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Abstract. Acute lung injury (ALI), marked by acute and
chronic inflammation, causes damage to alveolar epithe-
lial and capillary endothelial cells. The present study
investigated lipid mediators (LM) effects on lipopolysac-
charide (LPS)-induced RAW264.7 cells and ALI mice. LM,
comprising 17S-monohydroxy docosahexaenoic acid (DHA),
resolvin D5 and protectin DX (in a 3:47:50 ratio), were derived
from DHA via soybean lipoxygenase and demonstrated
anti-inflammatory properties. In vitro experiments revealed
that LM decreased nitric oxide (NO) and prostaglandin E2
(PGE2) levels caused by LPS via downregulating inducible
nitric oxide synthase and cyclooxygenase-2. Additionally, LM
inhibited the inflammation by suppressing NF-xB signaling.
The results also indicated that LM reduced oxidative stress by
lowering reactive oxygen species and malondialdehyde (MDA)
levels while enhancing glutathione (GSH) content and super-
oxide dismutase (SOD) activities, probably through activation
of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme
oxygenase-1 (HO-1) signaling pathway. Moreover, the benefits
of LM on inflammation and oxidative stress were reversed
when pretreated with ML385, an Nrf2 inhibitor. In vivo studies
revealed that LM reduced the lung wet/dry ratio, increased
GSH, catalase and SOD activities, along with lowered
myeloperoxidase and MDA levels. In addition, LM reduced
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inflammatory cytokine levels in serum and bronchoalveolar
lavage fluid. Mechanistically, LM inhibited NF-kB signaling
and activated Nrf2/HO-1 signaling pathways.

Introduction

Acute lung injury (ALI) is a pulmonary inflammation
syndrome marked by enhanced alveolar-capillary barrier
permeability and alveolar epithelium damage, potentially
progressing to severe respiratory distress syndrome (1,2).
Research indicates that both inflammation and oxidative stress
exert critical roles in ALI pathogenesis (3,4), making these
processes attractive therapeutic targets (5-7).

Lipopolysaccharide (LPS) triggers the recruitment of
inflammatory cells, especially neutrophils, to lung tissue,
driving inflammation and oxidative stress (8-11). Thus,
suppressing both processes offer a significant therapeutic
potential for ALIL

In a resting state, NF-kB subunits are sequestered and
inactivated through their association with inhibitor of kB
(IxB). Following LPS exposure, IkB becomes phosphorylated
and is subsequently degraded at a fast rate, allowing NF-kB
to move into the nucleus. This nuclear activation of NF-«xB
promotes the upregulation and release of inflammatory media-
tors (12,13). In ALI, excessive neutrophils and macrophages
generate reactive oxygen species (ROS), which aggravate
both inflammation and oxidative stress (14,15). This process
results in elevated levels of malondialdehyde (MDA), reduced
glutathione (GSH) levels and decreased activity of superoxide
dismutase (SOD) and catalase (CAT), ultimately impairing
the antioxidant defense system and contributing to lung tissue
damage (16). Moreover, nitric oxide (NO) and prostaglandin
E2 (PGE2) contribute to the progression of inflammation
and oxidative stress (17). Oxidative stress further amplifies
inflammation, perpetuating the development of ALI (18).
Nuclear factor erythroid 2-related factor 2 (Nrf2) is crucial
in mitigating diseases such as ALI and asthma (19). Upon
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activation by inducers, Nrf2 dissociates from the combination,
translocating to the nucleus, thus, triggering the expression of
antioxidant genes, thereby reducing oxidative stress (20,21).
Therefore, suppressing NF-xB activation while enhancing
Nrf2 signaling may alleviate ALI.

Inflammation is a key contributor to the pathogenesis
of numerous chronic diseases, including liver disorders,
cardiovascular conditions and cancer. Natural compounds
with anti-inflammatory properties have gathered increasing
attention due to their potential for therapeutic development
with minimal side effects. Lipid mediators (LM), specifically
17S-monohydroxy docosahexaenoic acid (DHA), resolvin
D5 and protectin DX (3:47:50 ratio), derived from DHA via
soybean lipoxygenase were depicted in Fig. S1. Our previous
studies showed that LM exhibit anti-inflammatory proper-
ties (22,23). However, the effects of LM against ALI remain
poorly understood. The present study explores the anti-inflam-
matory and antioxidant properties of LM in LPS-stimulated
RAW264.7 cells and mice.

