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The rising prevalence of colorectal cancer necessitates early and accurate optical diagnosis of colorectal polyps.
Despite advances in Computer-Aided Diagnosis (CAD) systems, challenges like data variability and inconsistent
clinical performance hinder their widespread use. To address these limitations, we propose ColonOOD, an inte-
grated CAD system for polyp localization, uncertainty-aware polyp classification, and Out-of-Distribution (OOD)
polyp detection during colonoscopy. ColonOOD ensures robust classification of adenomatous, hyperplastic, and
OOD polyps while providing calibrated uncertainty scores to support clinical decisions. Extensive evaluations
across four medical centers and two public datasets demonstrate ColonOOD’s strong performance, achieving
up to 79.69 % classification and 75.53 % OOD detection accuracy. This system offers reliable insights for endo-
scopists, marking a significant step toward broader clinical adoption of automated diagnostic tools in colorectal

cancer care.

1. Introduction

Colorectal cancer is a leading cause of cancer-related deaths globally,
yet fast and accurate detection of polyps during colonoscopy has been
shown to reduce mortality rates by up to 53 % (Kiwan et al., 2022).

Characterizing these polyps remains challenging and often relies
heavily on the expertise of endoscopists. However, factors like inter-
expert variability in diagnoses (Jin et al., 2020), the extensive training
required for proficiency (Seo et al., 2020), and the high prevalence of
minor types of polyps in Fig. 1 beyond the two main types—adenomatous
polyps (AD) and hyperplastic polyps (HP)—contribute to significant dis-
parities in diagnostic accuracy and quality of care (Patel et al., 2020).

While histopathological assays are accurate tools for diagnosis,
the high costs associated with evaluating polyps that often do not
require further screening, such as hyperplastic polyps (HP), have
prompted the American Society for Gastrointestinal Endoscopy (ASGE)
to recommend the optical classification of diminutive polyps during
colonoscopy and their subsequent discard without histopathological
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analysis (Parsa et al., 2021). This strategy can save up to $1.06 bil-
lion annually (Patel et al., 2020), while also enabling immediate clinical
decision-making regarding treatment and patient management.

These challenges and need highlight the pressing need for reliable
diagnostic tools during colonoscopy, such as computer-aided diagnosis
(CAD) systems, to enhance the optical diagnosis of colorectal polyps by
enabling rapid and accurate decision-making.

Despite their potential, CAD systems face substantial challenges in
real-world deployment. Existing systems often lack consideration for
clinical complexities during optical diagnostics, such as unseen polyp
types and inconsistencies between CAD and clinician decisions (Beger
et al., 2021; Chen et al., 2021; Wang et al., 2020). Research has fo-
cused primarily on the binary classification of AD and HP polyps (Lo
et al., 2022; Yoshida et al., 2021), or it has expanded to a few lim-
ited additional categories such as advanced adenomas and serrated
polyps (Ozawa et al., 2020; Yang et al., 2020). However, these efforts
frequently fail to address the full spectrum of polyp diversity (Urban
et al., 2018) that might occur in the practical workflows of clinical use
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(Wang et al., 2020). These gaps can result in silent failures, undermining
prediction reliability and posing critical barriers to widespread adoption
(Hong et al., 2024).

A particularly pressing issue is the detection of Out-of-Distribution
(OOD) polyps, which include rare or newly emerging types that deviate
from known patterns (Jin et al., 2020). These atypical polyps present
challenges for both endoscopists and CAD systems, increasing the risk
of diagnostic errors and inappropriate treatments (Smith et al., 2024).
For example, a malignant OOD polyp misclassified as a benign hyper-
plastic polyp could delay necessary interventions, potentially jeopardiz-
ing patient outcomes. Effective detection of OOD polyps is thus crucial
for improving the robustness and clinical reliability of CAD systems in
colonoscopy.

This study presents ColonOOD, a comprehensive pipeline addressing
key challenges, particularly unseen polyp types, in deploying CAD sys-
tems for colonoscopy. The proposed framework integrates polyp local-
ization, classification, and OOD detection to provide a solution tailored
for real-time colonoscopy applications. ColonOOD leverages a highly
discriminative classification model trained with advanced techniques
and an OOD detection module developed through rigorous analysis of
user scenarios. By identifying deviations in AD, HP, and OOD polyps
and quantifying predictive uncertainty, ColonOOD provides clinically
meaningful interpretability for helping to mitigate potential discrepan-
cies between endoscopists’ judgments and CAD predictions. These ca-
pabilities support endoscopists in making informed decisions, reducing
reliance on subjective judgment, and addressing practical challenges in
clinical workflows such as unseen polyps.

The specific objectives of this study are threefold: (1) Develop an
integrated pipeline for polyp localization, classification, and OOD de-
tection to provide complete pipeline of CAD in real-time colonoscopy;
(2) Create an uncertainty-aware classification model capable of distin-
guishing AD and HP polyps with high accuracy and well-calibrated
uncertainty predictions for providing metric to compare endoscopist’s
decision and CAD’s decision; and (3) Design a scenario-targeted OOD
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detection method to identify and manage rare and unseen polyps for
accommodating diverse clinical challenges and enhancing applicability
in practice.

e A complete CAD system for optical diagnosis of colorectal
polyps (ColonOOD): This research introduces a systematic design
named ColonOOD, comprised of a robust classification model and
scenario-targeted OOD module. ColonOOD systematically localizes
polyps, classifies them with uncertainty scores, categorizes predic-
tions into high- or low-confidence groups, and detects OOD polyps.
By addressing covariate shifts, inconsistent performance across insti-
tutions, and real-world applicability, ColonOOD provides a practical
approach for clinical deployment to ensure robust performance in
diverse clinical settings and to aid endoscopists in making informed
decisions.

