

Original Article

Consensus-Based Guidelines for the Treatment of Atopic Dermatitis in Korea (Part II): Biologics and JAK inhibitors

Hyun-Chang Ko (1) 1, Yu Ri Woo (1) 2, Joo Yeon Ko (1) 3, Hye One Kim (1) 4, Chan Ho Na (1) 5, Youin Bae (1) 6, Young-Joon Seo (1) 7, Min Kyung Shin (1) 8, Jiyoung Ahn (1) 9, Bark-Lynn Lew (1) 8, Dong Hun Lee (1) 10, Sang Eun Lee (1) 11, Sul Hee Lee (1) 12, Yang Won Lee (1) 13, Ji Hyun Lee (1) 14, Yong Hyun Jang (1) 15, Jiehyun Jeon (1) 16, Sun Young Choi (1) 17, Ju Hee Han (1) 14, Tae Young Han (1) 18, Sang Wook Son (1) 19, Sang Hyun Cho (1) 2

OPEN ACCESS

Received: Jan 8, 2025 Revised: Apr 29, 2025 Accepted: May 14, 2025 Published online: Jun 11, 2025

Corresponding Authors:

Sang Hyun Cho

Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56 Dongsuro, Bupyeong-gu, Incheon 21431, Korea. Email: drchos@yahoo.co.kr

Sang Wook Son

Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Korea. Email: skin4u@korea.ac.kr

*Hyun-Chang Ko and Yu Ri Woo contributed equally to the work as first authors.

© 2025 The Korean Dermatological
Association and The Korean Society for
Investigative Dermatology
This is an Open Access article distributed
under the terms of the Creative Commons
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0/)
which permits unrestricted non-commercial
use, distribution, and reproduction in any
medium, provided the original work is properly
cited.

ABSTRACT

Background: Atopic dermatitis (AD) is a common skin disease with a wide range of symptoms. Due to the rapidly changing treatment landscape, regular updates to clinical guidelines are needed.

Objective: This study aimed to update the guidelines for the treatment of AD to reflect recent therapeutic advances and evidence-based recommendations.

Methods: The Patient characteristics, type of Intervention, Control, and Outcome framework was used to determine 48 questions related to AD management. Evidence was graded, recommendations were determined, and, after 2 voting rounds among the Korean Atopic Dermatitis Association (KADA) council members, consensus was achieved.

¹Department of Dermatology, Pusan National University School of Medicine, Busan, Korea

²Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea. Seoul. Korea

³Department of Dermatology, Hanyang University College of Medicine, Seoul, Korea

⁴Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea

⁵Department of Dermatology, Chosun University Medical School, Gwangju, Korea

⁶Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea

⁷Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea

⁸Department of Dermatology, Kyung Hee University College of Medicine, Seoul, Korea

⁹Department of Dermatology, National Medical Center, Seoul, Korea

¹⁰Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea

¹¹Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea

¹²Department of Dermatology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea

¹³Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea

¹⁴Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

¹⁵Department of Dermatology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea

¹⁶Department of Dermatology, Korea University Guro Hospital, Korea University College of Medicine, Seoul,

¹⁷Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Korea

¹⁸Department of Dermatology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea

¹⁹Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea

Results: This guideline provides treatment guidance on advanced systemic treatment modalities for AD. In particular, the guideline offers up-to-date treatment recommendations for biologics and Janus-kinase inhibitors used in the treatment of patients with moderate to severe AD. It also provides guidance on other therapies for AD, along with tailored recommendations for children, adolescents, the elderly, and pregnant or breastfeeding women.

Conclusion: KADA's updated AD treatment guidelines incorporate the latest evidence and expert opinion to provide a comprehensive approach to AD treatment. The guidelines will help clinicians optimize patient-specific therapies.

Keywords: Atopic dermatitis; Biologics; Consensus; Guideline; Janus Kinase inhibitors; Republic of Korea

INTRODUCTION

The Korean Atopic Dermatitis Association (KADA) developed a clinical severity classification specific to the Korean population in 2019¹ and updated systemic treatment guidelines for moderate to severe atopic dermatitis (AD) in 2021². Recent approvals of biologics and Janus-kinase (JAK) inhibitors in Korea have necessitated updates to incorporate these advanced therapies, offering targeted and personalized treatment options.

Part II of these guidelines is designed to provide evidence-based recommendations on advanced systemic therapies including biologics and JAK inhibitors, to support dermatologists in managing moderate to severe AD with current and tailored strategies.