Materials and methods

Quantification of lipid mediators. Normal-phase high-perfor-
mance liquid chromatography (NP-HPLC) of lipid mediators
was performed using a SUPELCOSIL LC-DIOL column
(SUPELCO, 25x3 mm, 5 ym). The mobile phase consisted of
heptane/2-propanol/acetic acid (95:5:0.1, v/v/v) at a flow rate of
0.5 ml/min, with the column temperature maintained at 10°C.
Lipid mediators were detected by monitoring UV absorbance
at 237, 242, and 270 nm. Concentrations were determined
by correlating peak areas with standard curves of known
concentrations.

Cell culture and viability assay. RAW264.7 cells (KCLB-
40071, mycoplasma negative, Korea Cell Line Bank) were
retrieved and sub-cultured 3-5 times to achieve a stable
and favorable condition. All experiments used cells within
10 passages. Cells were treated with LM from 1 to 100 pg/ml
for 3 h, subsequently incubated with lipopolysaccharides (LPS)
at 1 ug/ml (from Escherichia coli O111:B4; cat. no. L2630,
MilliporeSigma) for 24 h. MTT assay kit (cat. no. ab211091;
Abcam) was used to detect the cell viability (23). Briefly, the
existing media was replaced with a mixture of 50 ul serum-free
media and 50 pl of MTT Reagent and the plate was incubated
at 37°C for 3 h. Subsequently, 150 ul of MTT Solvent was
added to each well, followed by an incubation for 15 min in
the dark. Finally, the absorbance at 590 nm was measured by
microplate spectrophotometer (BioTeK; Agilent Technologies,
Inc.).

Intracellular ROS measurement. Cells were pre-treated with
LM (0.5, 1 and 2 pg/ml) for 3 h (23), followed by stimulation
with LPS for 24 h. After that, cells were exposed to DCFH-DA
solution for 30 min. ROS was assessed via fluorescence
microscopy (Leica Microsystems GmbH).

Inflammatory mediator assay. Cells were pre-incubated with
or without 5 yM ML385 (MedChemExpress) for 2 h, followed
by LM treatment for 3 h. Afterward, cells were exposed to LPS
for 24 h. The concentrations of pro-inflammatory cytokines in

the supernatant were quantified using ELISA kits (all Abcam)
for IL-6; cat. no. ab222503), tumor necrosis factor-o. (TNF-a,;
cat. no. ab208348), and IL-1f (cat. no. ab100704), following
the manufacturer's instructions. PGE2 was calculated by
ELISA kit (cat. no. MOEB2492; Assay Genie). NO levels were
measured with the Griess Reagent System (cat. no. G2930;
Promega Corporation).

Animal experiments. The animal experiment was approved
by the Institutional Animal Care and Use Committee of the
Korea Research Institute of Bioscience and Biotechnology as
well as the Institutional Animal Ethics Committee (approval
no. KRIBB-AEC-23233). A total of 18 female BALB/c mice
(6 weeks old; Orient Bio) were maintained under standard
conditions (22+2°C; 65+5% humidity; 12-h light/dark cycle).
ALI was induced via intranasal LPS administration (2).
Mice were assigned to three groups (n=6/group): Normal
control (NC), treated with saline, LPS (5 mg/kg) and LPS
(5 mg/kg) + LM (10 ug/kg/daily). The dosage was chosen
based on a previous study (23). LM was administered orally
for 7 days (based on the preliminary data). One h after
the final treatment, LPS was administered intranasally to
induce lung injury. Bronchoalveolar lavage fluid (BALF)
was collected 12 h later using 1 ml of phosphate-buffered
saline (PBS) under anesthesia (2,14). Mice were initially
placed in an induction chamber with 3% isoflurane and once
unconscious, they were transferred to a facemask to main-
tain anesthesia with 1.5% isoflurane during the procedure.
All animals were sacrificed under 8% isoflurane anesthesia
followed by cervical dislocation, in accordance with ethical
guidelines. Additionally, mice showing signs of distress, such
as weight loss exceeding 20% of baseline, labored breathing,
or cyanosis, were designated for humane sacrifice using the
same method. However, no such symptoms were observed in
any of the animals throughout the study. BALF was centri-
fuged at 4°C and 15,000 x g for 10 min. The supernatant
was collected for cytokine detection via ELISA, including
IL-6 (cat. no. ab222503), TNF-a (cat. no. ab208348) and
IL-1p (cat. no. ab100704) (Abcam), and the cell pellets were
resuspended for cell counting.