Out-of-distribution (OOD) polyp detection: We propose a
scenario-targeted OOD detection framework, informed by an in-
depth analysis of baseline classification model behaviors and lever-
aging feature vectors, logit tensors, and probability distributions of
deep learning models. To our knowledge, this is the first CAD system
for colorectal polyps incorporating OOD detection. It addresses the
challenge of detecting rare, newly emerging, or unseen polyp types,
thereby improving generalizability across diverse clinical scenarios.
Uncertainty-aware polyp classification: We designed an
uncertainty-aware systematic pipeline with a high-accuracy classi-
fication model and well-calibrated confidence scores by employing
extensive data augmentation, diverse training strategies, optimal
model architecture selection, temperature scaling, and uncertainty
thresholding. These techniques mitigate overconfidence, enabling
endoscopists to interpret Al predictions alongside their clinical
judgment, thereby reducing the likelihood of misdiagnosis and
enhancing trust in the system.

Evaluation considering diverse clinical environments: To rigor-
ously evaluate ColonOOD, we curated diverse evaluation datasets

(c) Other Polyp Types — Traditional Serrated Adenoma, Sessile Serrated Polyps, Serrated Polyps and Others

Fig. 1. Representative image of colorectal polyps. (a) Adenomatous polyps (b) Hyperplastic polyps (c) Other types of polyps such as traditional serrated adenoma,

sessile serrated polyps, serrated polyps, and more.
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Table 1
Number of adenomas or hyperplastic polyp images from each medical insti-
tution.

Center A (Train) Center A (Val) Center B Center C Center D

Adenomatous 1100 278 242 105 105
Polyps

Hyperplastic 1050 94 58 73 39
Polyps

from four medical institutions and two publicly available datasets
to give an adequate evaluation of the system’s feasibility in diverse
clinical settings. Additionally, we developed a demo for simulating
and assessing the entire pipeline in colonoscopy videos, replicating
real-world clinical scenarios to validate the system’s applicability.

2. Materials and methods
2.1. Dataset

Polyp classification dataset Dataset used in our experiment, sum-
marized in Table 1, was collected through four medical institutions: Cen-
ter A, Center B, Center C and Center D. All data was collected from
colonoscopies using Narrow Band Imaging (NBI) and preprocessed by
cropping polyps from colonoscopy video frames. As a result, all the in-
put data for the model consisted of polyp ROI images from colonoscopy
views. Only data from Center A were used for training and valida-
tion, while datasets from other institutions were reserved for external
validation.

Uncertainty quantification polyp dataset Ten expert endoscopists
evaluated 720 polyp images from four institutions, categorizing the
ground truth labels with High Confidence (HC) and Low Confidence
(LC). If all ten experts diagnosed a polyp with high confidence, it re-
ceived a confidence score of 10 HCs. This dataset evaluates the uncer-
tainty and confidence scores of the model and assesses its feasibility for
clinical application.

Out-of-distribution polyp dataset The OOD polyp dataset shown
in Table 2 includes a diverse range of polyp types, such as Sessile Ser-
rated Polyps, Traditional Serrated Adenomatous, Serrated Polyps, and oth-
ers. The datasets consist of private collections from Center A and Center
A (Video). At the same time, the SUN (Itoh et al., 2020) and POLAR
(POL, 2020) datasets are publicly available and used for polyp classifi-
cation and localization. The OOD polyps were manually extracted from
colonoscopy videos using the labels provided in the Center A (Video)
and SUN datasets.

Colonoscopy video Center A collected 200 colonoscopy videos,
each annotated with the time of polyp emergence and the type of polyps
present. This dataset evaluated the model in a clinical setting, closely
reflecting actual colonoscopy procedures.
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Table 2

Number of Out-of-Distribution Polyps in each dataset. (TSA: Traditional Ser-
rated Adenoma, SSL: Sessile Serrated Polyps, SP: Serrated Polyps, Others in-
clude Invasive cancer and others specified by POLAR dataset).

External validation
data (Public Data)

Internal
validation data

Center A Center A (Video) SUN POLAR
TSA 3 2 5
SP 64 10 - -
SSL 19 4 199
Normal Mucosa — - - 26
Other - - 1 15
Total 86 13 7 245

2.2. User scenario

Designing a system for OOD detection is highly dependent on the
specific application. Firstly, a deep understanding of the context of the
problem should be preceded to make a robust and appropriate method
for OOD selection. In our scenario depicted in Fig. 2, among all diagnosis
cases, an accurate diagnosis of HP is essential, as many OOD polyps
are precancerous and therefore require histopathological tests for post-
treatment. We may discard HP, while OOD and AD must proceed to
post-process. Thus, accurately distinguishing HP from OOD polyps and
accurately classifying AD should be the model’s priority.

3. Proposed framework: ColonOOD
3.1. Integrated framework

Considering the scenario described above, this study proposes a
robust computer-aided diagnosis (CAD) system named ColonOOD, as
shown in Fig. 3. This pipeline is structured around three core com-
ponents: Polyp localization, uncertainty-aware polyp classification, and
Out-of-Distribution (OOD) polyp detection.

Once the polyp localization model predicts a cropped image of the
polyp, the baseline classification model classifies the polyp as either AD
or HP and quantifies the uncertainty of its predictions, producing pre-
liminary confidence scores. If the model classifies a polyp as AD with
a high confidence score, the result is forwarded directly to the user in-
terface for immediate display. For cases where polyps are classified as
AD with a low confidence score or identified as OOD, the OOD detec-
tion module re-evaluates the input to ensure robust decision-making.
The OOD detection module consists of an OOD-specialized model and
a feature-based post-processing step, which complement each other to
effectively distinguish between HP and OOD polyps in a collectively ex-
haustive manner. By integrating classification and OOD detection mod-
ule, ColonOOD optimizes boundary decisions and enhances clinical ap-
plicability. The framework is summarized in Fig. 3.