MATERIALS AND METHODS

The KADA task force team consisting of 10 dermatologists, representing AD experts performed extensive, up-to-date literature reviews on management for AD.

Based on the comprehensive literature review, the task force team established a total of 48 questions using the Patient characteristics, type of Intervention, Control, and Outcome (PICO) framework regarding AD management and requested expert opinions on each of these questions (**Supplementary Table 1**).

Database and literature searches

The task force team conducted a comprehensive search of various databases, including PubMed, Scopus, the Cochrane Library, and KoreaMed. This search encompassed articles published until December 31, 2023. The search queries employed a combination of keywords: "atopic eczema," "atopic dermatitis," "antihistamine," "antimicrobial," "antifungal," "antiviral," "biologics," "dupilumab," "lebrikizumab," "tralokinumab," "nemolizumab", "omalizumab," "JAK inhibitors," "abrocitinib," "upadacitinib,"

"baricitinib," "phototherapy," "allergen-specific immunotherapy," "probiotics," "prebiotics," "vitamin D," "essential fatty acid," "small molecule inhibitors," "children," "adolescent," "adult," "elderly," "pregnancy," and "breastfeeding." In addition to database searches, the team also conducted manual searches by reviewing the reference lists of relevant systematic reviews and guidelines issued by other research groups. Through these efforts, the team compiled all pertinent statements related to the management of AD.

Evaluation of the literature

The quality of evidence was assessed, and the strength of each PICO-based recommendation was then determined. Evidence for each statement was graded using the following system: level 1a, systematic review (with homogeneity) of randomized controlled trials (RCTs); level 1b, individual RCT (with narrow confidence interval); level 1c, all or none; level 2a, systematic review (with homogeneity) of cohort studies; level 2b, individual cohort study (including low-quality RCTs); level 2c, "outcome" research; level 3a, systematic review (with homogeneity) of case—control studies; level 3b, individual case—control study; level 4, case series (and poor-quality cohort and case—control studies); and level 5, expert opinion.

The modified Grading of Recommendations Assessment, Development and Evaluation system was applied to determine recommendation strength. Beyond the level of evidence and balance of benefits and harms, factors such as feasibility in primary care, acceptability, and degree of utilization were carefully considered. Recommendations were categorized as follows: A, strong recommendation for using an intervention. The benefits of this intervention significantly outweigh potential harms (generally recommended); B, weak recommendation for using an intervention. The benefits of this intervention outweigh potential harms, but there is some uncertainty (recommended selectively); C, weak recommendation against using an intervention. The harms of this intervention outweigh benefits, but there is some uncertainty (not recommended unless there are specific considerations); D, strong

recommendation against using an intervention. The harms of this intervention significantly outweigh benefits (generally not recommended).

Consensus process

Fifty-six KADA council members were invited to express their level of agreement with each draft statement, using a voting scale from 1 to 10 (where 1 indicated strong disagreement and 10 indicated strong agreement). Voting scores were categorized into 3 groups: 1 to 3 (disagreement), 4 to 6 (neutrality), and 7 to 10 (agreement). Consensus was defined as achieving at least 70% of votes in the 7 to 10 range, indicating agreement. The consensus recommendation process included 2 rounds of voting to finalize the guidelines.

RESULTS

Biologics

1) Dupilumab

We recommend the use of dupilumab in adult, adolescent, and pediatric patients over 6 months of age with moderate to severe AD who are not adequately controlled by or are not candidates for topical therapies (Recommendation strength: A, Grade of evidence: 1a, % of respondents [agreement score ≥7]: 98%).

Dupilumab, a fully human immunoglobulin G4 (IgG4) monoclonal antibody targeting the interleukin (IL)-4 receptor α , inhibits IL-4 and IL-13 signaling, thereby reducing T helper cell–mediated inflammation, decreasing immunoglobulin E (IgE) production, and improving skin barrier function. ^{3,4}. In Korea, dupilumab is approved for the treatment of moderate to severe AD in adults (aged 18 and above), adolescents (12–17 years), and children (6 months–11 years) for whom topical therapies are not adequately controlled or are not advisable ¹. It is also approved for severe eosinophilic asthma and chronic rhinosinusitis with nasal polyps, which are type 2 inflammatory diseases, and in the United States, it has received approval for eosinophilic esophagitis and nodular prurigo.