Lung tissue was collected for the measurement of wet/dry
(W/D) ratio according to the previous study (20). Hematoxylin
and eosin (H&E) staining of lung tissue was processed and
graded as 0-4 according to the severity of damage as follows:
0=no injury; 1=mild injury (25% of the field); 2=moderate
injury (50% of the field); 3=severe (75% of the field); and
4=most severe (90% of the field) (2,24).

Oxidative stress assay. The right lung was excised,
homogenized and prepared in extraction buffer. Levels of
myeloperoxidase (MPO) in lung tissue was assessed via
ELISA kit (cat. no. RAB0374; MilliporeSigma). MDA
(cat. no. ab118970; Abcam), GSH (cat. no. ab239727; Abcam),
CAT (cat. no. ab83464; Abcam) and SOD (cat. no. ab65354;
Abcam) in lung tissue or cells were assessed via colorimetric
assay kit (Abcam).

Western blotting. The isolation and separation of protein was
conducted as the previous study (25). Proteins were extracted
from cells using RIPA buffer (Bio Solution Co., Ltd.), then
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Figure 1. LM mediates the production of NO and PGE2 in vitro. (A) RAW264.7 cells were treated with LM for 3 h, followed by stimulation with LPS at
1 pug/ml for 24 h. MTT assay was performed to detect the cell viability. The production of (B) NO and (C) PGE2 were quantified. (D-F) Western blot analysis
was conducted to assess the expression of iNOS and COX-2. Data are presented as mean + SD and was determined using Tukey's test. “P<0.01, ““P<0.001,
“P<0.0001. LM, lipid mediators; NO, nitric oxide; PGE2, prostaglandin E2; LPS, lipopolysaccharide; iNOS, inducible nitric oxide synthase; COX-2, cyclo-

oxygenase-2.

kept on ice for 30 min. After centrifugation at 15,000 x g for
10 min at 4°C, protein concentration was measured using a
BCA kit (Thermo Fisher Scientific, Inc.). Samples were mixed
with loading buffer (Beijing Solarbio Science & Technology
Co., Ltd.) and heated at 100°C for 10 min. Equal amounts of
protein (~25 ug) were separated by 10% SDS-PAGE, trans-
ferred to PVDF membranes (MilliporeSigma) and blocked
with 5% BCA (Thermo Fisher Scientific, Inc.) at room
temperature for 40 min. Membranes were incubated with
rabbit monoclonal antibodies against inducible nitric oxide
synthase (iNOS; cat. no. ab178945; 1:1,000), cyclooxygenase-2
(COX-2; cat. no. ab179800; 1:1,000), Nrf2 (cat. no. ab92946;
1:1,000), heme oxygenase-1 (HO-1; cat. no. ab52947; 1:2,000),
p65 (cat. no. abl6502; 1:1,000), pp65 (cat. no. ab76302;
1:1,000) and GAPDH (cat. no. ab181602; 1:20,000; all
Abcam) overnight at 4°C, then with HRP-conjugated goat
anti-rabbit secondary antibody (cat. no. ab205718; Abcam,;
1:20,000) for 2 h at room temperature. After washing, signals
were detected using ECL substrate (Thermo Fisher Scientific,
Inc.) and visualized on film (Thermo Fisher Scientific, Inc.).
Band intensity was analyzed using ImageJ (1.48v; National
Institutes of Health).

Statistical analysis. The data are expressed as means + stan-
dard deviations (SDs). Statistical analysis was conducted
using one-way ANOVA followed by Tukey's post hoc test for
parametric data, or Kruskal-Wallis followed by Dunn's post
hoc test for non-parametric analysis (only for inflammation

score) using GraphPad Prism 9.5.1 (Dotmatics). P<0.05 was
considered to indicate a statistically significant difference.