Actual
Confidence | Fredicted AD HP 00D
Label
AD Pathologic | Pathologic | Pathologic g@ Follow-up treatment
High Assay Assay Assay
Confidence HP No Diagnosis | No Diagnosis | No Diagnosis
Prediction (HC) - - - j’-ﬁ Adverse event
Pathologic | Pathologic | Pathologic
00D
Assay Assay Assay
Safely Discard
Low AD @ v
Confidence HP Doctor’s Decision
(Lo) 00D

Fig. 2. A possible scenario in real clinical settings.
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Fig. 3. The overview of the proposed framework named ColonOOD.

3.2. Decision rule

Let I represent the input-cropped image of the polyp. The baseline
classification model generates a predicted label y € {AD,HP} and an
associated confidence score S(I) € [0, 1]. This process is formalized as:

c={p.SM}, (@]
where:

y=arg max

P(c | 1),
ce{AD.HP} (ID

SM=PFID.

The decision-making process integrates classification and OOD de-
tection, defined as:

{9, High Confidence}, if SI)>T and D(¢(1)) > Toop.
f( =4{00D}, if D) < Toop. @
{,Low Confidence}, if SI) < T and D(¢(I)) > Toop-

Here, T is the confidence threshold for classification. ¢(I) maps the in-
put image to a latent feature space. D(¢(I)) measures the OOD score
based on the feature embedding of the input sample. A higher OOD
score means that the sample will likely be an ID sample, following the
convention of OOD studies (Hendrycks & Gimpel, 2017) (Liang et al.,
2018) (Hendrycks et al., 2022). Toqp is the threshold for distinguishing
OOD samples.

3.3. Polyp localization

The system is provided with a frame from a colonoscopy in a clin-
ical setting, as shown on the left side of Fig. 3. Since the classifica-
tion model requires images with localized polyps, we offer two options:
(1) clinicians can manually select the region of interest by clicking the
top-left and bottom-right corners of the polyp, or (2) the system can
automatically localize the polyp using a deep learning model. For the
manual localization, we implemented an OpenCV (v3.1) as a tool, al-
lowing the user to click the ROI and crop it into a bounding box image.
For automatic localization, we employed pre-trained YOLO-OB, a spe-
cialized architecture that features bidirectional multiscale feature fusion
and anchor-free box regression, ensuring robust polyp localization (Yang
et al., 2023).

3.4. Uncertainty-aware polyp classification

3.4.1. Model and training strategy

The classification model training process incorporates several strate-
gies to mitigate the over-confidence issue caused by the limited amount
of data. First, the classification baseline model employed a transformer-
based model instead of traditional CNN-based models. Although CNNs
have been widely used in the medical field due to their ability to ex-
ploit spatial location and their relatively low data requirements (Chan
& Siegel, 2018), transformers have consistently shown superior perfor-
mance in addressing overconfidence and generalizing between different
medical institutions (Raghu et al., 2021). Vision transformers (ViTs), in
particular, achieve higher accuracy and robustness, making them espe-
cially wellsuited for classifying colorectal polyps.

Secondly, the classification model of ColonOOD applied advanced
image augmentation techniques such as Mixup (Zhang et al., 2018) to
compensate for the limited data and reduce overfitting. Given two exam-
ples (x;,y;) and (x j»¥;), MixUp generates a new training example (%, )
as follows:

£ =Ax+ (1 - Dx; (3

y=Ay+ 1 =4y C)

where 4 ~ Beta(a, «). Third, we used ImageNet-pretrained models for
all baseline models to leverage transfer learning, allowing the model to
benefit from knowledge learned from a large and diverse image dataset,
especially in our setting with limited training data available in medi-
cal institutions. Lastly, we applied comprehensive regularization tech-
niques, including label smoothing (Szegedy et al., 2016), learning rate
warmup, cooldown (Kalra & Barkeshli, 2024), decay (Smith, 2017), and
gradient clipping (Zhang et al., 2020), to enhance the model’s reliability
and performance.

3.4.2. Confidence calibration

Despite carefully selecting the model architecture and training strat-
egy to address the overconfidence issue, classification models still tend
to over-confidently predict AD and HP, as shown in Fig. 4. To miti-
gate this, we implemented temperature scaling (Hinton et al., 2015), a
method that calibrates the model output probabilities to better reflect
actual uncertainties, reducing the overconfidence in the predictions. The
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temperature scaling adjusts the logit vector z; by dividing it by a scalar
hyperparameter, T, as shown below.

Z;
7) ®
Here, §; is the calibrated probability. After applying temperature scaling,

the model became more calibrated, effectively addressing the issue of
over-confidence.

g, = maxo(

3.4.3. Polyp uncertainty quantification

Establishing appropriate thresholds for high confidence (HC) and
low confidence (LC) classifications is crucial for enhancing the model’s
performance and interpretability. This ensures that the model’s pre-
dictions are accurate and reliable, enabling clinicians to make well-
informed decisions based on the model’s outputs.

Several methods exist for setting the HC and LC thresholds. The first
approach involves identifying an optimal threshold that minimizes the
difference between the false positive rate (FPR) and actual positive rate
(TPR), balancing sensitivity and specificity to distinguish between AD
and HP polyps effectively. The second approach focuses on minimizing
overall detection error by setting a threshold that reduces the number of
misclassifications and optimizing the detection function to improve clas-
sification accuracy. The third approach employs expected calibration
error (ECE) to ensure the model’s confidence scores are well-calibrated
(Guo et al., 2017). This method adjusts the threshold so that the pre-
dicted confidence scores accurately reflect the true likelihood of the
classifications, mitigating both over-confidence and under-confidence
in the model’s predictions.

In this study, we adopted the third approach-utilizing confidence
scores to distinguish between high-confidence (HC) and low-confidence
(LC) predictions without interfering with the classification process it-
self. In medical applications, particularly polyp classification, minimiz-
ing false positives, false negatives, and misinterpretation is critical to
achieving optimal patient outcomes. Rather than relying solely on accu-
racy, which provides a binary assessment, our focus expands to include
calibration error-a continuous measure ranging from 0 to 1-that more
effectively captures the model’s confidence reliability and potential for
misjudgment.

