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Abstract

Background/Objectives: Identifying and classifying abnormal lung sounds is essential for
diagnosing patients with respiratory disorders. In particular, the simultaneous recording
of auscultation signals from multiple clinically relevant positions offers greater diagnostic
potential compared to traditional single-channel measurements. This study aims to im-
prove the accuracy of respiratory sound classification by leveraging multichannel signals
and capturing positional characteristics from multiple sites in the same patient. Methods:
We evaluated the performance of respiratory sound classification using multichannel lung
sound data with a deep learning model that combines a convolutional neural network
(CNN) and long short-term memory (LSTM), based on mel-frequency cepstral coefficients
(MFCCs). We analyzed the impact of the number and placement of channels on classifica-
tion performance. Results: The results demonstrated that using four-channel recordings
improved accuracy, sensitivity, specificity, precision, and F1-score by approximately 1.11,
1.15,1.05, 1.08, and 1.13 times, respectively, compared to using three, two, or single-channel
recordings. Conclusions: This study confirms that multichannel data capture a richer set of
features corresponding to various respiratory sound characteristics, leading to significantly
improved classification performance. The proposed method holds promise for enhancing
sound classification accuracy not only in clinical applications but also in broader domains
such as speech and audio processing.

Keywords: multi-channel lung sound; deep learning; mel-frequency cepstral coefficient;
abnormal respiratory sounds; clinical implication

1. Introduction

Auscultation is the most basic diagnostic method for respiratory diseases, as it is
noninvasive, fast, real-time, and efficient [1,2]. The ability to pre-identify abnormal respira-
tory sounds by deducing the various pathological conditions of the lungs and bronchi is
crucial for patient care [3,4]. Since the first clinically useful and hygienic stethoscope was
introduced in 1816 by René Laénnec, Bowles and Sprague developed the Hewlett-Packard
Rappaport-Sprague double-tubed stethoscope, considering the bell and diaphragm, which
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became the common standard stethoscope [3-5]. The classic stethoscope has two primary
limitations: (1) inherent inter-listener variability depending on the listener’s experience
and knowledge; (2) unquantified measurement of lung sounds.

Despite the long-standing use and historical advancement of stethoscopes, the clinical
effectiveness of auscultation remains inconsistent, largely owing to variations in practition-
ers’ auditory interpretation skills and experience levels. In a study of lung auscultation
skills among medical students, pulmonologists, and interns in internal and family medicine,
the pulmonologists outperformed the other physicians [6]. Previous studies have explored
methods to improve physicians’ chest auscultation skills through web-based resources,
task trainers, and simulators using recorded stethoscopes and sound-generating devices [7].
However, limitations persist because the effectiveness of the device depends on individ-
ual experience and skill variations. Additionally, the medical community does not use a
standardized representation or classification of the characteristics of the human respiratory
system [8]. These challenges underscore the urgency for quantifiable and objective methods
for analyzing lung sounds beyond the subjective auscultatory skills.

Unquantified lung sound measurements represent a primary cause of reduced diag-
nostic accuracy. Murphy et al. applied a computer-based recording technique to explore
the utility of quantifying lung sounds [9]. They indicated that quantitatively capturing lung
sounds, which reflect the underlying lung pathophysiology, would be more useful than
analog lung auscultation for the diagnosis and monitoring of cardiopulmonary conditions.
Electronic stethoscopes with advanced microsensors have also been investigated. Micro-
phone types are the most common in digital stethoscopes and include transistor-based
electret condenser [10], piezoelectric [11], fiber-optic [12], and microelectromechanical sys-
tem (MEMS) microphones [13]. MEMS microphones have comprehensive advantages over
other microphones regarding the signal-to-noise ratio, size, high-temperature and vibration
tolerance, and wideband frequency response [14,15]. This digital auscultation method
acquires quantified respiratory sound data and makes a diagnostic decision independent of
the listener’s experience. The measured digital sound signal has been particularly studied
for the correlation between each respiratory disease and various features of its signal,
including the threshold level for abnormality [16], time frequency and scale analysis [17],
skewness and kurtosis [18], and higher-order statistics [19,20].

These features help to reduce the complexity of measured data for disease predic-
tion, making relationships more explicit. Similarly, improved feature extraction meth-
ods through domain transformation, such as the short-time Fourier transform and mel-
frequency cepstral coefficient (MFCC), are being introduced [21,22]. The accuracy rate of
deep learning-based feature extraction and classification for respiratory sounds (normal,
crackles, wheezes, and rhonchi) was 85.7%, higher than that for medical students (60.3%),
interns (53.4%), residents (68.8%), and fellows (80.1%) [23,24]. However, disturbances
in the mechanical properties of the lung parenchyma that are challenging to recognize
or a medium with an acoustic impedance different from that of the normal parenchyma
between the sound source and the stethoscope hinder the accurate identification of lung
sounds using single-channel auscultation [1].