Results

LM mediates NO and PGE2 expression in vitro. MTT
assay confirmed that LM combined with LPS (1 ug/ml)
was non-cytotoxic (Fig. 1A). First, the effect of LM alone
on RAW264.7 cells was examined. It was observed that
LM alone showed no significant effect on NO or IL-6 levels
(Fig. S2). To evaluate the anti-inflammatory properties of LM,
its ability to suppress LPS-induced proinflammatory media-
tors was analyzed. LPS stimulation significantly elevated NO
to 44.25+1.76 uM (P<0.0001 vs. NC) and increased PGE2
to 1,842.67+23.67 pg/ml (P<0.001 vs. NC; Fig. 1B and C).
However, LM at 0.5, 1 and 2 pg/ml markedly reduced these
mediators. Similarly, LPS significantly enhanced the expres-
sion of iNOS and COX-2 (P<0.0001 vs. NC, respectively;
Fig. 1D to F), whereas, LM markedly suppressed the expres-
sion of both proteins.

LM inhibits inflammatory cytokines via NF-kB
signaling pathway in vitro. LPS significantly elevated
IL-6 (4,470.72+125.18 pg/ml; P<0.0001), TNF-a
(2,865.04+57.34 pg/ml; P<0.0001) and IL-1f
(1,870.72+165.18 pg/ml; P<0.0001) when compared with
normal conditions, while, LM treatment notably reduced these
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Figure 2. LM inhibits inflammatory cytokines via NF-«kB signaling pathway in vitro. RAW264.7 cells were pre-incubated with LM for a period of 3 h, followed
by LPS at 1 ug/ml for 24 h. (A) IL-6, (B) TNF-a and (C) IL-1p were measured via ELISA. (D and E) Western blot analysis was conducted to evaluate the
expression levels of pp63. Data are presented as mean + SD and was determined using Tukey's test. ““P<0.01, *""P<0.0001. LM, lipid mediators; IL, interleukin;
TNF-a, tumor necrosis factor-a; ELISA, enzyme-linked immunosorbent assay; NC, normal control.

cytokines (Fig. 2A-C). Western blot analysis revealed that LPS
stimulation significantly increased NF-xB phosphorylation
(pp65; P<0.0001 vs. NC), while LM pretreatment markedly
mitigated phosphorylated p65 (Fig. 2D and E).

LM suppresses oxidative stress in vitro. To assess the antioxi-
dant potential of LM, ROS accumulation, MDA content, GSH
levels, CAT and SOD activities were measured. LPS exposure
significantly promoted ROS accumulation (P<0.0001 vs. NC
group), as shown by fluorescence imaging, but this was mark-
edly reduced by LM pretreatment at different concentrations
(Fig. 3A). LPS also decreased GSH level and SOD activities
while increasing MDA content (P<0.0001 vs. NC group,
respectively; Fig. 3B-D). However, LM pretreatment reversed
these effects, elevating GSH and enhancing SOD activities
while reducing MDA level. In addition, Nrf2 and HO-1 levels
were highly enhanced by LM in comparison to LPS stimula-
tion (Fig. 3E-G).

LM suppresses the oxidative stress and inflammation via
activation of Nrf2. In order to explore the role of Nrf2
signaling in mediating LM's effects on oxidative stress and
inflammation, the present study administered an inhibitor of
Nrf2, ML385 (5 uM) for 2 h before LM treatment, followed
by LPS incubation. Nrf2 expression was assessed using
western blot analysis. As shown in Fig. 4A and B, LM treat-
ment led to a significant increase in Nrf2 level (P<0.0001 vs.

LPS group). However, activation of Nrf2 was downregulated
in pretreatment with ML385 and LM group compared with
LM alone treatment (P<0.01). Furthermore, LM treatment
significantly reduced IL-6 and TNF-a (P<0.0001 vs. LPS
group, respectively) whereas these cytokines were increased
in LM + ML385 treatment compared with LM treatment
(P<0.01, P<0.05, respectively; Fig. 4C and D). The inhibition
of both cytokines caused by LM was offset by pretreatment
with ML385.