Phase 3 trials (LIBERTY AD SOLO1, SOLO2, CHRONOS, CAFÉ) showed significant improvements in severity scores (Eczema Area and Severity Index [EASI], Investigator's Global Assessment [IGA], SCORing Atopic Dermatitis), pruritus, and quality of life⁵⁷. The LIBERTY AD SOLO1 and SOLO2 studies reported 48% achieving EASI-75 at week 16 (vs. 13% placebo)⁷. In an open-label extension study, long-term data showed that 90.9% of patients achieved EASI-75 after 4 years⁸.

A meta-analysis of 22 real-world studies involving 3,303 patients with AD reported a 59.8% achievement rate of EASI-75 at week 16°. Real-world efficacy in Korea aligns with that of other

counties^{10,11}, with 56.1% achieving EASI-75 at 16 weeks of dupilumab administration, and 90.2% at 52 weeks¹². Predictive factors for reduced efficacy include male sex, high eosinophil levels, and elevated lactate dehydrogenase¹³. Differential diagnoses, such as contact dermatitis, scabies, or cutaneous T-cell lymphoma, should be considered if dupilumab is ineffective¹⁴.

For adults, dupilumab is administered as a 600 mg loading dose followed by 300 mg every 2 weeks. It can be combined with topical corticosteroids (TCSs), topical calcineurin inhibitors (TCIs), or phototherapy, etc. In refractory cases, adding oral immunomodulators or JAK inhibitors can be helpful^{15,16}.

Dupilumab is well-tolerated⁸, with common side effects including conjunctivitis, upper respiratory infection, herpes simplex, injection site reaction, and headache. Some patients may experience eye-related side effects (keratitis, conjunctivitis, dry eye, ocular pruritus, blepharitis), which could be managed based on severity. Mild cases can be treated with warm compresses, artificial tears, sodium hyaluronate, or antihistamine eye drops, whereas moderate to severe cases may require tacrolimus, cyclosporine, corticosteroid, lifitegrast eye drops¹⁷. Paradoxical head and neck erythema can typically appear within 6 months, potentially caused by contact dermatitis, seborrheic dermatitis, rosacea, and withdrawal from topical steroids¹⁸⁻²⁰.

2) Tralokinumab

We recommend the use of tralokinumab in adult and adolescent patients with moderate to severe AD who are not adequately controlled by or are not candidates for topical therapies (Recommendation strength: A, Grade of evidence: 1a, % of respondents [agreement score ≥7]: 97%).

Tralokinumab, a fully human, high-affinity IgG4 monoclonal antibody targeting IL-13, reduces the inflammatory response in AD²¹. It is approved for moderate to severe AD in adults and adolescents whose disease is inadequately controlled by topical therapies or when such therapies are not advisable. Tralokinumab was approved by the European Medicines Agency (EMA) and the U.S. Food and Drug Administration in 2021, and by Korea's Ministry of Food and Drug Safety (MFDS) in 2023.

Phase 3 trials confirmed tralokinumab's efficacy in improving skin clearance, reducing itch, and enhancing quality of life in AD^{22,23}. ECZTRA 1 and 2 monotherapy achieved EASI-75 in 25.0% and 33.2% of patients (vs. 12.7% and 11.4% placebo)²², while ECZTRA 3, with TCS as needed, showed higher rates of EASI-75 (56.0% vs. 35.7%) at week 16²³. A 2-year open-label extension study reported sustained improvements, with 82.5% achieving EASI-75²⁴. Real-world evidence also supports the efficacy and safety of tralokinumab treatment²⁵.

Tralokinumab is administered with a 600 mg loading dose, followed by 300 mg every 2 weeks (Q2W) via subcutaneous injection²³. It has a favorable safety profile, with common side effects including viral infections, upper respiratory infections, conjunctivitis, and injection site reactions²⁶. Ocular complications are less frequent than with dupilumab. Long-term safety data (up to 2 years) show no new concerns, and no specific monitoring is required.

3) Lebrikizumab

We recommend the use of lebrikizumab in adult and adolescent patients with moderate to severe AD who are not adequately controlled by or are not candidates for topical therapies (Recommendation strength: A, Grade of evidence: 1b, % of respondents [agreement score ≥7]: 97%).

Lebrikizumab, a high-affinity IgG4 monoclonal antibody targeting soluble IL-13, inhibits a key pathway in AD by preventing IL-4R α / IL-13R α 1 heterodimer receptor signaling complex formation²⁷. It was approved by EMA in 2023, and MFDS in Korea in 2024.