Simultaneous (or multi-channel) recording of clinically useful auscultatory positions
has increased the potential for lung diagnostics compared with the effectiveness of tra-
ditional single-channel measurements [25]. The characteristics of the lung sound signals
recorded at each measurement location differ, facilitating disease prediction. A 16-channel
automatic sound analyzer effectively predicted crackle sounds (r = 0.74, p < 0.001, number
of participants = 41) [26]. Another examination using a multi-channel lung sound analyzer
has been shown to be feasible, with a sensitivity of 0.84, specificity of 0.94, and positive
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predictive power of 0.93 in a computer-assisted classification between normal individuals
and patients with pneumonia [27,28].

Table 1 summarizes representative studies on respiratory sound classification. While
traditional methods such as those of Murphy et al. [28] rely on hardware-based multi-
channel systems, recent approaches by Kim et al. [23] and Messner et al. [25] have con-
sidered deep learning with varying channel inputs. In addition, Jayalakshmy et al. [29]
demonstrated the advantage of synthetic data augmentation in overcoming class imbalance.
These studies underscore the growing emphasis on spatial and statistical diversities in
classifying respiratory sounds.

Table 1. Representative previous studies related to respiratory sound classification methods, high-
lighting their methodologies, strengths, and limitations. This provides the basis for the proposed
multi-channel approach in this study.

Study

Method

Strengths

Limitations

[28]

Multi-channel lung sound
analyzer with computerized
acoustic processing

Enhanced detection of
adventitious sounds
(e.g., crackles) with
quantitative analysis

Requires specialized
multi-channel stethoscope
hardware and
controlled environment

[23]

Deep learning classification
using single-channel
auscultation data (CNN-based)

Automated detection of crackles,
wheezes, and rhonchi in
clinical settings

Lacks spatial context and
robustness to positional variation

[25]

Convolutional Recurrent Neural
Network (CRNN) using
multi-channel data

Captures both spatial and
temporal features with high
classification accuracy

High computational cost and
need for large-scale
annotated data

[29]

Conditional GAN-based data
augmentation with ResNet-50
for classification

Overcomes class imbalance and
enhances model generalization

Complex training pipeline and
requires GAN tuning expertise

Although previous studies have demonstrated the feasibility of using handcrafted
statistical features [21] or deep learning with multi-channel inputs [25,26], they face limita-
tions such as restricted scalability, hardware complexity, or insufficient temporal modeling.
To address these gaps, we proposed a deep learning-based classification framework that
integrates multi-channel auscultation signals and MFCC feature extraction, which was opti-
mized via a hybrid convolutional neural network (CNN)-long short-term memory (LSTM)
model. This approach enhances the robustness and clinical applicability of respiratory
sound classification systems, particularly in real-world noisy and multi-positional environ-
ments. In contrast to Murphy et al. [28], who used single-channel analysis for pneumonia
detection, we leveraged simultaneous multi-channel auscultation to capture positional
diversity in respiratory sounds. Furthermore, while Jayalakshmy et al. [29] improved
classification accuracy using synthetic data generated by conditional generative adversarial
networks (cGANSs), their reliance on artificial signals may compromise clinical reliability.
Our method emphasizes real-world data collection with simple augmentation strategies,
enhancing classification performance and translational feasibility in clinical settings.

Compared with the method of existing studies that primarily considers single-channel
recordings or synthetic augmentation, our approach incorporates real multi-channel data
acquired in a clinical setting. Furthermore, while several models employ CNNs or recurrent
neural networks (RNNs) separately, the combined CNN-LSTM architecture used in this
study enables spatial and temporal feature learning, which is particularly beneficial for
characterizing complex respiratory cycles. These distinctions position our study as a
meaningful advancement in practical and robust respiratory sound classification. In this
study, we aimed to compare the performance of deep learning-based respiratory sound
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classification algorithms with multi-channel lung sounds with existing single-channel
respiratory sound classification algorithms.

2. Materials and Methods
2.1. Dataset of Multi-Channel Respiratory Sound

The chest auscultation data used in this study were obtained from a large-scale public
dataset funded by the Ministry of Science and ICT of Korea and supported by the National
Information Society Agency of Korea, with 25,195 auscultations from 6000 patients (AI-Hub,
South Korea, https:/ /www.aihub.or.kr). In contrast to publicly available datasets such
as ICBHI 2017 [30], this dataset comprises multi-channel auscultation recordings from
real patients. Owing to ethical and privacy considerations, the dataset is not openly
downloadable; however, it is accessible upon institutional review at designated research
facilities. The ICBHI 2017 [30] dataset comprises data measured for multiple areas, but the
total number of patients measured is 126, and the number of patients measured for three or
four areas is less. A small number of data can lead to overfitting of the results. The dataset
used in this study averages hundreds to thousands of patients who have measured three or
four areas. This dataset was designed to overcome the paucity of high-quality, large-scale
multi-channel respiratory sound data and improve the accuracy and clinical applicability
of Al models.