To determine appropriate thresholds, predicted probabilities were
aligned with actual labels and grouped into bins. Candidate thresholds

(a)
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Fig. 4. Training strategies of polyp classification. (a) Reliability plot on the effect of temperature scaling for transformer-based models (Left) Before the temperature
scaling, (Right) After the temperature scaling, (b) Setting of the threshold on the uncertainty score distribution into high confidence (HC) and low confidence (LC)

from O to 1 were then iteratively evaluated to identify values that min-
imized the Expected Calibration Error (ECE). As a result, the optimal
high-confidence thresholds for AD and HP were identified as 0.899 and
0.888, respectively, rounded to three significant figures.

The classification model and confidence calibration process were de-
signed through comprehensive analysis of model behavior and the adop-
tion of multiple conservative strategies. These efforts aimed to minimize
misclassification risk and prevent error accumulation, thereby improv-
ing both reliability and clinical usability.

By combining these thresholding techniques with detailed visual
analysis, the model achieves high accuracy and confidence calibration.
This enhances its clinical applicability by providing endoscopists with
a robust tool for precise colorectal polyp classification. Ultimately, the
system not only supports accurate diagnoses but also strengthens clini-
cal decision-making for improved patient outcomes.

3.5. Out-of-distribution polyp detection

3.5.1. Feature embedding and divergence

Out-of-distribution (OOD) polyp data refers to test samples that orig-
inate from a distribution distinct from the training data (Yang et al.,
2021). Identifying such samples is critical for ensuring robust and reli-
able predictions in clinical settings. To address this, OOD detection is
formulated as a feature-space, logit, or probability classification prob-
lem, leveraging a corresponding function ¢(x) that maps the input x
to a latent space. The decision rule is defined based on a score met-
ric S between the input’s value and the in-distribution (ID) value
distribution.

Sfoop(x) = {

Here, ¢(x) is the feature embedding, logit, or probability of the input x.
F represents the set of tensor values for the ID training data. S(¢(x), F)
is a score metric used to measure how far the input distribution deviates
from the ID distribution. Toqp is the threshold for determining whether
a sample belongs to OOD, calibrated on validation data.

In colorectal polyp diagnosis, robust OOD detection is crucial for
identifying polyps that deviate from the typical characteristics of HP or

00D,
D,

if S(¢p(x), F) < Toops
otherwise.

(6)
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AD polyps, preventing misclassification, and ensuring appropriate treat-
ment. Designing an effective OOD method is highly relevant to the ap-
plication’s context and requires in-depth analysis.

3.5.2. Out-of-distribution detection methods

OOD detection methods consist of fine-tuning approaches and post-
processing techniques. Fine-tuning methods adjust the decision bound-
aries of the original baseline model to account for the distribution of ad-
ditional out-of-distribution data. Post-processing methods, on the other
hand, simplify training complexity by evaluating the disparity (Mukhoti
et al., 2021) between input samples and training data in the feature
space (Sun et al., 2021, 2022; Zhang et al., 2023a) , logit values (Wang
et al., 2022), and probabilities (Hendrycks et al., 2022; Hendrycks &
Gimpel, 2017; Liang et al., 2018). These methods leverage the differ-
ences in the model’s response to ID and OOD data (Lee et al., 2018).
For example, previously unseen data that significantly deviates from the
training data’s feature density is assigned a low score, indicating it as
OOD. In this study, the following well-known OOD detection methods
were investigated.

ODIN applies perturbations to input and temperature scaling for in-
creasing sensitivity to detect subtle differences between ID and OOD
samples (Liang et al., 2018). Maximum softmax probability (MSP)
uses the softmax output of the neural network to identify OOD instances.
At the same time, ODIN enhances this approach by applying input per-
turbations to improve detection accuracy (Hendrycks & Gimpel, 2017).
ReAct modifies the activation values in the penultimate layer by clip-
ping them to a fixed threshold, reducing the influence of extreme ac-
tivation caused by OOD samples (Sun et al., 2021). KLM compares the
Kullback-Leibler (KL) divergence between the predicted distribution and
a reference distribution to detect significant deviations from OOD sam-
ples (Hendrycks et al., 2022). GEN combines outputs from multiple gen-
erative models to estimate the likelihood of a sample belonging to the
training distribution (Liu et al., 2023). KNN uses feature embeddings
and distance-based metrics to distinguish between ID and OOD instances
(Sun et al., 2022). ViM calibrates logits using virtual logits generated
for each class from softmax outputs, helping separate ID from OOD
(Wang et al., 2022). SHE captures class-specific feature patterns from
the penultimate layer to determine whether the input sample’s feature
aligns with any class patterns (Zhang et al., 2023a). OE trains the base-

t-SNE Visualization of DeiT
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line model to distinguish additional outlier data labeled as OOD from
ID data (Hendrycks et al., 2019). MixOE extends OE by blending ID and
OOD data using techniques like Mixup (Zhang et al., 2018), creating
a smoother and more robust decision boundary between ID and OOD
samples (Zhang et al., 2023b).

3.5.3. Ablation study in baseline model and out-of-distribution detection
methods

This section explores how the baseline model and OOD methods
work against each polyp types. Fig. 5(b) presents a U-map of the feature,
logit, and probability spaces from baseline model for classifying AD,
HP, and OOD polyps. The logit values and probabilities of OOD polyps
closely align with those of AD and HP polyps, complicating the calibra-
tion process to determine whether a sample belongs to the ID or OOD
categories. In the feature space, OOD polyps are positioned near the
space occupied by HP polyps, making it challenging for feature-based
OOD methods to differentiate between HP and OOD polyps effectively.

Likewise, Fig. 5(a) shows that HP and OOD polyps are located closely
in the feature space, highlighting the necessity of fine-tuning the base-
line model rather than relying on a naive classification model, even if it
demonstrates high performance. To effectively distinguish between HP
and OOD polyps, the baseline model must be fine-tuned to adjust de-
cision boundaries in the feature space, and an additional mechanism is
needed to detect subtle deviations between the two types of polyps.