LM inhibits the lung injury in ALI mice. Histological analysis
of lung tissue revealed significant pathological changes in the
LPS-induced ALI group (P<0.001 vs. NC group), including
thickened alveolar septa, alveolar wall edema and inflamma-
tory cell infiltration, which were significantly reduced with
LM pretreatment (P<0.05 vs. ALI group; Fig. 5A and B). The
lung W/D ratio further indicated that LM significantly reduced
edema severity in comparison to LPS group (P<0.0001;
Fig. 5C).

MPO, a key marker of neutrophil infiltration into lung
tissue (2,7), was significantly elevated to 3 times in the ALI
mice when compared with normal levels (P<0.0001; Fig. 5D).
LM administration significantly reduced MPO levels by ~30%
to 0.68+0.08 U/g (P<0.01 vs. ALI group).

LM reduces the inflammatory cytokines in BALF and serum.
LPS exposure significantly raised the levels of TNF-a, IL-6
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Figure 3. LM suppresses the oxidative stress in vitro. (A) RAW264.7 cells were pretreated with LM for 3 h, followed by a 24-h exposure to LPS. Cells were
then stained with DCFH-DA to detect ROS. Fluorescence intensity was visualized using a fluorescence microscope, scale bar, 100 ym. Levels of (B) MDA,
(C) GSH and (D) SOD in the cells were measured. (E) Western blot analysis was performed to evaluate the expression of Nrf2 and HO-1. Relative expression
of (F) Nrf2 and (G) HO-1 was quantified using ImageJ software. Data are presented as mean + SD and was determined using Tukey's test. ““P<0.01, ““P<0.001,
“"P<0.0001. LM, lipid mediators; LPS, lipopolysaccharide; ROS, reactive oxygen species; MDA, malondialdehyde; GSH, glutathione; SOD, superoxide
dismutase; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; NC, normal control.

and IL-1p in BALF (P<0.0001 vs. NC group, each), whereas
LM pretreatment effectively moderated these cytokine
elevations, reducing them by >50% compared with the ALI
group (P<0.001, P<0.0001, P<0.001; Fig. 6A-C). Similarly,
serum TNF-a rose to 151.33+11.19 pg/ml, IL-6 increased to
248.74+19.19 pg/ml and IL-1f elevated to 54.64+2.08 pg/ml
(P<0.0001 vs. NC group, respectively; Fig. 6D-F). LM pretreat-
ment significantly reduced these levels to 90.33+6.17,
132.68+5.39 and 35.14+3.21 pg/ml (P<0.001, P<0.0001,
P<0.001 vs. ALI group; Fig. 6D-F).

LM alleviates the oxidative stress in ALI mice. To assess the
potential of LM in mitigating LPS-induced oxidative stress,
key antioxidant levels were evaluated as shown in Fig. 7. LPS

exposure significantly increased MDA level (~3-fold; P<0.0001
vs. NC group), while reducing SOD activity by almost a half
(P<0.001 each vs. NC group), CAT and GSH levels to nearly
one-third (P<0.0001 each vs. NC group). Pretreatment with
LM substantially reduced MDA level to 4.01+0.21 nmol/g
tissue (P<0.001 vs. ALI group) and restored SOD and CAT
activity to 5.13+0.42 U/mg protein and 9.67+0.95 U/mg protein
(P<0.01 vs. ALI group, respectively), as well as enhanced GSH
level to 4.08+0.13 pmol/g tissue (P<0.001 vs. ALI group).

LM alters NF-kB and Nrf2/HO-1 signaling pathways in ALI
mice. The NF-xB pathway was analyzed by western blotting
to determine the effect of LM. LPS significantly increased the
phosphorylation of pp65 (P<0.001 vs. NC group), promoting
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Figure 4. LM suppresses the inflammation via Nrf2 signaling pathway in vitro. RAW264.7 cells were pretreated with ML385 at 5 uM for 2 h and then
LM (2 pug/ml) for further 3 h, followed by stimulated with LPS for 24 h. (A) and (B) Nrf2 expression levels were assessed by western blotting. The levels of
(C)IL-6 and (D) TNF-a were measured using ELISA kits. Data are presented as mean + SD and determined using Tukey's test. “P<0.05, “P<0.01, “P<0.0001.
LM, lipid mediators; Nrf2, nuclear factor erythroid 2-related factor 2; LPS, lipopolysaccharide; IL, interleukin; TNF-a, tumor necrosis factor-a; ELISA,

