

Regression coefficients

The coefficients that exhibited the highest overall AUROC values, estimated by the logistic regression models
using variables selected by the LASSO algorithm, are shown in Table 4. Although logistic regression without
constraints also demonstrated strong predictive performance, we encountered an issue with negative coefticients
in this model. Because all variables were treated as risk factors, the presence of negative coefficients contradicted
our expectations. Consequently, we focused our discussion solely on the regression results obtained from the
logistic regression with variable selection.

Variables excluded through the LASSO algorithm for certain outcomes are denoted by a dash (-), whereas
variables excluded for all outcomes are not included in the table. Several notable findings emerged from this study.
Overall, models with heart disease outcomes (IHD and AMI) and those fitted to the standard group experienced
more frequent variable exclusions. Furthermore, when comparing the coefficient values across different diseases,
apart from cerebral hemorrhage, the simplified group consistently exhibited higher coefficients for all diseases.
This implies that within the simplified enrollment group, the estimated incidence rate experiences a more
significant increase with each unit increase in risk factors, such as screening indicators (e.g., blood pressure
or age). This suggests that the same increase in these risk factors results in a greater escalation of risk within
the simplified enrollment group, which already exhibits a higher prevalence of existing risk factors. These
findings highlight the interplay between risk factors, disease incidence, and choice of insurance enrollment
type. Specifically, individuals within the simplified enrollment group, who often possess a greater burden of risk
factors, tend to experience a more pronounced increase in their estimated risk of various diseases.

Variable importance
Table 5 shows the variable importance of the logistic regression for the selected variables. The variable importance
for each feature was calculated by conducting a logistic regression while normalizing the variables. Age has
consistently emerged as the most important variable across all models. This finding is reasonable, considering
that age is a factor that depreciates other health assets that are not measured in health checkups and self-reported
questionnaires. Considering this, the importance of variables other than age, as shown in the table, is presented
as relative importance; the importance of age was set at 100.

A notable finding demonstrated in the table is the elevated importance of variables related to smoking
status and family history of stroke. Additionally, sex, BMI, and SBP showed high levels of importance. When
comparing the two groups, the rankings of variable importance exhibited similar patterns for all variables, except

Standard Simplified

CBVD | Stroke | CH IHD |AMI |CBVD |Stroke |CH |IHD |AMI
Gender -0.216 |0.018 |0.010 |0.212 |0.549 -0.046 | 0.190 |0.139 |0.234 |0.692
Age 0.072 1 0.077 ]0.055 |0.059 |0.076 0.080 | 0.085 |0.060 |0.068 |0.073
High BMI 0.019 ]0.036 |0.042 |0.042 |- 0.023  10.023 |0.010 |0.064 |0.047
High SBP 0.009 |0.014 |0.023 |0.005 |0.026 0.003 | 0.007 |0.008 |0.001
High DBP 0.005 |0.007 |0.031 |0.013 |0.006 0.008 |0.010 |0.022 |0.006 |0.013
Low HGB - - 0.381 |- - - 0.023 | 0.172 | - -
High FBS 0.001 |0.002 |- 0.001 | 0.007 0.002 ] 0.003 |0.001 |0.002 |0.005
Low HDL 0.004 |0.003 |- 0.009 | 0.026 0.005 0.005 |0.003 |0.011 |0.023
High SGOT 0.002 | 0.002 |0.002 |- - - 0.000 |0.002 |- -
High SGPT - 0.000 | - - - 0.000 |0.001 |- -
High GGT 0.001 0.002 |0.003 |- - 0.001 0.001 0.002 | - -
High CRTN - - - - - 0.032 | 0.031 |0.064 |- -
Low eGFR 0.022 1 0.019 |0.037 |- - 0.006 | 0.007 |0.010 |0.013 |0.024
Dipstick test - - 0.113 | 0.070 | - 0.088 |0.105 |0.149 |0.084 |0.024
Smoker 0.055 |0.094 |0.113 |0.044 |0.507 - 0.015 | 0.006 |0.059 |0.244
High risk drinker 0.089 | 0.180 |0.294 |- - 0.028 |0.064 |0.135 |-
Family history: stroke 0.405 ]0.391 |0.591 |0.227 |- 0.445 ]0.506 |0.354 |0.230 |0.170
Family history: heart disease | 0.152 |0.361 |- 0.334 | 0.610 |0.059 |0.083 |- 0.606 | 0.622
Family history: hypertension | 0.059 | 0.200 |- 0.172 | - 0.192 1 0.215 ]0.200 |0.247 |0.153
Constant -7.331 | -8.629 | -9.531 | -7.092 | -11.936 | -7.386 | -8.536 |-8.629 | -7.093 | -10.689