Post-processing alone is insufficient to distinguish ID from OOD
polyps, as the appearance of these polyps is so similar that even exten-
sive data augmentation and regularization techniques are required for
accurate classification of AD and HP polyps. The most critical misclas-
sification occurs when OOD polyps are identified as HP polyps, posing
a potential cancer risk. The most significant concern is when the sys-
tem incorrectly predicts cancerous polyps (either AD or OOD) as HP
with high confidence. This could lead to the inappropriate discard of
polyps and bypassing necessary pathological examination and follow-up
treatment.

To address this challenge, we fine-tuned the baseline model us-
ing MixOE, utilizing HP and OOD polyps as training data. This ap-
proach allows the model to adjust boundary decisions between HP and
OOD polyps without interference from AD polyps. As the number of
fine-tuning data is insufficient, the addition of AD polyps interrupted
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Fig. 5. Preliminary study in three representative out-of-distribution detection methods. (a) t-SNE visualization of tensors of baseline model visualizing the datapoint
into the 2D map (b) U-map of feature tensors, logit tensors, probability tensors of baseline model (c) Distribution of OOD scores of representative feature-, logit-,

and probability-based methods.
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adjusting the decision boundary of the model to distinguish AD, HP,
and OOD.

The baseline classification model was fine-tuned with advanced data
augmentation techniques like CutMix. We opted for feature-based tech-
niques for the post-processing method, leveraging transfer learning
models with complex decision boundaries. The U-map and OOD distri-
bution indicate that logit values and probabilities alone are insufficient
to distinguish between ID and OOD polyps. In summary, the OOD detec-
tion step employs a fine-tuned MixOE model with HP and OOD polyps
combined with a feature-based OOD method.

4. Experimental setup
4.1. Preprocessing

The candidate backbone models are ImageNet-pretrained ViT-S,
DeiT-S, and MPViT-S. Images were resized to 256 x256 pixels and
center-cropped to 224 x 224 pixels to maintain resolution after polyp
localization. The training process incorporated several strategies to ad-
dress the over-confidence issue posed by the limited amount of data. We
augmented the training set using Mixup (Zhang et al., 2018) with g =
0.8, along with simple augmentations like random horizontal flips with
a 0.5 probability and random rotation within a range of —10° to 10°, to
artificially increase data diversity and prevent overfitting. The baseline
model has been fine-tuned using MixOE with 10% of OOD data from
Table 2.

4.2. Evaluation metrics

The system’s performance is evaluated using multiple metrics, in-
cluding overall accuracy, which reflects both polyp classification and
OOD detection accuracy. Classification and OOD detection accuracy are
also reported separately to provide deeper insights into the system’s per-
formance.

A= N00D+NID?\?D+NIDHHP @
where
A : Overall Accuracy,
Noop : Number of out-of-distribution samples correctly classified,
Nipnap : Number of in-distribution samples correctly classified as AD,
Nipngp : Number of in-distribution samples correctly classified as HP,

N : Total number of samples.

The expected calibration error (ECE) is measured to assess the cal-
ibration error in the models’ confidence scores. Additionally, metrics
such as the Area Under the Receiver Operating Characteristic curve (AU-
ROC), the Area Under the Precision-Recall curve (AUPRC), the False Pos-
itive Rate (FPR) at 0.95 True Positive Rate (TPR) are used to evaluate
the quality of OOD detection. These metrics provide a comprehensive as-
sessment of the system’s ability to accurately classify polyps and detect
OOD instances, ensuring reliable and interpretable results for clinical
practice.

4.3. Implementation details

The baseline models were trained using four NVIDIA RTX 3090 GPUs
with 20 GB of RAM each. A NIVID A100 GPU with 80 GB of RAM was
used for experiments involving several OOD methods requiring higher
memory capacity. The models were implemented in Python (v 3.8) and
PyTorch (v 1.10.2), and various OOD methods were explored using
OpenOOD v1.5 (Zhang et al., 2023c). All evaluations of the full pipeline
were performed on a single NVIDIA RTX 3090 GPU with 20 GB of RAM.
The implementation is available at https://github.com/sehyunpark99/
ColonOOD. The demo can be seen in (Fig.A.1).
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Table 3

Comprehensive analysis OOD detection models’ performance.

Fine-tuning AD, HP and AD, HP and HP and HP and

dataset(Prior 00D (X) 00D (0) 00D (X) 00D (0)

classification)

Center A 27.29% 49.56 % 69.87 % 72.49%

Center A 27.25% 49.01 % 64.40 % 71.95%

(Video)

SUN 12.93% 41.16 % 71.77 % 79.68%

POLAR 46.19% 62.72% 75.53% 74.55%

CIFAR10 96.82 % 97.85% 98.99% 98.98%
5. Results

5.1. Result of ColonOOD framework

By fine-tuning the OOD model on a dataset specifically curated to
include a variety of OOD polyps, we achieved improved detection ac-
curacy and better generalization to unseen data. Table 3 presents a
comparative analysis of the OOD detection model’s performance when
trained on two different polyp-type subsets: (AD, HP, and OOD) ver-
sus (HP and OOD). The uncertainty-aware classification model classi-
fies AD polyps with high confidence as in-distribution (ID), providing a
precedent step for OOD detection. The results show significant improve-
ment, with detection accuracy increasing from 27.29 % to 49.56 % on
the Center A dataset and from 12.93 % to 41.16 % on the SUN dataset,
demonstrating the effectiveness of leveraging earlier classification steps
to boost OOD detection accuracy. However, incorporating AD polyps
during fine-tuning degraded the model’s performance and accuracy in
predicting OOD polyps.