Each respiratory sound dataset comprises a wav file of approximately <0.5 MB and
was recorded by taking >3 deep breaths at least thrice (10 s in total) at >4 of the 12 clinical
auscultation positions, including the right upper lung (RUL), left upper lung (LUL), right
mid lung (RML), left mid lung (LML), right lower lung (RLL), and left lower lung (LLL) in
anterior (front) and posterior (back) views. The measurement equipment used to collect the
respiratory sound data were a JABES electronic stethoscope (GS technology, Seoul, South
Korea) and Smartsound (Skeeper SM300, Seoul, South Korea). They created a handmade
web-based annotation tool based on Label Studio (HumanSignal Inc., San Francisco, CA,
USA, https:/ /labelstud.io/) for labeling and divided the respiratory sounds into fixed
types, including normal (61.76%), fine crackles (1.96%), coarse crackles (0.13%), rhonchi
(30.97%), wheezing (0.04%), and those which could not be analyzed (5.13%). The recordings
were collected using a digital stethoscope developed for multi-site auscultation, under
the supervision of board-certified respiratory physicians. This ensured that all results
presented in this study were not simulated data but were rather derived from actual patient
sound signals acquired in a clinical environment. We categorized respiratory sounds into
three classes: normal, crackles, and wheezes. This tripartite classification was considered
based on their high clinical relevance and prevalence in respiratory diseases such as COPD,
pneumonia, and asthma. Mixed or ambiguous sounds were excluded to improve inter-class
distinction and annotation reliability. Ultimately, we classified three respiratory sound
types, excluding categories with insufficient samples (e.g., coarse crackles and rhonchi).

Following the dual review of the labeling results, labels with annotator disagreements
were excluded. The institutional review board of Severance Hospital approved the study
protocol (IRB No. 4-2024-1433; 7 January 2025).

The amount of respiratory sound data was analyzed according to the auscultation
position to classify the auscultation sounds into multiple channels. Figure 1 shows the
process of selecting the multi-channel data of the back-RUL (BRUL) and back-LUL (BLUL)
with the most measured data. A total of 3148 auscultatory sounds were measured in the
BRLL and BLUL positions, of which 2402 respiratory sounds were used, excluding 1 coarse
crackle, 1 rhonchi, and 79 sounds that could not be analyzed. Of the 2402 respiratory sounds,
1827 were normal, 43 were fine crackles, and 447 were wheezing. Over 2000 two-channel
respiratory sounds were recorded: BRUL-BLUL, BRUL-back LLL (BLLL), BLUL-BLLL,
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BRUL-back RLL (BRLL), BLUL-BRLL, and BLLL-BRLL. Three- and four-channel respiratory
sounds had the most BRUL-BLUL-BLLL combinations, with 1935 data points, and BRUL-
BLUL-BLLL-BRLL combinations with 1660 data points, respectively. Respiratory sounds
with >5 channels were excluded because they contained <100 trainable data points.

25195 auscultatory data
from 6000 patients

22047 was data other than
back right upper lung (BRUL)
and back left upper lung
(BLUL) auscultatory sounds

3148 screened by protocol

746 consist of
1 had coarse crackle, 1 had
rhonchi, and 79 have not
confirmed

2402 used in the study

Figure 1. Composition of retrospectively acquired respiratory sound data to predict the multi-channel
respiratory sound in the back right upper lung (BRUL) and back left upper lung (BLUL). Here, we
obtained 25,195 auscultation data from the first 6000 patients and used a total of 2402 multi-channel
auscultations for the study.

Data augmentation techniques were used to the time stretching, adding masking noise,
pitch shifting, signal conversion, amplitude shifting, adding background noise, Gaussian
noise, and time stretching to the raw audio [31]. In addition, recorded ventilation sounds,
conversation sounds, and collar rustling sounds that may occur in the ICU, augmented
them with conventional methods, and added background noise to the respiratory sound as
shown in Equation (1) [32]:

Tout = (1 - w) X i + W X Ippise, 1)

Here, w is the weight used to balance the measured respiratory sound, I;,, and the
augmented background noise. Here, w ranges between 0 and 1. To address class imbal-
ance in the training data, we augmented underrepresented crackle and wheeze samples
by combining time-domain transformations (e.g., noise addition and temporal shifting)
and replication. These measures ensured that the model learned meaningful features
across the three respiratory sound categories, regardless of their natural distribution in
the dataset. These strategies aimed to ensure that the model did not converge toward
dominant class predictions and maintained robustness across the three classes. We per-
formed 30 and 4 augmentations on the wheezing and fine crackle data, respectively. Based
on the augmented data, we split the data into a 70:15:15 ratio for training, validation, and
testing, respectively.

2.2. Proposed Multi-Channel Respiratory Sound Classification Based on Deep Learning

Figure 2 shows the proposed multi-channel respiratory sound classification scheme.
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Figure 2. Proposed lung respiratory sound classification scheme implemented using multi-channel
respiratory sound with the mel-frequency cepstral coefficient (MFCC).

