

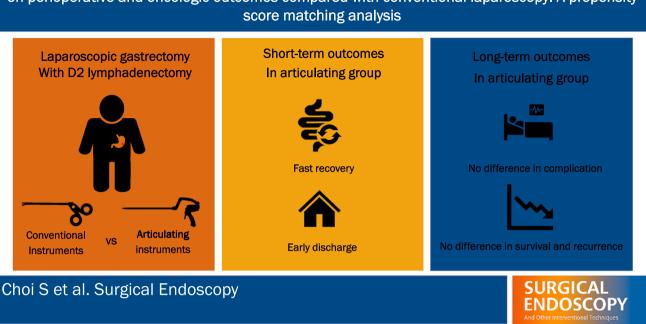
Impact of articulating laparoscopic instrument—assisted gastrectomy with D2 lymphadenectomy on perioperative and oncologic outcomes compared with conventional laparoscopy: a propensity score matching analysis

Seohee Choi¹ · Takahiro Kinoshita² · Kazutaka Obama³ · Katsunobu Sakurai⁴ · Naoshi Kubo⁴ · Naruhiko Ikoma⁵ · Ali Guner⁶ · Hyoung-II Kim^{7,8}

Received: 27 March 2025 / Accepted: 28 June 2025 / Published online: 10 July 2025 © The Author(s) 2025

Abstract

Background Articulating laparoscopic instruments (ALIs) have been developed to overcome the limited dexterity afforded by conventional laparoscopic instruments (CLIs). This study aimed to compare the postoperative and oncologic outcomes of patients who underwent laparoscopic gastrectomy with D2 lymphadenectomy for gastric cancer using CLIs versus ALIs. **Methods** This retrospective study included 138 patients who underwent laparoscopic gastrectomy with D2 dissection for gastric cancer at a single institution from January 2018 to January 2024. Propensity score matching analysis was performed to minimize selection bias and compare surgical outcomes.


Results After matching, 39 patients were included in each group. The ALI group showed significantly faster postoperative recovery, with a shorter hospital stay (4.0 [3.0–5.0] days vs. 5.0 [4.0–7.0] days, p=0.001) and quicker time to first flatus (2.0 [2.0–3.0] days vs. 3.0 [2.0–3.0] days, p=0.004). Although the ALI group had a shorter operative time and lower estimated blood loss, these differences were not statistically significant (p=0.202 and p=0.634, respectively). Complication rates, including major complications, were similar between the two groups. Long-term oncologic outcomes, including overall survival and recurrence-free survival, did not differ significantly between the groups (p=0.622 and p=0.756, respectively). Conclusion The use of ALIs in laparoscopic gastrectomy with D2 lymphadenectomy was associated with improved short-term perioperative outcomes without compromising long-term oncologic safety. These findings suggest that ALIs may enhance surgical efficiency and postoperative recovery in gastric cancer surgery.

- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
- Gastric Surgery Division, National Cancer Center Hospital East, Chiba, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- ⁸ Gastric Cancer Center, Yonsei Cancer Center, Yonsei University Health System, Seoul, Republic of Korea

Graphical abstract

Impact of articulating laparoscopic instrument–assisted gastrectomy with D2 lymphadenectomy on perioperative and oncologic outcomes compared with conventional laparoscopy: A propensity score matching analysis

Keywords Articulating laparoscopic instrument · Gastrectomy · Laparoscopy · D2 lymphadenectomy · Gastric cancer

Laparoscopic gastrectomy has emerged as a minimally invasive surgical option for the treatment of early gastric cancer [1–3] and is increasingly used to treat advanced gastric cancer, offering benefits such as reduced postoperative pain, shorter hospital stays, and faster recovery compared with open surgery [4, 5]. However, the complexity of certain procedures, such as D2 lymph node dissection, could challenge the precision and flexibility of conventional laparoscopic instruments (CLIs) [6]. In response to these limitations, articulating laparoscopic instruments (ALIs) were developed as an alternative to CLIs, providing better access to difficult-to-reach areas during surgery due to their enhanced maneuverability.

Previous studies have primarily focused on the short-term outcomes of laparoscopic surgery using ALIs, reporting favorable perioperative results, including lower complication rates and quicker recovery times [7–9]. Furthermore, ALIs may reduce intraoperative stress and improve surgical precision, leading to better short-term recovery. However, despite the theoretical advantages, evidence comparing CLIs and ALIs in the context of oncological outcomes remains limited.