Fine-tuning on HP and OOD samples alone led to substantial im-
provements, particularly on the POLAR dataset, where performance
reached 62.72 %. This suggests that focusing on specific polyp types can
significantly enhance OOD detection. The iterative approach, combined
with fine-tuning on HP and OOD samples, proved to be the most ef-
fective, delivering the best results across all datasets. Notable improve-
ments, such as Center A’s increase to 72.49 %, highlight the method’s
ability to enhance OOD detection through iterative refinement and tar-
geted fine-tuning. The best performance across various datasets demon-
strates the pipeline’s robustness and effectiveness in practical applica-
tions. These findings emphasize the importance of iterative refinement
and targeted fine-tuning in developing reliable OOD detection systems
for clinical use.

The experimental results show significant improvements in both clas-
sification accuracy and OOD detection. The integrated system accurately
distinguishes between HP and AD polyps while effectively identifying
and managing OOD polyps. Including uncertainty quantification fur-
ther enhances the reliability of the model’s predictions, providing en-
doscopists with valuable information to support their diagnostic deci-
sions. These results underscore the potential of the proposed system to
improve the quality and consistency of colorectal polyp diagnosis in
clinical practice.

5.2. Result of uncertainty-aware polyp classification

Table 4 demonstrates that our training strategy outperformed all four
baseline models. Each model was deployed in four medical institutes,

Table 4
Performance of different baseline models across various datasets.
ViT-S DeiT-S MP-ViT-S ResNet-50 Overall
Center A 90.6 % 87.9% 91.7% 87.9% 89.5%
Center B 89.3% 86.3% 86.7 % 86.0% 87.1%
Center C 82.4% 81.6% 82.8% 77.9% 81.2%
Center D 71.5% 72.9% 75.0% 74.3% 73.4%
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Fig. 6. Distribution of confidence scores across the validation set. Top: Kernel Density Estimate (KDE) of confidence scores, with each line representing the number
of endoscopists who classified the polyp as high confidence (HC). Bottom: Box plot showing the number of endoscopists who classified the polyp as HP.

consistently achieving high accuracy. This uniform performance across
various settings highlights the robustness and generalizability of our
approach.

One notable result is that the outcomes of the uncertainty-aware clas-
sification model closely align with expert endoscopists’ predictions. The
model’s confidence scores were compared using an uncertainty assess-
ment dataset, which includes labels indicating high confidence (HC)
and low confidence (LC) in polyp optical diagnosis, as determined by
ten expert endoscopists. This comparison highlights the model’s abil-
ity to provide predictions consistent with the judgments of experienced
professionals, thereby enhancing its credibility and utility in clinical
practice.

Fig. 6 shows that the classification model tends to assign higher con-
fidence scores to polyps that more endoscopists have labeled HC, par-
ticularly for HP polyps. This correlation suggests that the model’s confi-
dence scores align with the consensus of expert endoscopists, highlight-
ing the model’s reliability and potential as a valuable tool in colorectal
polyp diagnosis.

5.3. Result of OOD polyp detection

The performance of ViT and DeiT on OOD detection using various
methods is detailed in the Appendix. Generally, logit-and probability-
based methods poorly differentiate between ID and OOD samples. Meth-
ods like MSP, ODIN, and GEN yield over 90 % false positive rates (FPR),
indicating their ineffectiveness in distinguishing between ID and OOD
samples. The complete performance of each OOD methods is in Figs. B.1
B.2. Our experiments show that feature-based OOD detection methods,
particularly KNN combined with fine-tuned models, offer the best per-
formance distinguishing OOD polyps from ID polyps, as hypothesized in
the Methods section through our feature, logit, and probability spaces
analysis. Feature-based methods leverage the underlying feature repre-

sentations of polyps, providing a more robust and reliable approach to
OOD detection compared to probability-based methods. This confirms
the efficacy of feature-based methods for OOD detection and supports
their integration into our CAD pipeline.

6. Discussion

The ColonOOD system comprises three main components: auto-
mated and manual localization, an uncertainty-aware classification
model, and a scenario-targeted OOD detection module that identifies
deviations in the feature embeddings of data. The mutually exclusive
localization options ensure the system’s adaptability across diverse sce-
narios. The uncertainty-aware classification model is rigorously trained
using advanced techniques to enhance robustness and ensure reliable
performance in varied clinical environments. Additionally, the novel
OOD detection module, consisting of an HP and OOD fine-tuned model
and a feature embedding-based post-OOD method, fully leverages the
strengths of the robust classification model to mitigate the risk of ad-
verse outcomes through user scenario analysis. Ultimately, ColonOOD
provides accurate classification predictions and well-calibrated uncer-
tainty scores, ensuring its results’ interpretability, reliability, and clini-
cal utility.

ColonOOD overcomes several limitations of existing CAD systems
by synergistically integrating classification and OOD detection models.
This approach enables precise classification of AD and HP polyps while
effectively identifying and managing OOD polyps, even under covari-
ate shifts in data and clinical environments. The system’s uncertainty-
aware design offers interpretable predictions, allowing endoscopists to
gain actionable insights and make confident, informed decisions. The
robust generalizability of ColonOOD, validated across diverse datasets,
underscores its potential as a practical solution for real-world clinical
workflows.
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Extensive evaluations on datasets from private and public medi-
cal centers confirm the feasibility and robustness of ColonOOD in di-
verse clinical settings. ColonOOD aims to improve diagnostic accuracy
and reduce reliance on subjective judgment by supporting endoscopists
with confidence scores and actionable insights. Testing on colonoscopy
videos further demonstrates its reliability by delivering accurate classifi-
cation results and confidence levels. The complete pipeline achieved an
average classification accuracy of 74.67 % for AD, HP, and OOD polyps
across four datasets from both private and public sources.

Despite its promising results, ColonOOD has three key limitations
that warrant further investigation. First, the limited and non-diverse
OO0D polyp datasets constrain its evaluation, as the datasets from multi-
ple medical institutions lack sufficient coverage of the numerous types
of OOD polyps found worldwide. Expanding OOD data sets to include a
wider range of polyp types is crucial to improve the generalizability of
the model and ensure robust performance in diverse scenarios.