Phase 3 trials (ADvocate1, ADvocate2²⁷, and ADhere²⁸) demonstrated significant improvements in moderate to severe AD. EASI-75 was achieved at week 16 in 52.1% and 58.8% of monotherapy participants (vs. 18.1% and 16.2% placebo)²⁷. When combined with TCS, lebrikizumab showed potential for a higher level of efficacy²⁸.

Lebrikizumab is administered with a 500 mg loading dose at baseline and week 2, followed by 250 mg Q2W. Common adverse events include conjunctivitis, headache, hypertension, injection site reactions, and herpes infections, mostly mild or moderate²⁹. Lebrikizumab effectively reduces AD severity and improves quality of life.

4) Nemolizumab

We suggest considering the use of nemolizumab in patients with moderate to severe AD who are not adequately controlled by or are not candidates for topical therapies (Recommendation strength: B, Grade of evidence: 1b, % of respondents [agreement score ≥7]: 86%).

Nemolizumab, a humanized monoclonal antibody targeting the IL-31 receptor alpha, treats pruritus in AD³. Approved in Japan in 2022³⁰, it demonstrated significant efficacy in phase III trials, reducing pruritus VAS scores by 42.8% (vs. 21.4% placebo) and EASI scores by 45.9% (vs. 33.2% placebo)³¹. Long-term benefits were sustained up to 68 weeks, even after treatment cessation³².

The approved dose in Japan is 60 mg subcutaneously every 4 weeks (Q4W). Reported adverse events include AD exacerbation,

injection site reactions, cytokine abnormalities, headache, edema, and elevated creatine phosphokinase (CPK)^{31,32}. Nemolizumab shows potential for AD and pruritus, but further real-world data are needed.

5) Omalizumab

We propose limited use of omalizumab for patients with moderate to severe AD who are not adequately controlled by or are not candidates for topical therapies (Recommendation strength: C, Grade of evidence: 3b, % of respondents [agreement score ≥7]: 34%).

Omalizumab, a humanized monoclonal anti-IgE antibody, targets allergic asthma and chronic spontaneous urticaria by neutralizing IgE. While elevated IgE is common in AD, its role in pathogenesis remains unclear³³.

Several controlled and uncontrolled studies, as well as case series and reports, have indicated varying degrees of therapeutic success with better efficacy in patients with lower IgE levels than those with very high levels³³⁻³⁵. The ADAPT study found modest improvements in disease severity and quality of life in pediatric AD patients with high IgE levels³⁶, but small sample sizes and strong placebo effects limit conclusions.

Doses range from 150–600 mg every 2–4 weeks. Omalizumab is generally well-tolerated, with common side effects including injection site reactions, headaches, and sinusitis. Due to variable responses, we suggest limited use of omalizumab for patients with moderate to severe AD.

6) Selective addition of systemic immunosuppressants or oral JAK inhibitors

We propose considering the selective addition of systemic immunosuppressants or oral JAK inhibitors for patients with moderate to severe AD who are not adequately controlled by biologic agents (Recommendation strength: C, Grade of evidence: 4, % of respondents [agreement score \geq 7]: 74%).

AD is a type 2 inflammatory disease with diverse phenotypes and endotypes, leading to variable responses to biologic agents targeting type 2 inflammation. Some patients may experience insufficient improvement, such as persistent head and neck erythema, despite dupilumab treatment. Case reports suggest improved outcomes and quality of life with combinations of systemic immunosuppressants (e.g., cyclosporine, methotrexate [MTX]), phototherapy, or add-on treatment with JAK inhibitors to biologics in AD^{16,37}. Korean studies have reported baricitinib add-on therapy as effective for aggravation, hyper-eosinophilia, or

insufficient response to dupilumab¹⁶. As these combinations are off-label, careful patient monitoring and thorough explanation are essential¹⁴. Larger prospective studies are needed to identify suitable candidates for add-on therapy.

7) Switching to another biologic agent or an oral JAK inhibitor

We suggest considering switching to another biologic or oral JAK inhibitor in patients with moderate to severe AD if there is an insufficient response* to biologic therapy or an inability to use current biologic treatment due to side effects (Recommendation strength: B, Grade of evidence: biologics 4 / JAK inhibitors 1b, % of respondents [agreement score ≥7]: 96%).