The purpose of this study was to compare the perioperative and oncologic outcomes of patients undergoing

laparoscopic gastrectomy with D2 lymphadenectomy using either CLIs or ALIs.

Methods

Study design and patients

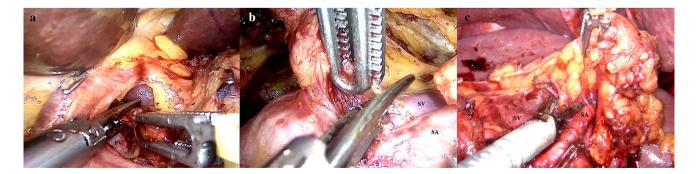
This retrospective study included a total of 78 patients matched from an initial cohort of 138 patients who underwent laparoscopic gastrectomy with D2 lymphadenectomy at Severance Hospital, Korea, between January 2018 and January 2024. Propensity score matching was conducted to account for potential confounding variables, using sex, age, American Society of Anesthesiologists (ASA) physical status, extent of gastrectomy, tumor stage, and body mass index (BMI) as matching criteria. After matching, the CLI group and the ALI group each included 39 patients. Patients with distant metastasis and those who received neoadjuvant chemotherapy were excluded from the study.

The study protocol was approved by the Institutional Review Board of Severance Hospital, Yonsei University College of Medicine (4-2024-1553).

Surgical procedure

All surgeries were performed by an experienced surgeon specializing in laparoscopic gastric surgery. Patients in the CLI group underwent surgery using standard laparoscopic instruments, whereas those in the ALI group underwent surgery using ALIs, specifically ArtiSential fenestrated forceps (AUF01L, LivsMed, Seongnam, Korea). Laparoscopic gastrectomy with D2 lymphadenectomy was performed in both the CLI and ALI groups, following the guidelines of the Korean Gastric Cancer Association and the Japanese Gastric Cancer Association [10, 11]. In the ALI group, articulating instruments were used for lymph node dissection, particularly in lymph node stations 12a (proper hepatic artery), 11p (proximal splenic artery), and 10 (splenic hilum) (Fig. 1). The extent of gastrectomy was determined based on the tumor location and disease extent. The reconstruction method—Billroth I (gastroduodenostomy), Billroth II (gastrojejunostomy), Roux-en-Y gastrojejunostomy, or the double-flap technique—was chosen depending on the extent of the resection and the surgeon's preference.

Perioperative and postoperative management


Perioperative parameters included the operative time, the estimated intraoperative blood loss, and the need for blood transfusion. Postoperative outcomes included the duration of hospitalization, the time to first flatus, and the occurrence of complications, which were classified according to the Clavien–Dindo system [12]. Major complications were defined as grade III or higher. All patients followed a standardized postoperative care regimen, including early mobilization and the introduction of oral intake beginning with sips of water on the first postoperative day.

Survival outcome measures

The primary outcomes were overall survival (OS) and recurrence-free survival (RFS). OS was defined as the time from surgery until the last follow-up or death from any cause. RFS was defined as the time from surgery until the first recurrence from any cause. Recurrence sites were documented for patients who experienced recurrence during the follow-up period. Follow-up was limited to a maximum of 36 months to ensure consistency among participants.

Statistical analysis

Propensity score matching was performed to minimize selection bias and balance baseline characteristics between the two groups. The ALI group was defined as the treatment group, whereas the CLI group was defined as the control group. Propensity scores were calculated using a logistic regression model based on the following covariates: age, sex, extent of gastrectomy, ASA score, BMI, and stage. A nearest-neighbor matching algorithm with a caliper width of 0.2 was used to match patients in a 1:1 ratio. Categorical variables were presented as counts and percentages and were compared between groups using the chi-square test or Fisher's exact test. Continuous variables were expressed as medians and interquartile ranges and compared using the Mann-Whitney U test. Kaplan-Meier survival curves were generated for both OS and RFS, and between-group differences were evaluated using the logrank test. P-values less than 0.05 were considered statistically significant. All statistical analyses were performed using R version 4.4.2 (R foundation).