Second, the system requires more extensive testing in real clinical en-
vironments; while ColonOOD has been tested on real colonoscopy videos
from a medical center to simulate deployment during procedures, this
controlled simulation may not fully capture real-time deployment or
interactions with endoscopists. Prospective clinical trials in real-world
settings are essential to validate its robustness, usability, and feasibility
for practical application.

Finally, the system’s polyp localization component may face chal-
lenges under environmental variations, such as differences in lighting
conditions or image quality during colonoscopy. Although ColonOOD
includes both automated and manual localization capabilities, manual
localization with human control is currently preferred, as automated lo-
calization often fails under certain conditions. Enhancing the automated
localization model through adaptive learning techniques and more di-
verse training data is necessary to ensure consistent performance in var-
ious clinical settings.

For further development, ColonOOD can incorporate a feedback loop
in the final stage of the system to reduce the risk of edge-case misclassi-
fications. The current system may misclassify borderline OOD samples
as AD. Although this scenario does not pose a serious risk, since both
categories warrant additional histopathological evaluation, a more ad-
vanced system would improve reliability by providing more accurate
and targeted classifications.

7. Conclusion

This study presents ColonOOD, a comprehensive and robust CAD sys-
tem that detects both in-distribution and OOD polyps while providing in-
terpretable uncertainty measures. By effectively addressing data shifts,
inconsistent performance, and user-centered design, ColonOOD signifi-
cantly advances colorectal polyp diagnosis. Its reliable, adaptable, and
fully integrated design aligns with clinical workflows, empowering en-
doscopists with actionable insights to enhance accuracy and efficiency
in colorectal cancer prevention and care.
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Appendix A. Demo

To fully evaluate the pipeline’s viability in clinical settings, we tested the entire pipeline using colonoscopy video data and developed a testbed
using Streamlit. Operating the full system—including Streamlit, polyp localization, and classification-requires one RTX 3090 GPU and three CPU
cores of an Intel Xeon Gold processor, consuming up to 3,000 MB of memory, which is manageable by computers used in colonoscopy procedures.
When the clinician pauses on a frame with a polyp and selects the top-left and bottom-left corners, the system crops the polyp into a bounding box
for classification. The clinician can then click “classify” to obtain a result, categorized as AD, HP, or OOD, along with the prediction confidence.
The entire process takes only 1-2 s. During testing, several issues were identified. First, the automatic localization did not function properly in some
cases, indicating that it is not robust enough to handle environmental shifts, such as in external clinical centers. Therefore, we recommended using
manual localization to ensure consistent performance alongside the classification model.

Video and Image Classification App

Select an existing image file

V0034_SSA.png v

Classify

Classification Result: 00D

Confidence: Low Confidence

Fig. A.1. Demo.

10



S. Park et al. Expert Systems With Applications 295 (2026) 128756
Appendix B. Appendix Table

(Figs. B.1 B.2).

DeiT ViT
FPR@95 AUROC AUPR AUPR_O FPR@95 AUROC AUPR AUPR_O
Method | Dataset (f; N N UT(’F) Method | Dataset (f; o) N () UT('I_*)
MSP SNUH 93.82 51.83 81.12 20.5 MSP SNUH 97.58 53.53 81.65 21.66
VIDEO 98.92 41.82 76.93 16.74 VIDEO 98.92 45.2 77.15 17.84
SUN 99.19 42.28 97.23 1.73 SUN 91.13 43.82 98.05 1.56
POLAR 99.46 48.22 55.29 43.52 POLAR 98.92 38.07 51.86 33.79
CIFAR10| 95.43 58.65 4.19 97.46 CIFAR10| 66.13 79.83 13.51 98.7
ODIN SNUH 98.66 47.14 77.69 18.96 ODIN SNUH 97.85 44.1 77.77 17.35
VIDEO 98.66 38.75 75 14.97 VIDEO 98.12 32.66 74.32 12.67
SUN 96.77 36.33 97.25 1.33 SUN 97.04 28.8 96.9 1.17
POLAR 100 38.81 49.81 40.94 POLAR 99.73 24.29 44.81 29.57
CIFAR10 100 41.29 2.74 96.23 CIFAR10| 99.73 49.57 3.18 97.17
GEN SNUH 93.82 51.83 81.12 20.5 GEN SNUH 97.58 53.53 81.65 21.66
VIDEO 98.92 41.82 76.93 16.74 VIDEO 98.92 45.2 77.15 17.84
SUN 99.19 42.28 97.23 1.73 SUN 91.13 43.82 98.05 1.56
POLAR 99.46 48.22 55.29 43.52 POLAR 98.92 38.07 51.86 33.79
CIFAR10| 95.43 58.65 4.19 97.46 CIFAR10| 66.13 79.83 13.51 98.7
ViM SNUH 69.62 67.37 90.13 27.71 ViM SNUH 98.92 48.97 78.26 18.64
VIDEO 73.12 67.82 89.68 26.74 VIDEO 79.84 65.33 89.13 28.27
SUN 30.38 83.1 99.64 5.34 SUN 41.94 82.87 99.61 21.94
POLAR 54.3 72.53 84.92 50.84 POLAR 87.9 50.09 65.67 37.62
CIFAR10| 17.2 93.38 81.68 99.65 CIFAR10| 1.08 99.72 95.55 99.99
React SNUH 97.58 545 81.55 21.12 React SNUH 97.31 495 78.07 23.37
VIDEO 98.92 50.71 79.2 20.26 VIDEO 96.24 51.53 80.56 22.07
SUN 77.69 58.95 98.84 2.59 SUN 100 57.99 97.55 3.01
POLAR 99.19 46.8 54.82 39.26 POLAR 100 33.75 48.25 32.98
CIFAR10| 48.92 80.18 28.06 98.7 CIFAR10| 70.43 83.41 13.5 99.18
KNN SNUH 69.09 78.44 93.16 36.72 KNN SNUH 75.81 65.24 89.58 25.72
VIDEO 76.08 66.41 89.63 26.28 VIDEO 84.95 64.95 89.12 2591
SUN 24.19 86.14 99.71 8.24 SUN 37.9 79.38 99.54 20.42
POLAR 27.42 85.88 92.39 67.53 POLAR 54.84 66.71 81.71 47.04
CIFAR10| 98.95 12.45 97.47 0.48 CIFAR10| 9.95 97.95 88.39 99.91
SHE SNUH 85.48 68.61 90.43 25.92 SHE SNUH 74.19 75.43 92.97 32.75
VIDEO 99.19 53.76 79.73 21.49 VIDEO 98.12 56.37 81.26 24.81
SUN 64.25 64.9 99.11 2.75 SUN 67.74 72.77 99.32 3.46
POLAR 25.81 86.34 91.21 69.86 POLAR 35.75 79.26 89.03 59.07
CIFAR10| 1237 9452  80.46  99.66 CIFAR10| 33.06 9219 541  99.61
MDS SNUH 60.75 69.23 91.35 28.09 MDS SNUH 98.12 48.28 78.35 18.14
VIDEO 66.4 69.78 90.88 28.05 VIDEO 73.66 66.38 90.03 27.37
SUN 28.23 83.18 99.65 5.2 SUN 39.52 84.22 99.65 20.51
POLAR 46.77 73.23 85.67 51.11 POLAR 83.6 51.55 67.84 38.1
CIFAR10| 172  93.01 8137  99.61 CIFAR1O| 1.88  99.66 9505  99.99
KLM SNUH 97.04 60.55 85.29 23.86 KLM SNUH 96.77 495 79.55 20.3
VIDEO 90.05 61.09 86.95 22.66 VIDEO 94.62 53.5 83.13 20.35
SUN 88.44 65.71 98.94 2.8 SUN 82.53 48.08 98.4 1.62
POLAR 82.53 70.06 77.63 55.51 POLAR 93.01 43.39 58.66 35.58
CIFAR10| 91.94 6585 579  97.85 CIFAR1I0| 957  67.04 508  98.13