Table 4. Logistic regression coefficients for variables selected by Lasso algorithm in standard and simplified
groups. Abbreviations are in accordance with those found in Tables 2 and 4. Variables not selected by the Lasso
algorithm in any case are excluded from this table.
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Standard Simplified

CBVD | Stroke | CH IHD AMI CBVD | Stroke | CH IHD AMI
Gender 8.708 |0.281 |0.000 |10.192 |17.751 | 1.400 |7.705 |6.841 |10.572 |28.746
High BMI 3.731 8.019 | 14.937 | 12.057 | - 4962 |5483 |2.644 |18.852 |11.978
High SBP 6.195 10.644 | 26.774 | 2.975 |20.512 | 2.152 |6.036 |9.433 |0.000 |-
High DBP 1.015 |2.454 |21.899 | 5.039 |0.775 |2.499 |4.203 13.919 | 2.111 |7.264
Low HGB - - 41.153 | - - - 0.939 | 11.989 |- -
High FBS 0.837 | 2544 |- 1.253 |15.123 | 5.247 |9.177 |1.893 |5.533 |21.070
Low HDL 2.688 2249 |- 8.468 |22.517 |3.534 |4.536 |2.969 |10.814 |21.826
High SGOT 2.864 1.387 |5330 |- - - 0.000 |6.668 |- -
High SGPT - 0.000 |- - - 0.000 | 0.911 - - -
High GGT 4.679 | 7.995 |29.530 | - - 2.629 | 2.582 | 14.093 | - -
High CRTN - - - - - 0.360 1.066 |3.816 |- -
Low eGFR 5.024 4.367 19.468 | - - 1.437 |2.353 |4.853 |[4.706 |11.789
Dipstick test - - 6.427 | 1971 |- 3.489 | 5.158 |10.129 |3.718 | 0.000
Smoker 4.097 |7.874 |13.751 | 3.737 | 51.699 | - 1.047 |- 4.809 |24.014
High risk drinker 2.372 6.108 15.497 | - - 0.101 1993 |5.405 |- -
Family history: stroke 12.008 | 11.178 | 25.602 | 6.720 | - 12.825 | 15.183 | 13.094 | 6.704 | 3.833
Family history: heart disease | 2.599 | 7.860 | - 8.595 | 13.239 | 0.326 1.440 |- 15.567 | 14.618
Family history: hypertension | 1.087 | 6.236 | - 5872 |- 6.310 | 7.567 |7.103 |9.748 |4.399

Table 5. Variable importance of logistic regression for variables selected by Lasso algorithm in standard and
simplified groups. Abbreviations are in accordance with those found in Tables 2 and 4. Variables not selected
by the Lasso algorithm in any case are excluded from this table.

cerebrovascular disease. Notably, for ischemic heart disease, the variable importance scores were remarkably
similar between the two groups.

Discussion

This study employed various linear models to predict the incidence of CCVDs in two distinct samples. The
logistic regression model with penalty terms demonstrated a superior fit regarding predictive performance
compared to other penalized models, albeit without statistical significance. Furthermore, the model with the
selected variables and penalty exhibited superior explainability compared to the model without any penalty.
Notably, the overall model performance improved as the incidence rate of the samples and the prevalence of the
target diseases increased.

These findings underscore the significance of customizing risk assessments to accommodate nuanced
variations across individuals with different initial health statuses and diseases with varying risk factors. Such
tailored approaches hold promise for enhancing disease prediction and developing insurance products.
Moreover, they emphasize the need for further research and the refinement of predictive modeling techniques
tailored to specific health conditions within various demographic groups.