Fig. 1 An intraoperative view of the articulating laparoscopic instruments (ALIs) in D2 lymphadenectomy. **a** Dissection of lymph node station No. 12a (along the proper hepatic artery); **b** dissection of the

11p area lymph node (along the proximal splenic artery); \mathbf{c} dissection of the 10 area lymph node (splenic hilar region). PV portal vein; SA splenic artery; SV splenic vein

Results

Clinicopathologic patient characteristics

A total of 78 patients were included in this study, with 39 patients in each group, matched from an initial cohort of 138 patients who underwent laparoscopic gastrectomy with D2 lymphadenectomy. The clinicopathologic features of the patients are summarized in Table 1. The median age was similar between the CLI group (65.0 [58.0–76.5] years) and the ALI group (65.0 [61.0–71.0] years, p = 0.908). There were no significant differences in sex distribution (CLI vs. ALI: 61.5% male vs. 64.1% male, p > 0.999) or BMI (CLI vs. ALI: 24.3 [22.6–26.2] vs. 23.4 [21.4–25.0], p = 0.238) between the two groups. The prevalence of medical comorbidities was also similar between the groups (CLI vs. ALI: 61.5% vs. 59.0%, p=0.817). The ASA physical status distribution showed a marginal difference between the groups, with more ASA 2 patients in the ALI group and more ASA 3 patients in the CLI group (p = 0.049).

Tumor characteristics, including tumor–node–metastasis (TNM) stage (p=0.553), pT stage (p=0.848), and pN stage (p=0.318), were comparable between the groups. The median tumor size was the same in both groups (35.0 mm), with slightly different IQRs (CLI: [26.5–45.0]; ALI: [25.0–51.0], p=0.772). The ALI group had slightly higher number of retrieved lymph nodes (42.0 [34.5–54.0] vs. 41.0 [31.5–50.5], p=0.535) and metastatic lymph nodes (1.0 [0.0–4.0] vs. 0.0 [0.0–2.0], p=0.127), although the differences were not statistically significant.

Short-term surgical outcomes

The extent of gastrectomy was similar between the two groups (p = 0.580), with distal gastrectomy being the most common procedure (84.6% in both groups) (Table 2). The reconstruction methods also showed no significant differences (p = 0.708). Billroth II was the most frequently performed reconstruction method in both groups.

The ALI group had a shorter operative time (168.0 [143.5–216.5] minutes vs. 194.0 [151.5–238.5] minutes) and less estimated blood loss (70.0 [36.5–100.0] mL vs. 50.0 [26.0–100.0] mL) compared with the CLI group, but these differences were not statistically significant (p=0.202 and p=0.634, respectively). Transfusions were required in one patient in the CLI group (5.1%), whereas none were required in the ALI group (p=0.152).

The postoperative hospital stay was significantly shorter in the ALI group $(4.0 \ [3.0-5.0] \ days \ vs. 5.0 \ [4.0-7.0] \ days, p=0.001)$, as was the time to first flatus $(2.0 \ [2.0-3.0] \ days \ vs. 3.0 \ [2.0-3.0] \ days, p=0.004)$.

Table 1 Clinicopathologic features of the conventional laparoscopic instrument (CLI) and articulating laparoscopic instrument (ALI) groups after propensity score matching

	CLI	ALI	p-value
	n=39	n=39	
Age (years)	65.0 (58.0–76.5)	65.0 (61.0–71.0)	0.908
Sex			> 0.999
Male	24 (61.5%)	25 (64.1%)	
Female	15 (38.5%)	14 (35.9%)	
Body mass index (kg/m²)	24.3 (22.6–26.2)	23.4 (21.4–25.0)	0.238
Medical comorbidity	24 (61.5%)	23 (59.0%)	0.817
ASA physical status class			0.049
1	3 (7.7%)	0 (0%)	
2	22 (56.4%)	31 (79.5%)	
3	14 (35.9%)	7 (17.9%)	
4	0 (0%)	1 (2.6%)	
TNM stage			0.553
Stage I	18 (46.2%)	17 (43.6%)	
Stage II	12 (30.8%)	9 (23.1%)	
Stage III	9 (23.1%)	13 (33.3%)	
pT stage			0.848
T1	16 (41.0%)	17 (43.6%)	
T2	3 (7.7%)	5 (12.8%)	
T3	16 (41.0%)	14 (35.9%)	
T4a	4 (10.3%)	3 (7.7%)	
pN stage			0.318
N0	23 (59.0%)	19 (48.7%)	
N1	8 (20.5%)	6 (15.4%)	
N2	6 (15.4%)	7 (17.9%)	
N3a	2 (5.1%)	7 (17.9%)	
Tumor size (mm)	35.0 (26.5–45.0)	35.0 (25.0–51.0)	0.772
Number of retrieved LN	41.0 (31.5–50.5)	42.0 (34.5–54.0)	0.535
Number of metastatic LN	0.0 (0.0–2.0)	1.0 (0.0–4.0)	0.127