Briefly, a database was built based on the lung sound signals measured at each lo-
cation. For each patient, the database organized the header information and raw data
of lung sounds by location and stored them (@). The header file contains patient per-
sonal information, such as sex, age, weight, underlying disease, and measurement time
of multi-channel lung sounds. Raw data is stored as a type of time series in the wav
file format. Among the respiratory sounds measured at various positions, it is selected
to be used for prediction (@), and the MFCC was calculated in the selected sound data
(®). The Mel-frequency cepstrum (MFC) is a linear transformation of the logarithmic
energy spectrum based on the nonlinear Mel scale of the sound frequencies. MFCC is the
coefficient of MFC. They provide more features than do time-series signals, improving
the classification accuracy [33]. In this study, Mel spectrogram-based MFCC features were
selected due to their perceptual alignment with human hearing, particularly in the lower
frequency bands where adventitious respiratory sounds are prominent. MFCCs offer a
more compact and noise-robust representation than do other spectrograms. Here, MFCCs
based on multi-channel lung sounds were concatenated in the raw axis direction into a deep
learning model. The MFCC features were extracted using a 4 kHz sampling rate, 25 ms
window size, 10 ms hop length, and 40 Mel filters. The resulting 13 MFCCs (excluding the
0Oth) per frame were used as model input.

The model performs classification by combining a CNN based on a residual network
(ResNet) [34] and LSTM [35]. ResNet is a network that introduces a residual block to
facilitate performance even if the neural networks are deeper. It is defined as indicated
in Equation (2):

y=F( {Wi}) +x, @)

where x is the previously learned data, F(-) is a function of deriving the result based on the
weight W for the i-th residual by learning the residual part, and then y is derived to add
the result of F(-) and existing x to the next layer. Residual learning can be trained more
effectively than the existing plain learning methods. Here, the network used as a backbone
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used ResNet-18. This can be changed to suit the needs of the user. LSTM is a type of
RNN that addresses the challenge of long-term dependency and comprises cells and gates.
The proposed respiratory sound classification model considers LSTM as a useful model to
process time-series data and sequence information. To effectively model the spatiotemporal
characteristics of respiratory sounds, a hybrid architecture combining CNN and LSTM was
adopted. While CNN layers extract localized features from the MFCC spectrograms, the
LSTM layers capture temporal dynamics across respiratory cycles. This combination allows
the model to recognize spatially distinguishable patterns (e.g., frequency modulations) and
time-dependent characteristics (e.g., crackles vs. wheezes), which are critical for accurate
respiratory sound classification.

This network contains 57 layers with convolution, batch normalization, ReLU, max,
average pooling, LSTM, full connection, and softmax [36]. The overall learning parameter
of the model used was 3.6 M. The input layer was set to 128 x 350 pixels, the convolution
filter was 7 x 7 and 3 x 3 pixels, the max pooling layer was 3 x 3 pixels, and ReLU-based
activation and output layers predicted three classes (i.e., normal, crackle, and wheezing).
The LSTM structure was set to one stacked LSTM layer, 64 hidden units per layer, and
0.3 dropout. Furthermore, the final classifier comprised a fully connected layer and a
softmax output layer for multi-class prediction. The epoch was set to 50, the batch size
was 20, a loss function was used for categorical cross-entropy, and a rectified Adam
(RAdam) optimizer (epsilon = 1 x 10~°) was used to update the parameters in the back-
propagation [37]. The learning rates ranged from 0.0001 to 0.00005. Finally, the classification
of respiratory sounds was performed using multi-channel lung sound signals with a pre-
trained model ((®).

Based on the above descriptions, we implemented measured multi-channel lung
sounds and the proposed algorithm. The proposed framework was implemented using a
standard workstation (OS: Windows 10, CPU: AMD Ryzen 7 3700X, RAM: 256 GB, GPU:
Titan Xp 12 GB), MATLAB software (R2021a, MathWorks Corp., Natick, MA, USA), and
PyTorch software (version 2.0.1, Meta Al, Menlo Park, CA, USA).

2.3. Evaluation Factors

The confusion matrix, accuracy, precision, recall, and F1-score were used as quantita-
tive evaluation factors. The confusion matrix tool aids in evaluating a classification model
using matching between actual and predicted classes, and the accuracy, precision, recall,
and Fl-score can be defined as indicated in Equations (3)—(6) [38].

Accuracy = TP+ 1IN 3)

Y= TP+ FP+EN+ TN’

.. TP
Precision = TP+ FP’ (4)
TP
Recall = ————

eca TPLEN’ 5)
Floscore — 2 x Precision x Recall ©)

Precision + Recall’

where TP is a true positive, FP is a false positive, FN is a false negative, and TN is a true
negative. The Fl-score is defined as a harmonic mean, as an index that considers precision
and recall simultaneously, that has a value between 0 and 1; the closer it is to 1, the better
the classification performance.
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3. Results

The classification results for each augmentation method were obtained using the
CNN-LSTM model with cross-validation during the initial parameter-tuning steps. The
validation accuracies were determined for each configuration across the three randomized
training sessions. The evaluation results presented in this study are the ensemble averages
of the outcomes of three training sessions. The normal, wheezing, and fine crackle data
were labeled as “0”, “1”, and “2”, respectively.