enzyme-linked immunosorbent assay.
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ALI, acute lung injury; H&E, hematoxylin and eosin; W/D, wet-to-dry; MPO, myeloperoxidase.
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from LPS-induced ALI mice. Data are presented as mean + SD and determined using Tukey's test. “P<0.01, ““P<0.001, “"“P<0.0001. LM, lipid mediators;
LPS, lipopolysaccharide; ALIL, acute lung injury; MDA, malondialdehyde; GSH, glutathione; SOD, superoxide dismutase; CAT, catalase; NC, normal control.

inflammation in ALI mice whereas LM pretreatment signifi-  effectively suppressing NF-«kB activation (Fig. 8A and B).
cantly reduced pp65 expression (P<0.001 vs. ALI group), The role of LM in modulating the Nrf2/HO-1 pathway was
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Figure 8. LM modulates NF-«B and Nrf2/HO-1 signaling in LPS-induced ALI mice. (A) Western blotting was conducted to determine p65 and pp65.
(B) Quantification of these proteins via densitometric analysis with GAPDH as the internal control. (C) The expression of Nrf2 and HO-1 were analyzed by
western blotting. (D and E) Quantification of Nrf2 and HO-1 expression via densitometric analysis. Data are presented as mean + SD and determined using
Tukey's test. ““P<0.001, “*P<0.0001. LM, lipid mediators; HO-1, heme oxygenase-1; LPS, lipopolysaccharide; ALI, acute lung injury; NC, normal control.

investigated. LM pretreatment significantly upregulated Nrf2
expression compared with the NC and LPS groups (P<0.001,
respectively; Fig. 8C and D). Additionally, LM obviously
enhanced HO-1 expression (P<0.0001 vs. NC or ALI group,
respectively; Fig. 8C and E), a downstream target of Nrf2.
These results indicated that LM activated the Nrf2/HO-1
pathway in LPS-induced ALI mice.

Discussion

ALI is a severe inflammatory condition characterized
by damage to epithelial and endothelial cells, along with
disruption of the alveolar-capillary barrier, leading to lung
tissue edema and collapse (13,26). This barrier disruption
triggers activation of alveolar macrophages and neutrophils
in response to exudate in the alveolar spaces, promoting
the release of proinflammatory cytokines and oxidants
that exacerbate epithelial and endothelial cell damage (19).
Consequently, ALI manifests as a complex airway disease
involving amplified oxidative stress and inflammatory
responses (27,28). Specialized pro-resolving lipid mediators
(SPMs), derived from omega-3 polyunsaturated fatty acids,
play a key role in regulating inflammatory diseases such as
arthritis, ALI and asthma (29,30). SPMs exert effects through
various G protein-coupled receptors, which was evidenced by
receptor loss impairing inflammation resolution (31,32). While
downstream signaling events triggered by SPMs receptor
activation remain partially ununderstood, pathways such as
NF-kB and Nrf2 signaling have been implicated (33,34). LM
has demonstrated anti-inflammatory effects in models of

dermatitis and arthritis (23,35). The objective of the present
study was to investigate the potential of LM in ameliorating
lung tissue injury.

The intratracheal or intranasal administration of bacterial
products such as LPS is a widely used model for studying
ALI (19). The present study observed severe diffuse lung
damage characterized by infiltration of inflammatory cells,
thickening of the alveolar walls and enlargement of the spaces
between tissues. The increased lung W/D ratio further indi-
cated lung edema, a hallmark of ALI (36,37). LPS exposure
markedly elevated the W/D ratio and triggered extensive
neutrophil migration into lung tissue, leading to increased
MPO levels and severe inflammation (7,33). Consistent with
previous findings, the results confirmed that LPS markedly
raised MPO levels in lung tissue. Notably, LM pretreatment
effectively mitigated histological damage and reduced MPO
activity, demonstrating its potential to alleviate LPS-induced
lung injury.