Continuous data are expressed as median (interquartile range), and categorical data are expressed as n (%)

ASA American Society of Anesthesiologists, TNM tumor–node–metastasis, pT pathologic depth of tumor invasion, pN pathologic lymph node involvement, LN lymph nodes

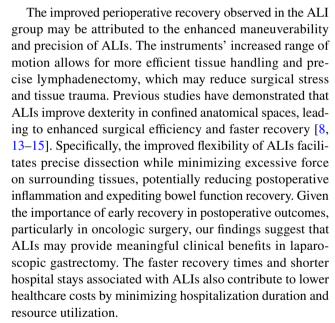
The overall complication rate was comparable between the two groups (CLI vs. ALI: 59.0% vs. 51.3%, p=0.495). Major complications (grade III or higher) occurred in one patient (2.6%) in the CLI group, whereas none were observed in the ALI group (p=0.314).

Long-term oncologic outcomes

The mean follow-up period was 26 months. During follow-up, four deaths were observed, with two occurring in the

Table 2 Surgical outcomes of the conventional laparoscopic instrument (CLI) and articulating laparoscopic instrument (ALI) groups after propensity score matching

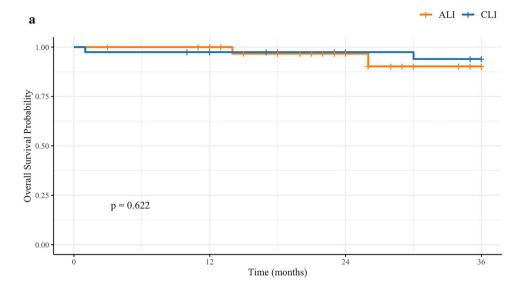
	CLI	ALI	p-value
	n=39	n=39	
Extent of gastrectomy			0.580
Distal gastrectomy	33 (84.6%)	33 (84.6%)	
Total gastrectomy	6 (15.4%)	5 (12.8%)	
Proximal gastrectomy	0 (0%)	1 (2.6%)	
Reconstruction			0.708
Billroth I	10 (25.6%)	12 (30.8%)	
Billroth II	23 (59.0%)	20 (51.3%)	
Roux-en-Y gastrojejunostomy	6 (15.4%)	6 (15.4%)	
Double-flap technique	0 (0%)	1 (2.6%)	
Operative time (min)	194.0 (151.5–238.5)	168.0 (143.5–216.5)	0.202
Estimated blood loss (mL)	50.0 (26.0-100.0)	70.0 (36.5–100.0)	0.634
Transfusion	1 (5.1%)	0 (0%)	0.152
Duration of postoperative hospitalization (days)	5.0 (4.0-7.0)	4.0 (3.0-5.0)	0.001
Time to first flatus (days)	3.0 (2.0-3.0)	2.0 (2.0-3.0)	0.004
All complications	23 (59.0%)	20 (51.3%)	0.495
Major complication (grade III or higher)	1 (2.6%)	0 (0%)	0.314

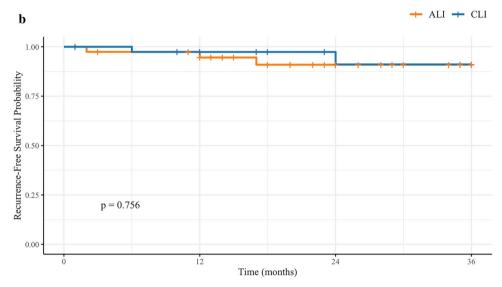

Continuous data are expressed as median (interquartile range), and categorical data are expressed as n (%)

CLI group (5.1%) and two in the ALI group (5.1%). The Kaplan–Meier OS curves are shown in Fig. 2a. The logrank test revealed no statistically significant difference in OS between the two groups (p=0.622).