Figure 3 shows the confusion matrix used to compare the classification accuracy of the
multi-channels and each single channel in (a) BRUL-BLUL and (b) BRUL-BLLL positions.
The accuracy of respiratory sound classification based on the BRUL-BLUL multi-channel
was approximately 0.85, higher than those of the single-channel BRUL and BLUL, which
were approximately 0.79 and 0.82, respectively. The sensitivity, specificity, precision, and
Fl1-score of the multi-channel lung respiratory sound classification were approximately, 0.84,
0.91, 0.87, and 0.85, respectively, which were approximately 1.08, 1.03, 1.05, and 1.08 times
higher than those of the single-channel. The result of the five evaluation factors of the BRUL-
BLLL multi-channel data was approximately 1.17 times higher than those of the BRUL
and BLLL single-channel data. Table 2 summarizes the accuracy, sensitivity, specificity,
precision, and Fl-score of the two- and single-channel respiratory sound classifications at
the BRUL, BLUL, BLLL, and BRLL positions.

BRUL-BLUL (multi-channel) BRUL (single-channel) BLUL (single-channel)
0 g 1 31 ] 325 1 40 [Jr 327 1 38
g 1 27 2 'E 1 33 29 'E 1 24 9
2] 49 5 8 2| 58 4 179 2l 62 8 171
0 1 2 0 1 2 0 1 2
Prediction Prediction Prediction
(@)
BRUL-BLLL (multi-channel) BRUL (single-channel) BLLL (single-channel)
0 6 3 23 0 3 18 ] 223 3 26
§ 1 2 39 '§ 1 3 108 'E 1 45 65
2] 43 11 0 2| 48 11 2] 52 12 n
0 1 2 0 1 2 0 1 2
Prediction Prediction Prediction
®)

Figure 3. Examples of the confusion matrix to compare the classification accuracy of multi-channel
and single-channel in (a) BRUL-BLUL positions and (b) BRUL-BLLL positions, respectively.

Figure 4 shows the accuracy bar graphs for the three-, two-, and single-channel res-
piratory sounds at the BRUL, BLUL, and BLLL positions. The accuracies of the three-
and two-channel respiratory sound classification were approximately 0.86 and 0.80, re-
spectively, which were 1.25 and 1.0 times higher than the average value of approximately
0.69 for the single-channel respiratory sound classification. The sensitivity, specificity,
precision, and Fl-score were higher for the three-channel respiratory sound classification
than for the two- and single-channel models. The prediction results of the respiratory
sounds at the BRUL-BLLL positions were the most similar to the prediction results of the
three channels. However, this tendency does not necessarily indicate where the BRUL
and BLLL auscultation positions improve classification accuracy over other auscultation
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positions. Table 3 presents the results computed using five evaluation matrices for the
three-, two-, and single-channel respiratory sound classifications at the BRUL, BLUL, and
BLLL positions, respectively.

Table 2. Performance comparison of two-channel and single-channel respiratory sound classification

among the positions of BRUL, BLUL, BLLL, and BRLL.

Positions Accuracy Sensitivity Specificity Precision F1-Score
BRUL-BLUL (2-ch.) 0.85 £+ 0.03 0.84 £+ 0.02 0.91 £+ 0.07 0.87 £ 0.05 0.85 £+ 0.09
BRUL (single) 0.79 £+ 0.01 0.75 £+ 0.09 0.88 & 0.03 0.82 = 0.02 0.77 + 0.06
BLUL (single) 0.82 + 0.05 0.80 = 0.12 0.89 £+ 0.05 0.84 &+ 0.07 0.81 = 0.06
BRUL-BLLL (2-ch.) 0.75 £+ 0.08 0.72 = 0.11 0.87 = 0.03 0.77 £ 0.03 0.74 4+ 0.05
BRUL (single) 0.67 £+ 0.06 0.60 £ 0.03 0.83 +0.12 0.66 £ 0.02 0.59 £+ 0.10
BLLL (single) 0.65 £+ 0.05 0.58 = 0.13 0.81 +0.13 0.64 £ 0.06 0.57 = 0.03
BLUL-BLLL (2-ch.) 0.76 £ 0.02 0.72 +0.10 0.87 = 0.07 0.76 &= 0.03 0.73 = 0.05
BLUL (single) 0.63 £+ 0.06 0.71 £+ 0.09 0.80 & 0.05 0.71 = 0.04 0.68 =0.11
BLLL (single) 0.70 £ 0.05 0.68 £+ 0.12 0.85 £+ 0.04 0.73 £0.01 0.70 & 0.05
BRUL-BRLL (2-ch.) 0.80 + 0.01 0.81 £ 0.05 0.88 4+ 0.03 0.87 £ 0.09 0.82 4+ 0.08
BRUL (single) 0.68 £ 0.02 0.77 +0.03 0.75 4+ 0.03 0.75 £ 0.10 0.77 = 0.05
BRLL (single) 0.76 £ 0.06 0.75 £ 0.12 0.73 & 0.02 0.75 £+ 0.02 0.75 £+ 0.06
BLUL-BRLL (2-ch.) 0.73 +£0.01 0.70 £ 0.08 0.75 4+ 0.03 0.73 £+ 0.06 0.71 = 0.03
BLUL (single) 0.68 £ 0.04 0.65 + 0.02 0.70 &+ 0.03 0.70 £ 0.05 0.65 £+ 0.01
BRLL (single) 0.68 = 0.02 0.67 = 0.05 0.60 4 0.02 0.65 £+ 0.05 0.60 £ 0.01
BLLL-BRLL (2-ch.) 0.71 £ 0.02 0.73 £ 0.05 0.78 +0.03 0.71 £+ 0.05 0.73 = 0.08
BLLL (single) 0.68 + 0.01 0.75 4+ 0.07 0.81 4+ 0.02 0.60 £ 0.03 0.70 = 0.04
BRLL (single) 0.70 £ 0.04 0.76 = 0.07 0.75 4+ 0.05 0.68 = 0.05 0.70 = 0.07
1.0
0.86 0.84
0.8 1 '3'”0:76"? 079 0
/ 0.68 0.70 . 0.70
> 0.6 |
3 :
g / 1
3 :
< 04 4
02 /
0.0 | | | | | |