Furthermore, by analyzing regression coefficients that are not excluded, it is essential to secure smoking habits
or family history information related to the same area in advance to predict the risk factors for cardiovascular
and cerebrovascular diseases. This is because, in almost all models, the family history of the risk-secured area
appears as a variable with great significance. Several clinical studies have shown that family history is a major risk
factor for cardiovascular disease!®!°. Previous studies related to the predictive model in Korea did not consider
family history”!; therefore, accurate comparisons could not be made. However, in overseas studies, family
history was a significant variable in the cardiovascular disease prediction model using machine learning®.

In situations where the prevalence of cardiovascular disease and medical expenses continue to increase,
it is essential to secure a quantitative and objective basis. Cardiovascular diseases account for approximately
17% of Korea’s total medical expenses, and the burden of medical expenses due to cardiovascular diseases is
signiﬁcant4. In the United States, the estimated total cost of cardiovascular disease and related costs as of 2010
was $315.4 billion?!, while in Russia, cardiovascular disease-related costs accounted for 0.19% of the gross
domestic product as of 2009%2,

These findings have significant implications for public health policy and insurance risk management. First, the
predictive models developed in this study can support personalized health management and policy interventions
by assessing CCVD risk in advance. They enable early identification of high-risk individuals based on health
screening data, facilitating timely preventive measures such as lifestyle modifications and medical treatments.
Raising awareness of personal health risks can also encourage proactive health behaviors, ultimately improving
public health and reducing healthcare costs.Second, these models can enhance insurers’ risk assessment and
product development. By integrating predictive modeling into underwriting, insurers can quantify health risks,
adjust premiums accordingly, and offer incentives for health management. For instance, premium discounts
for high-risk individuals engaging in health programs can reduce insurer risk while promoting policyholders’
health, leading to more precise risk management and tailored insurance products.
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This study has some limitations. First, as CCVDs were identified solely based on the International Classification
for Diseases, Version 10 (ICD-10) codes, not all individuals with cardiovascular diseases were identified. Second,
in the analysis group definition stage, the exclusion of low and high age groups was significant. This is related
to the characteristics of patients undergoing health examinations, and there are reasons for their weakness
regarding the purpose of prevention and access to examination reservations. This caused bias in this study, and
it will thus be necessary to supplement our findings through customized DBs—such as elderly cohort DBs—for
analyses that control for age in future studies.

Third, the data used in this study exhibit class imbalance between CCVD occurrence and non-occurrence
cases. This imbalance may affect the model’s predictive performance, particularly recall, and performance
improvement could be expected through techniques such as oversampling. However, in this study, oversampling
was not applied to maintain the interpretability of the model and the consistency of variable selection. This
remains a limitation that should be considered when interpreting the results.

Finally, although this study accounted for various confounders measured in the data, the possibility of
residual confounding cannot be completely ruled out. Despite these limitations, this study is noteworthy because
it compares the predictions of various models using the latest data.

Conclusion

This study utilized NHIS sample cohort data to predict CCVDs incidence and compare model performance
across different health conditions. The logistic regression model with LASSO-selected variables showed the best
predictive performance, particularly in the simplified group with higher incidence rates and risk levels. Age,
smoking status, family history of stroke, sex, BMI, and systolic blood pressure were identified as key risk factors,
emphasizing the need for personalized risk assessment and diverse predictive models for effective CCVDs
prevention and management.

This study contributes to CCVDs prevention and management strategies through several strengths. First,
using NHIS data, the study developed a robust predictive model representative of the Korean population,
enhancing generalizability. Second, by classifying samples into standard and simplified groups, key risk factors
were identified based on health status. Third, the application of penalized linear models, balancing interpretability
and predictive performance, enhances practical utility. Collectively, these findings provide scientific evidence to
support effective prevention and management strategies for CCVDs.

Data availability
Raw data were obtained from the Korean National Health Insurance System. The data supporting the findings of
this study are available from the corresponding author upon request.
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