Biologic treatments like dupilumab are effective for moderate to severe AD, but some patients experience insufficient responses or localized persistent symptoms, impacting quality of life. Side effects such as conjunctivitis, blepharitis, and head and neck erythema may also limit treatment continuation. Additionally, the lack of predictive biomarkers and restrictions under the current Korean insurance system including the copayment assistance policy for severe AD, which prevents switching between biologics or JAK inhibitors, poses challenges in managing severe AD.

Switching to upadacitinib or abrocitinib after insufficient response or side effects from dupilumab has shown additional improvement. The Heads Up³⁸ and JADE EXTEND studies³⁹, along with cohort and case series, support the benefits of switching from biologics to JAK inhibitors⁴⁰⁻⁵⁰. In the JADE-EXTEND trial, over 50% of dupilumab non-responders achieved EASI-90 with abrocitinib³⁹. In addition, dupilumab-induced conjunctivitis and dupilumab-associated head and neck dermatitis were successfully treated by switching from dupilumab to upadacitinib⁴⁷⁻⁵⁰.

Switching from dupilumab to other biologics like tralokinumab may benefit patients with insufficient response or side effects from dupilumab^{25,51-54}. Although some of these reports are cohort studies, case series, or case reports, and therefore provide a low level of evidence, these guidelines suggest considering a switch to another biologic agent or an oral JAK inhibitor in patients with moderate to severe AD if there is an insufficient response or an inability to use current biologic treatments due to side effects, based on clinical needs and the aforementioned evidence.

8) Adjustment of administration intervals for biologics

We suggest considering selective dosing intervals according to the patient's symptoms in patients with AD on biologics (Recommendation strength: B, Grade of evidence: tralokinumab 1b/lebrikizumab 1b/dupilumab 4, % of respondents [agreement score \geq 7]: 90%).

Biologics for AD, including dupilumab, tralokinumab, and lebrikizumab, may allow dosing interval adjustments based on patient response. Studies show effective maintenance with extended intervals.

The ECZTRA 3 trial found that patients achieving clear or almost clear skin after 16 weeks of tralokinumab could consider Q4W dosing. At week 32, 90.8% maintained EASI-75 with Q4W dosing and TCS, supporting its use as a maintenance option²³. Similarly, lebrikizumab maintained efficacy with both Q2W and Q4W dosing after a 16-week induction⁵⁵. A real-world study reported that 47.4% of dupilumab-treated patients achieving EASI-75 with Q4W dosing over 16 weeks⁵⁶. These findings support adjusting dosing intervals based on individual patient needs.

JAK inhibitors

1) Baricitinib

We recommend the use of baricitinib, an oral JAK 1/2 inhibitor, in adult patients with moderate to severe AD who are not adequately controlled by or are not candidates for topical therapies (Recommendation strength: A, Grade of evidence: 1a, % of respondents [agreement score ≥7]: 94%).

Baricitinib, a selective JAK1/JAK2 inhibitor, reduces inflammation and regulates immune cell activity. In long-term RCTs, 45.7%–46.3% of patients achieved vIGA-AD 0/1 (0, clear; 1, almost clear) with 2 mg or 4 mg doses at week 16, increasing to 47.1%–59.3% at week 68⁵⁷. In a meta-analysis of five clinical trials, baricitinib 4 mg and 2 mg daily showed slightly less reduction in EASI at 16 weeks compared with dupilumab, with mean differences of –3.2 and –5.2 points, respectively.⁵⁸. This pattern of results was similar for changes in Patient-Oriented Eczema Measure, Dermatology Life Quality Index (DLQI), and peak pruritus numerical rating scale (PP-NRS)⁵⁸. Baricitinib showed faster itch relief compared to dupilumab in indirect comparisons⁵⁹.

A direct meta-analysis showed no significant increase in treatment-emergent adverse events versus placebo over 16 weeks⁶⁰. Common side effects included increased low-density lipoprotein (LDL) cholesterol, upper respiratory infections, and headaches⁶¹.

A long-term real-world safety data from 2,636 patients over 3.9 years showed low adverse event rates, with a 3.4% discontinuation rate⁶². Reported events included herpes infections, cardiovascular events, and pulmonary emboli⁶².

2) Upadacitinib

We recommend the use of upadacitinib, an oral JAK1 inhibitor, in adult and adolescent patients with moderate to severe AD who are not adequately controlled by or are not candidates

for topical therapies (Recommendation strength: A, Grade of evidence: 1a (adult)/1b (adolescent), % of respondents [agreement score ≥7]: 96%).