Recurrence was observed in six patients, with three cases in the CLI group and three in the ALI group. The recurrence sites included the remnant stomach, liver, peritoneum, anastomotic site, and multiple locations. The RFS curves are shown in Fig. 2b, and the log-rank test indicated no statistically significant difference in RFS between the two groups (p=0.756).

Discussion


In this study, compared with CLIs, ALI use was associated with improved short-term perioperative outcomes and comparable long-term oncologic outcomes in patients undergoing laparoscopic gastrectomy with D2 lymphadenectomy for gastric cancer. The ALI group demonstrated significantly faster postoperative recovery, with a shorter hospital stay and quicker time to first flatus compared with the CLI group. Operative time and estimated blood loss were also lower in the ALI group, though these differences were not statistically significant. Complication rates, including major complications, were similar between the two groups, and long-term oncologic outcomes, including OS and RFS, showed no significant differences. These findings suggest that ALIs may enhance perioperative recovery while maintaining oncologic safety in gastric cancer surgery.



ALIs provided even greater advantages in more challenging surgeries in anatomically complex areas [13, 16, 17]. CLIs, with their rigid and non-articulated design, often limit the precision of dissections during D2 lymphadenectomy, particularly in hard-to-reach areas, such as No. 8a, No. 11p, and No. 12a lymph nodes. Anatomical constraints, including the convex body of the pancreas, further restrict the surgical field and hinder adequate exposure [18]. The enhanced flexibility of ALIs expands the effective operating space and enables precise dissection in narrow and deep regions. The improved accessibility of difficult-to-reach areas afforded by the greater precision and maneuverability of ALIs may

Fig. 2 Kaplan–Meier survival curves of patients in the conventional laparoscopic instrument (CLI) and articulating laparoscopic instrument (ALI) groups. a Overall survival; b recurrence-free survival

reduce the risk of complications and facilitate recovery in complex cases [19, 20]. Moreover, ALIs provide a degree of freedom similar to that of robotic instruments, allowing precise manipulation in deep surgical fields where conventional instruments struggle. In a previous study comparing laparoscopic gastrectomy with ALIs and robotic gastrectomy, articulation was found to be beneficial primarily during D2 lymphadenectomy, whereas its role in reconstruction was limited [21]. The selective use of articulation contributed to reduced operation time in laparoscopic surgery with ALIs compared with robotic surgery. Based on this finding, we hypothesized that ALIs could offer specific advantages in D2 lymphadenectomy and investigated their impact in this study, ultimately confirming their benefits in this setting. As proficiency with ALIs increases, their potential benefits may extend to a broader range of procedures, including reducedport surgery [13, 14].

This study found no significant differences in OS and RFS between the ALI and CLI groups, which suggests that ALIs allow for precise oncologic resection without compromising surgical integrity, thereby supporting their oncologic safety in gastric cancer surgery requiring D2 lymphadenectomy. Furthermore, the ALI group exhibited a slightly higher number of retrieved lymph nodes, which is a key factor influencing oncologic outcomes as adequate lymph node dissection improves staging accuracy and prognosis [22, 23]. Although traditional guidelines recommend retrieving at least 15 lymph nodes in gastric cancer, recent studies suggest that an even higher number may be beneficial, especially in advanced cases [24, 25]. As laparoscopic techniques continue to evolve, ALIs may play an increasing role in ensuring both precise lymphadenectomy and favorable oncologic outcomes in gastric cancer surgery. Further studies with larger sample sizes and longer follow-up periods are needed

to validate these findings and explore whether the potential benefits of ALIs extend to long-term oncological outcomes.

This study was retrospective in nature and used propensity score matching to minimize selection bias. However, the possibility of residual confounding cannot be entirely discounted. The relatively small sample size may also limit the generalizability of the findings, particularly in detecting statistically significant differences in rare outcomes, such as major complications. This limitation may also have contributed to the lack of statistical significance in operative time, which could further be influenced by variability related to the learning curve during early ALI adoption. Another limitation of this study is the relatively short follow-up period, which may not have been adequate to fully assess long-term oncological outcomes.

In conclusion, compared with CLIs, the use of ALIs in gastrectomy with D2 lymphadenectomy was associated with improved perioperative outcomes, though no significant differences were observed in long-term oncological outcomes, such as OS and RFS. ALIs may offer distinct advantages in complex surgical procedures due to their enhanced maneuverability and precision. Further research with larger sample sizes and longer follow-up periods is necessary to fully assess the long-term oncologic impact of ALIs in gastric cancer surgery.