BRUL BRUL BRUL BLUL BRUL BLUL BLLL
BLUL BLUL BLLL BLLL

BLLL
Positions

Figure 4. Bar graphs of the accuracy of classifying respiratory sounds in three-channel, two-channel,
and single-channel at BRUL, BLUL, and BLLL positions.

Figure 5 presents a bar graph representing the results of the representative four,
three, two, and single channels with the highest values of accuracy, sensitivity, specificity,
precision, and F1-score for BRUL, BLUL, BLLL, and BRLL. Here, the selected three, two,
and single positions were BRUL-BLLL-BRLL, BRUL-BLUL, and BRLL, respectively. The
accuracy of respiratory sound classification was approximately 0.92 for four channels,
compared with approximately 0.79, 0.83, and 0.88 for a single, two, and three channels,
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respectively. Table 4 summarizes the quantitative evaluations of one, two, three, and
four channels for representative positions based on the lung sounds measured at BRUL,
BLUL, BLLL, and BRLL. The results demonstrate that prediction based on multi-channel
respiratory sounds has higher accuracy than that of the single-channel prediction and that
respiratory sound classification accuracy improves significantly with an increase in the

number of channels.

Table 3. Performance evaluation of three-, two-, and single-channel respiratory sound prediction

among the positions of BRUL, BLUL, and BLLL.

Positions Accuracy Sensitivity Specificity Precision F1-Score
BRUL_(];I:}}JI];_BLLL 0.86 £+ 0.09 0.87 £ 0.01 0.93 £+ 0.01 0.87 £ 0.02 0.87 £+ 0.02
BRUL-BLUL (2-ch.) 0.76 £ 0.03 0.73 £ 0.06 0.88 + 0.04 0.76 £ 0.02 0.74 + 0.03
BRUL-BLUL (2-ch.) 0.84 £+ 0.02 0.84 £+ 0.05 0.92 4+ 0.02 0.83 £0.01 0.83 £+ 0.03
BRUL-BLUL (2-ch.) 0.79 £+ 0.08 0.78 £+ 0.02 0.89 4+ 0.01 0.78 = 0.03 0.78 4+ 0.04

BRUL (single) 0.68 + 0.08 0.61 +£0.11 0.83 4+ 0.05 0.83 + 0.04 0.59 + 0.02
BLUL (single) 0.70 £ 0.03 0.64 £+ 0.06 0.84 + 0.06 0.73 £ 0.06 0.63 £+ 0.02
BLLL (single) 0.70 + 0.07 0.65 £+ 0.06 0.85 £+ 0.05 0.72 +£0.01 0.66 £+ 0.08
1.0 .
] Accuracy
B Sens itivity
0.8 I Specificity
B2 Precision
] Fl-score
- 0.6
<
£
< 04
0.2
0.0
Channels
Figure 5. Graphs representing the results of representative four-, three-, two-, and single-channel
with the highest values of the five evaluation matrices at the BRUL, BLUL, BLLL, and BRLL positions.
Table 4. Evaluate the prediction performance of four-channel, three-channel, two-channel, and
single-channel lung sounds representative of the BRUL, BLUL, BLLL, and BRLL positions.