LPS triggers excessive release of proinflammatory media-
tors, which are critical in acute and chronic inflammatory
disease pathogenesis (38-41). The present study demonstrated
that LM pretreatment effectively reduced TNF-a, IL-6 and
IL-1P secretion in LPS-stimulated RAW264.7 cells and ALI
mice. Additionally, NO and PGE2, key inflammatory markers
regulated by iNOS and COX-2, separately (4,25), were mark-
edly suppressed by LM, along with reduced iNOS and COX-2
expression. Following LPS challenge, NF-xB pathway is
activated, contributing to inflammatory diseases (42,43). Thus,
targeting NF-kB is critical for anti-inflammatory strategies.
Our previous studies demonstrated that LM inhibits NF-kB
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activation in chronic inflammatory conditions (22,23,35).
In parallel, the results in present study suggested that LM
pretreatment effectively suppressed NF-«B pathway in LPS
induced cells and mice.

ROS, generated by inflammatory cells or enzymatic systems
in alveolar epithelial and capillary endothelial cells, is a key
contributor to ALI pathogenesis (44,45). Evidence shows that
antioxidants can mitigate ALI severity, highlighting oxidative
stress as a pivotal factor (46-48). Endogenous antioxidants such
as SOD, CAT and GSH are markedly depleted during oxida-
tive stress (7,14). Consistent with this, LPS exposure increased
ROS production and MDA level while reducing CAT, SOD
activities and GSH level. LM pretreatment, however, reduced
ROS production and MDA content while restoring anti-
oxidants levels. Nrf2 is a critical regulator of ROS-induced
oxidative stress (49,50). Upon ROS signaling, Nrf2 is activated
and promotes the expression of antioxidant genes, including
HO-1 (51-53). Resolvin D1 attenuated oxidative stress via
Nrf2/HO-1, but this effect was abolished by an inhibitor of
Nrf2, ML385, and an inhibitor of HO-1, ZnPP (54). Similarly,
the protective effects on the ischemia/reperfusion-induced
lung injury of maresin 1 could be diminished by Znpp-IX
and Brusatol (an Nrf2 antagonist) (55). These investigations
suggested the Nrf-2/HO-1 signaling pathway contributed to
mitigation of oxidative stress by SPMs. The present study
also found that LM markedly activated Nrf2/HO-1 axis in
RAW264.7 cells and ALI mice. Recent evidence suggests that
the Nrf2/HO-1 pathway plays a critical role in cellular antioxi-
dant and anti-inflammatory defense, while NF-«B is a central
mediator of pro-inflammatory responses (56,57). Given the
reported crosstalk between these two pathways, it was hypoth-
esized that LM exerts its anti-inflammatory effects through
modulation of the Nrf2 and NF-«xB signaling pathways. The
present study aimed to investigate the anti-inflammatory
properties of LM and its potential regulation of these key
molecular pathways. The findings indicated that LM exerted
anti-inflammatory effects, which appear to be at least partially
mediated through the Nrf2 pathway, as evidenced by the
diminished effect observed upon Nrf2 inhibition with ML385.
These results support the role of Nrf2 activation in the protec-
tive mechanism of LM, potentially via HO-1 induction.

In summary, LM exhibits protective properties against
lung tissue damage in ALI by inhibiting the NF-kB signaling
pathway and activating the Nrf2/HO-1 signaling pathway.
However, there are some limitations to the present study.
To begin with, additional studies are needed to evaluate the
standalone effects of LM in animal experiments. Moreover,
while LPS induced ALI is widely used for studying inflam-
matory lung conditions, it was recognized that future studies
should explore other ALI models (such as bacterial or viral
infection-induced ALI) to enhance the generalizability of the
present findings. Furthermore, although the findings strongly
supported the involvement of Nrf2 in the anti-inflammation of
LM, it is acknowledged that further mechanistic studies, such
as dual-pathway inhibition or genetic interventions, would be
beneficial to confirm direct regulatory interactions. In addi-
tion, while the present study did not explore the synergistic or
distinct effects of individual LM components, future research
could focus on component-specific studies using purified LM
derivatives to further elucidate their individual roles.
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