Acknowledgements We would like to thank the participants and medical staff for their contributions to this study.

Funding This research was supported by a Korea Health Technology R&D Project grant through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (Grant number: HI22C0767). The funding source played no role in the design or conduct of the study; the collection, analysis, or interpretation of data; the preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Declarations

Disclosures Seohee Choi, Takahiro Kinoshita, Kazutaka Obama, Katsunobu Sakurai, Naoshi Kubo, Naruhiko Ikoma, Ali Guner, and Hyoung-Il Kim have no conflicts of interest or financial ties to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Kim HH, Han SU, Kim MC, Kim W, Lee HJ, Ryu SW, Cho GS, Kim CY, Yang HK, Park DJ, Song KY, Lee SI, Ryu SY, Lee JH, Hyung WJ (2019) Effect of laparoscopic distal gastrectomy vs open distal gastrectomy on long-term survival among patients with stage I gastric cancer: the KLASS-01 randomized clinical trial. JAMA Oncol 5:506–513
- Katai H, Mizusawa J, Katayama H, Morita S, Yamada T, Bando E, Ito S, Takagi M, Takagane A, Teshima S, Koeda K, Nunobe S, Yoshikawa T, Terashima M, Sasako M (2020) Survival outcomes after laparoscopy-assisted distal gastrectomy versus open distal gastrectomy with nodal dissection for clinical stage IA or IB gastric cancer (JCOG0912): a multicentre, non-inferiority, phase 3 randomised controlled trial. Lancet Gastroenterol Hepatol 5:142–151
- Hyung WJ, Yang HK, Han SU, Lee YJ, Park JM, Kim JJ, Kwon OK, Kong SH, Kim HI, Lee HJ, Kim W, Ryu SW, Jin SH, Oh SJ, Ryu KW, Kim MC, Ahn HS, Park YK, Kim YH, Hwang SH, Kim JW, Cho GS (2019) A feasibility study of laparoscopic total gastrectomy for clinical stage I gastric cancer: a prospective multi-center phase II clinical trial, KLASS 03. Gastric Cancer 22:214–222
- Hyung WJ, Yang HK, Park YK, Lee HJ, An JY, Kim W, Kim HI, Kim HH, Ryu SW, Hur H, Kim MC, Kong SH, Cho GS, Kim JJ, Park DJ, Ryu KW, Kim YW, Kim JW, Lee JH, Han SU (2020) Long-term outcomes of laparoscopic distal gastrectomy for locally advanced gastric cancer: the KLASS-02-RCT randomized clinical trial. J Clin Oncol 38:3304–3313
- Yu J, Huang C, Sun Y, Su X, Cao H, Hu J, Wang K, Suo J, Tao K, He X, Wei H, Ying M, Hu W, Du X, Hu Y, Liu H, Zheng C, Li P, Xie J, Liu F, Li Z, Zhao G, Yang K, Liu C, Li H, Chen P, Ji J, Li G (2019) Effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer: the CLASS-01 randomized clinical trial. JAMA 321:1983–1992
- Choi S, Song JH, Lee S, Cho M, Kim YM, Hyung WJ, Kim HI (2021) Surgical merits of open, laparoscopic, and robotic gastrectomy techniques with D2 lymphadenectomy in obese patients with gastric cancer. Ann Surg Oncol 28:7051–7060
- Kang SH, Hwang D, Yoo M, Lee E, Park YS, Ahn SH, Suh YS, Kim HH (2023) Feasibility of articulating laparoscopic instruments in laparoscopic gastrectomy using propensity score matching. Sci Rep 13:17384
- Lee CS, Kim Y, Lee YS (2021) Laparoscopic transverse colectomy using a new articulating instrument. J Minim Invasive Surg 24:227–229
- Lee E, Lee K, Kang SH, Lee S, Won Y, Park YS, Ahn SH, Suh YS, Kim HH (2021) Usefulness of articulating laparoscopic instruments during laparoscopic gastrectomy for gastric adenocarcinoma. J Minim Invas Surg 24:35–42
- 10. Kim I-H, Kang SJ, Choi W, Seo AN, Eom BW, Kang B, Kim BJ, Min B-H, Tae CH, Choi CI, Lee C-k, An HJ, Byun HK, Im H-S, Kim H-D, Cho JH, Pak K, Kim J-J, Bae JS, Yu JI, Lee JW, Choi J, Kim JH, Choi M, Jung MR, Seo N, Eom SS, Ahn S, Kim SJ, Lee SH, Lim SH, Kim T-H, Han HS (2025) Korean practice guidelines for gastric cancer 2024: an evidence-based, multidisciplinary approach (update of 2022 guideline). J Gastric Cancer 25:5–114
- Japanese Gastric Cancer Association (2023) Japanese gastric cancer treatment guidelines 2021 (6th edition). Gastric Cancer 26:1–25
- Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213