Fig. B.1. OOD Detection Performance of Various OOD Methods.
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DeiT ViT
Method Dataset Accuracy (1) 00D ?,;c)uracy Method Dataset Accuracy (1) 0oop (A;c)uracy
MSsP SNUH 37.99% 39.30% MSP SNUH 33.41% 34.06%
Video 34.07% 35.38% Video 31.21% 31.87%
SUN 31.40% 32.98% SUN 24.01% 24.80%
POLAR 42.30% 43.27% POLAR 37.12% 37.60%
CIFAR10 71.99% 72.05% CIFAR10 93.64% 93.67%
ODIN SNUH 18.78% 18.78% ODIN SNUH 18.78% 18.78%
Video 18.24% 18.24% Video 18.24% 18.24%
SUN 1.85% 1.85% SUN 1.85% 1.85%
POLAR 39.71% 39.71% POLAR 39.71% 39.71%
CIFAR10 96.41% 96.41% CIFAR10 96.41% 96.41%
GEN SNUH 70.31% 81.22% GEN SNUH 72.71% 81.22%
Video 70.77% 81.76% Video 73.19% 81.76%
SUN 84.96% 98.15% SUN 87.86% 98.15%
POLAR 52.19% 60.29% POLAR 53.97% 60.29%
CIFAR10 3.10% 3.59% CIFAR10 3.21% 3.59%
ViM SNUH 48.91% 50.00% ViM SNUH 30.79% 31.00%
Video 47.47% 48.57% Video 33.63% 33.85%
SUN 40.90% 42.22% SUN 21.64% 21.90%
POLAR 62.88% 63.70% POLAR 46.84% 47.00%
CIFAR10 97.84% 97.89% CIFAR10 97.14% 97.15%
REACT SNUH 45.63% 47.60% REACT SNUH 72.71% 77.51%
Video 42.86% 44.84% Video 70.55% 75.38%
SUN 40.63% 43.01% SUN 82.32% 88.13%
POLAR 44.89% 46.35% POLAR 54.29% 57.86%
CIFAR10 95.38% 95.47% CIFAR10 55.63% 55.84%
KNN SNUH 61.79% 64.41% KNN SNUH 37.34% 63.54%
Video 57.58% 60.22% Video 36.92% 63.30%
SUN 56.73% 59.89% SUN 36.15% 67.81%
POLAR 72.12% 74.07% POLAR 47.49% 66.94%
CIFAR10 98.42% 98.53% CIFAR10 70.38% 71.54%
SHE SNUH 69.87% 75.76% SHE SNUH 66.16% 68.78%
Video 64.62% 70.55% Video 60.00% 62.64%
SUN 70.45% 77.57% SUN 62.27% 65.44%
POLAR 77.63% 82.01% POLAR 73.91% 75.85%
CIFAR10 96.86% 97.12% CIFAR10 94.51% 94.63%
MDS SNUH 61.35% 64.19% MDS SNUH 38.21% 38.65%
Video 61.54% 64.40% Video 42.42% 42.86%
SUN 60.42% 63.85% SUN 32.72% 33.25%
POLAR 67.42% 69.53% POLAR 50.24% 50.57%
CIFAR10 98.55% 98.68% CIFAR10 97.54% 97.56%
KLM SNUH 65.94% 72.05% KLM SNUH 72.71% 77.95%
Video 65.27% 71.43% Video 71.65% 76.92%
SUN 73.88% 81.27% SUN 82.85% 89.18%
POLAR 60.62% 65.15% POLAR 54.13% 58.02%
CIFAR10 37.02% 37.29% CIFAR10 41.82% 42.06%

Fig. B.2. Overall Accuracy and OOD Accuracy of OOD Methods of DeiT and ViT various datasets.
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