Upadacitinib, a selective JAK1 inhibitor, effectively targets pro-inflammatory cytokine signaling. In a pooled analysis of 11 trials (6,254 patients), upadacitinib 30 mg demonstrated the highest efficacy across endpoints (IGA 0/1, EASI-75/90, PP-NRS 4) at weeks 12–16, followed by abrocitinib 200 mg and upadacitinib 15 mg, though with more adverse events⁶³. A long-term treatment (112 weeks) showed consistent safety for both 15 mg and 30 mg doses⁶⁴.

In the phase 3b Heads Up study, upadacitinib achieved higher EASI-75 (71%) and EASI-90 (61%) rates at week 16 than dupilumab (61% and 39%, respectively)⁶⁵.

Common adverse events included acne, headache, shingles, and upper respiratory infections⁶⁶. In trials with 552 adolescents with severe AD, upadacitinib showed similar safety and efficacy to adults, with dose-related adverse events primarily acne and elevated CPK⁶⁷. These findings highlight a favorable benefit-risk profile for upadacitinib in moderate to severe AD, including adolescents.

3) Abrocitinib

We recommend the use of abrocitinib, an oral JAK1 inhibitor, in adult and adolescent patients with moderate to severe AD who are not adequately controlled by or are not candidates for topical therapies (Recommendation strength: A, Grade of evidence: 1a (adult)/1b (adolescent), % of respondents [agreement score ≥ 7]: 94%).

Abrocitinib, a selective JAK1 inhibitor, regulates inflammatory cytokines like IL-4, IL-13, IL-31, and interferon, as well as signaling molecules involved in these pathways. In the JADE-REGIMEN trial, 64.7% of the 1,233 patients achieved IGA 0/1 and EASI-75 during a 12-week induction with abrocitinib 200 mg⁶⁸. A meta-analysis of 23 RCTs confirmed high efficacy in EASI-75 and IGA 0/1 improvements with both monotherapy and TCS combination⁶⁹. In a head-to-head trial, abrocitinib 200 mg showed faster itch relief (PP-NRS4 at week 2: 48.2% vs. 25.5%) and higher EASI-90 rates at week 4 (28.5% vs. 14.6%) compared to dupilumab⁷⁰.

Common non-serious adverse events include nausea, headache, acne, and herpes infections⁷¹. A report indicates that abrocitinib transiently reduces platelet count by week 4, which then gradually return to baseline, while cholesterol levels increased dose-dependently without affecting the HDL/LDL ratio⁷¹. Hemoglobin, neutrophil, and lymphocyte counts showed no significant changes.

4) Monitoring of JAK inhibitors

We recommend periodic monitoring and careful consideration of the benefit-risk ratio when using oral JAK inhibitors for maintenance therapy in patients with moderate to severe AD (Recommendation strength: A, Grade of evidence: 1b, % of respondents [agreement score ≥7]: 96%).

In clinical practice, baseline screening for JAK inhibitors should include complete blood count (CBC), renal and liver function tests, lipid profile, CPK levels, and screening for hepatitis and tuberculosis, including a chest radiograph.

For monitoring, CBC, liver function tests should be checked during routine patient care, with an additional CBC check at 4 weeks for those taking abrocitinib. Lipid profiles should be measured every 3 months, with an additional check at 4 weeks for those taking abrocitinib.

One European guideline practically recommends checking CBC, renal function, liver function, lipid profile, and CPK at 4 weeks after the initiation of therapy and then every 3 months for the duration of all JAK inhibitor treatments⁷².

5) Special consideration of comorbidities when using JAK inhibitors

Patients with AD who have coexisting inflammatory conditions such as rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis are more likely to benefit from baricitinib and upadacitinib. Abrocitinib, primarily approved for moderate to severe AD, has limited data for other inflammatory diseases.

6) Switching to biologics or another JAK inhibitor

We suggest considering switching to another biologic or oral JAK inhibitor in patients with moderate to severe AD if there is an insufficient response to an oral JAK inhibitor or an inability to use current oral JAK inhibitor due to side effects (Recommendation strength: B, Grade of evidence: 4, % of respondents [agreement score \geq 7]: 92%).