Positions Accuracy Sensitivity Specificity Precision F1-Score
BRUL-BLUL-BLLL-

BRLL (4-ch.) 0.92 £+ 0.02 0.93 £+ 0.02 0.96 + 0.05 0.92 +0.01 0.93 £+ 0.03
BRUL_(];_LCI};I;_BRLL 0.88 £+ 0.04 0.89 £+ 0.02 0.93 4+ 0.06 0.88 + 0.05 0.88 4+ 0.02
BRUL-BLUL (2-ch.) 0.83 £ 0.01 0.79 £+ 0.06 0.91 £+ 0.07 0.85 £+ 0.03 0.81 £+ 0.09

BRLL (single) 0.79 £ 0.02 0.75 £ 0.10 0.88 £+ 0.03 0.81 £ 0.02 0.77 £ 0.04
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Table 5 presents the results of respiratory sound classification through time series
respiratory-based CNN and CNN-LSTM models and an MFCC-based CNN model to
confirm whether the proposed CNN-LSTM with MFCC model benefits respiratory sound
classification. For a four-channel time series input value, it was input as 12,000 x 4 pixels
and converted into 128 x 350 pixels to adapt it for the CNN model, similar to the existing
CNN-LSTM model. The output section was placed at the end of the CNN model and
consisted of flatten, fully connected, and output (based on softmax activation that derives
3 units) layers. All models were trained using the Adam optimizer with the learning
rates of 0.0001-0.00005, a batch size of 20, and a maximum of 50 epochs. The categorical
cross-entropy loss function was used for multi-class classification. To ensure consistency
across experiments, we retained identical CNN feature extraction layers and adjusted
only the input format (e.g., time-series vs. MFCC) and temporal module (e.g., with or
without LSTM).

Table 5. Comparison results of a convolutional neural network (CNN), CNN-long short-term memory
(LSTM), CNN with mel-frequency cepstral coefficient (MFCC), and CNN-LSTM with MFCC models
using the four-channel respiratory sounds.

Model Accuracy Sensitivity Specificity Precision F1-Score
CNN 0.65 & 0.05 0.58 4 0.07 0.81 +0.03 0.64 4 0.03 0.57 +0.05
CNN-LSTM 0.76 £ 0.01 0.72 £0.04 0.87 £ 0.06 0.76 £ 0.02 0.73 £0.10
CNN with MFCC 0.85 £ 0.06 0.84 £ 0.04 0.88 £0.11 0.85 £ 0.04 0.82 £0.10
CNN-LSTM with MFCC 0.92 4 0.02 0.93 4 0.02 0.96 + 0.05 0.92 £ 0.01 0.93 +0.03

The CNN model trained on raw time-series inputs achieved an average accuracy of
0.65 £ 0.05, with a limited sensitivity of 0.58 & 0.07 and F1-score of 0.57 £ 0.05, indicating
insufficient detection of positive cases. The CNN-LSTM model using the same time-series
input showed improved performance across all metrics, particularly in demonstrating a
sensitivity of 0.72 & 0.04 and an F1-score of 0.73 % 0.10, suggesting that temporal sequence
modeling enhanced discriminative capability. When MFCC features were applied to the
CNN model, substantial gains were observed, yielding an accuracy of 0.85 £ 0.06, a
sensitivity of 0.84 &= 0.04, and an Fl-score of 0.82 & 0.10. These highlight the effectiveness
of MFCC-based feature extraction in representing respiratory characteristics. Notably, the
proposed CNN-LSTM model using MFCC input outperformed all configurations. These
results demonstrate the synergistic effect of combining MFCC-based acoustic features with
temporal modeling via LSTM, validating the effectiveness of our proposed method for
respiratory sound classification.

Figure 6 shows the MFCC results and activation maps for four channels that correctly
predicted (a) normal sounds and (b) fine crackle sounds, as well as activation maps for
one, two, and three channels that made inaccurate predictions. A higher weight (red)
indicates that the model referenced that region more accurately than the others when
classifying respiratory sounds [39]. For the activation map of the four-channel lung sound
that predicted correctly, a certain proportion of regions were referenced to derive the results.
However, as the number of channels decreased, most of these tended to be referenced with-
out distinguishing features. Moreover, the feature space used for the accurate prediction
was unclear in activation maps with a single channel or a few channels. Nevertheless, the
feature space for the correct prediction became finer-grained as the number of channels
increased. While the region used to predict accurately was unclear in the activation maps of
a single or two channels, those of three or four channels showed that the feature region was
refined by considering the auscultation signals from different positions. The deep learning
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model is expected to predict results accurately and reliably when based on multi-channel
lung sounds.

BRUL

Activate

Deactivate

G

Figure 6. MFCC maps of four-channel lung sound and activation maps of representative four-, three-,
two-, and single-channel-based sounds. Here, (a) only the four-channel- based lung sounds correctly
predicted normal lung sounds and (b) only the four-channel- based lung sounds correctly predicted
fine crackle. The auscultated positions are BRUL, BLUL, BLLL, and BRLL.

4. Discussion

The proposed deep learning-based prediction study using multi-channel lung sounds
showed the following primary results:

(1) The predictive classification rate and accuracy improved as the number of channels
used to measure respiratory sounds increased. Multi-channel lung sounds contained
more features for each respiratory sound, allowing the classifier to perform accurate
classifications. This facilitates an accurate classification in cases with numerous
external noise signals.

(2) The differences in sensitivity and specificity decreased with multi-channel respiratory
sound classification. This indicates that the prediction method is more reliable than
single-channel respiratory sound classification and that multi-channel auscultation
minimizes the loss of information and acquires more characteristic data on respiratory
sounds than single-channel auscultation. This minimizes the dependence of prediction
on the auscultation position and is meaningful as standardized respiratory sound
classification data.
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(3) The Fl-score was higher for multi-channel lung sound-based predictions than for
other approaches, and each respiratory sound classification was independent of the
position. This indicates that the multi-channel respiratory sound classification has
higher accuracy and reproducibility, independent of specific locations. The feasibility
of the multi-channel lung sound-based prediction method for predicting respiratory
diseases in clinical practice was confirmed.