- Kim A, Lee CM, Park S (2021) Is it beneficial to utilize an articulating instrument in single-port laparoscopic gastrectomy? J Gastric Cancer 21:38–48
- Kang SH, Ahn S-H (2023) Reduced-ports laparoscopic distal gastrectomy with D2 lymph node dissection for advanced gastric cancer using articulating laparoscopic instruments. Ann Robot Innov Surg 4:17–20
- Noh JJ, Kim K, Kim T-J, Kim T, Lee KH, Hwang JH, Hong DG, Kim MK, Lee B, Chang HK, Chun KC (2023) Initial experience of articulating laparoscopic instruments for benign gynecologic disease: a single-arm multicenter prospective study (Korean Gynecologic Oncology Group 4002). J Personal Med 13:1433
- Kim IK, Lee CS, Bae JH, Han SR, Alshalawi W, Kim BC, Lee IK, Lee DS, Lee YS (2024) Perioperative outcomes of laparoscopic low anterior resection using ArtiSential(®) versus robotic approach in patients with rectal cancer: a propensity score matching analysis. Tech Coloproctol 28:25
- Min SH, Cho YS, Park K, Lee Y, Park YS, Ahn SH, Park DJ, Kim HH (2019) Multi-DOF (degree of freedom) articulating laparoscopic instrument is an effective device in performing challenging sutures. J Minim Invasive Surg 22:157–163
- Caruso S, Patriti A, Roviello F, De Franco L, Franceschini F, Coratti A, Ceccarelli G (2016) Laparoscopic and robot-assisted gastrectomy for gastric cancer: current considerations. World J Gastroenterol 22:5694–5717
- Shin HR, Oh HK, Ahn HM, Lee TG, Choi MJ, Jo MH, Singhi AN, Kim DW, Kang SB (2024) Comparison of surgical performance using articulated (ArtiSential(R)) and conventional instruments for colorectal laparoscopic surgery: a single-centre, open, beforeand-after, prospective study. Colorectal Dis 26:2092–2100
- Pyo DH, Lee YS, Min BS, Lee J, Kim CH, Oh H-K, Yoon YS, Bae D, Huh JW (2024) ArtiSential versus conventional laparoscopic

- colorectal cancer surgery: a multicenter retrospective matched cohort study. Int J Surg 110:7630–7635
- Lee CM, Park S, Park SH, Kim KY, Cho M, Kim YM, Hyung WJ, Kim HI (2023) Short-term outcomes and cost-effectiveness of laparoscopic gastrectomy with articulating instruments for gastric cancer compared with the robotic approach. Sci Rep 13:9355
- Khalid SY, Bokhari MHT, Akhtar MAB, Zeeshan S (2024) 1297 factors influencing lymph node retrieval and staging in colorectal cancer resections: a single-centre study. Br J Surg 111(Supplement 6):znae163-141
- van der Werf LR, Marra E, Gisbertz SS, Wijnhoven BPL, van Berge Henegouwen MI (2021) A propensity score-matched cohort study to evaluate the association of lymph node retrieval with long-term overall survival in patients with esophageal cancer. Ann Surg Oncol 28:133–141
- Shannon AB, Straker RJ, Keele L, Fraker DL, Roses RE, Miura JT, Karakousis GC (2022) Lymph node evaluation after neoadjuvant chemotherapy for patients with gastric cancer. Ann Surg Oncol 29:1242–1253
- Huang Z, Chen Y, Zhang W, Liu H, Wang Z, Zhang Y (2020) Modified gastric cancer AJCC staging with a classification based on the ratio of regional lymph node involvement: a populationbased cohort study. Ann Surg Oncol 27:1480–1487

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