Therefore, the proposed respiratory sound classification method proved to be more
practically useful than single-channel respiratory sound classification in the quantitative
and qualitative aspects.

However, there are certain limitations. Firstly, multi-channel lung sounds were lacking,
and each lung sound had an unbalanced ratio. The lung sound database had different
sizes (1.5-1500), depending on the class. The most authoritative large public database
(ICBHI 2017 Challenge) contains 6898 respiratory cycles and 920 single-channel record-
ings [30]. These are insufficient to predict respiratory disease and constrain the dataset to
train multi-channel lung respiratory sound classification models, as the data were obtained
from measuring only a few positions. If the results are compared with previous studies
based on the published dataset, the reliability of the proposed method can be improved,
but the lack of datasets that can compare and verify significant levels of multi-channel
respiratory sound measurement-based respiratory sound prediction accuracy is a major
limitation. To overcome this challenge, data augmentation focuses on a possible approach,
including classical (i.e., time stretching, pitch shifting, and dynamic range compression)
and machine learning-based methods [40]. The attention mechanism-based respiratory
sound classification contributes to improving the average score by 2.95% and 0.84% on
the validation and official test sets, respectively [41]. The automatic analysis of lung dis-
eases with domain transform data using the ICBHI 2017 Challenge dataset achieved a
sensitivity of 54% and a specificity of 42% [42]. Jayalakshmy et al. showed a classification
accuracy of 92.50% using the Resnet-50 model with cGAN-based augmentation, compared
with the 81.37% accuracy without augmentation, 80.17% with sequential categorical-based
augmentation, and 85.40% with independent categorical-based augmentation [29]. These
encouraging results indicate that data augmentation techniques are useful for improving
the classification accuracy of simultaneous lung sound signals.

Second, a major limitation of this study lies in the restricted number of respiratory
sound types used for classification. The dataset was annotated with only three categories:
normal, crackles, and wheezes. While these are among the most common auscultatory
findings, they do not encompass the entire clinical spectrum of adventitious lung sounds.
Other significant sounds such as rhonchi, stridor, pleural rubs, and fine versus coarse
crackles were not included owing to limited labeled data and inter-observer dissensus. This
reduction in class diversity may cause overfitting to the available classes and misclassifica-
tion of atypical or mixed sounds in real-world cases [43]. Additionally, some patients may
exhibit overlapping characteristics between classes, further complicating accurate labeling
and recognition. A more granular or hierarchical classification scheme might better reflect
the nuanced nature of respiratory acoustics. However, this would require a larger and more
carefully annotated dataset. Future work should expand the class structure to improve the
clinical utility and diagnostic specificity of the model.

Finally, significant external noise from the intensive care unit (ICU) environment
should be eliminated. The noise level in the ICU is notably high owing to the presence
of various monitoring devices and many clinical staff, potentially distracting them from
monitoring the patients on ventilators. Excessive sound pressure levels in ICUs frequently
fall within the range of 50-70 dB (A), and levels exceeding 40 dB (A) impede concen-
tration [44,45]. Deep learning-based methods have been introduced as noise reduction
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methods and exhibit high removal performance [46]. It exhibits a high noise-cancelation
effect within a given condition, primarily by canceling noise based on previously obtained
data. However, the reproducibility of results cannot be guaranteed for untrained data. A
dual microphone-based noise cancelation method may overcome this challenge [47,48]. By
employing an adaptive blocking matrix and adaptive noise cancelation to reduce noise
in real time, they demonstrated the possibility of improving the voice quality of the mea-
sured breathing sounds. We plan to continue research and development to overcome
these limitations.

5. Conclusions

We classified respiratory sound using multi-channel lung sound signals with an MFCC.
The purpose was to improve the classification accuracy of lung sounds using multi-channel
signals to optimally capture the characteristics specific to each measurement position on
the same patient. We investigated the number and location of effective channels. The
results indicated that four-channel lung sound prediction improved accuracy, sensitivity,
specificity, precision, and F1l-score by approximately 1.11, 1.15, 1.05, 1.08, and 1.13 times,
respectively, compared with the three-, two-, and single-channel results. The difference
between sensitivity and specificity decreased for the multi-channel respiratory sound-based
prediction, indicating that the method is more reliable. Furthermore, the proposed multi-
channel lung sound-based prediction had a high Fl-score, which is expected to improve
the accuracy and reproducibility of future respiratory sound classifications. The proposed
research method is a result of measurements using several respiratory sound measure-
ment devices, and the developed real-time multi-channel respiratory sound measurement
system will be considered in clinical trials. Additionally, it is expected to contribute to
improving the diagnostic accuracy because it is compatible with various modalities, such
as electrocardiography.
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