For moderate to severe AD, switching to biologics or alternative JAK inhibitors should be considered when oral JAK inhibitors are ineffective or cause side effects. Studies show improved outcomes after such switches: a multicenter cohort found baricitinib non-responders achieved effective responses with upadacitinib⁴², and another cohort reported significant disease severity reduction after switching to abrocitinib due to insufficient response or side effects from baricitinib, dupilumab, or tralokinumab⁷³.

Although some of these studies are cohort studies, and therefore provide a low level of evidence, these guidelines suggest

considering switching to another biologic or oral JAK inhibitor in patients with moderate to severe AD if there is an insufficient response to an oral JAK inhibitor or an inability to use current oral JAK inhibitor due to side effects, based on clinical needs and the aforementioned evidence.

7) Dose adjustment for JAK inhibitors

We suggest considering selective dose adjustments according to the patient's symptoms in patients with AD on oral JAK inhibitors (Recommendation strength: B, Grade of evidence: 5, % of respondents [agreement score ≥ 7]: 90%).

A few RCTs have investigated dose reductions of baricitinib (from 4 mg to 4 mg, 2 mg, or placebo) and abrocitinib (from 200 mg to 200 mg, 100 mg, or placebo), primarily noting efficacy recapture upon re-administration during flares^{68,74}. Regarding upadacitinib, the usual initial dose is 15 mg in adolescent patients over 40 kg, with 30 mg available for patients with a high disease burden⁶⁶. Further studies on maintenance, dose reduction, and discontinuation strategies for JAK inhibitors in moderate to severe AD are needed.

Requirements to meet when switching agents

Switching medications during advanced AD treatment may be necessary due to insufficient therapeutic benefit, safety concerns, or tolerability issues. There are no universally accepted guidelines, but several consensus recommendations provide guidance. The 2019 consensus Korean diagnostic guidelines define treatment refractory AD as an AD who failed to reach to EASI-50 or at least one of the following conditions after 3 months of appropriate treatment: a. daytime or nighttime itch with NRS score \geq 4; b. DLQI \geq 6¹. Further details on treatment goals and recommendations for considering a switch, as provided by other countries and organizations are discussed in the **Supplementary Data 1**.

Other therapies

Various therapies are commonly used in the treatment of AD, including phototherapy, systemic antihistamines, antimicrobial treatments, allergen-specific immunotherapy, and adjunctive therapies such as probiotics, essential fatty acids, and vitamin D. These therapies are discussed in detail in the **Supplementary Data 2** for further reference.

Special considerations for children, adolescents, elderly patients, and pregnant or breastfeeding women

Special considerations for children, adolescents, elderly patients, and pregnant or breastfeeding women in the treatment of AD require tailored approaches due to unique physiological and

clinical challenges. These topics are discussed in detail in the **Supplementary Data 3** for further reference.

DISCUSSION

The updated national consensus-based guidelines for the management of AD reflect a careful and comprehensive evaluation of the latest scientific literature, offering an evidence-based approach to optimize patient care. As illustrated in **Fig. 1**, the treatment algorithm is organized into 2 categories: mild AD and moderate to severe AD, with recommendations tailored to disease severity.

For mild AD, the emphasis is placed on basic therapies such as moisturizers, allergen avoidance, and structured educational programs. Topical therapies, including TCSs and TCIs (both reactive and proactive), as well as wet wrap therapy for acute cases, are recommended as primary interventions.

For moderate to severe AD, a broader range of treatments is highlighted to address the complexities of disease management. In addition to basic and topical therapies, systemic options include conventional immunosuppressive agents (e.g., cyclosporine and MTX) and short-term corticosteroids. The guidelines also feature advanced therapies such as biologics and JAK inhibitors, which represent significant advancements in personalized and targeted care for refractory or severe cases. Other therapies, such as phototherapy and allergen-specific immunotherapy, are also discussed as adjunctive options, particularly for certain patient populations. The guideline also provides treatment considerations for a variety of AD patients, including special populations such as children, adolescents, elderly patients and those who are pregnant or breastfeeding.

Treatment accessibility is influenced by reimbursement policies. In South Korea, biologics and JAK inhibitors are reimbursed under strict eligibility criteria, which differ by age group. For adolescents (≥12 years) and adults, eligibility requires severe AD persisting for ≥3 years, failure to respond to ≥4 weeks of moderate-to-high potency TCS or TCI, and inadequate response to ≥3 months of systemic immunosuppressants, with an EASI score ≥23. For children (6–11 years), eligibility applies to severe AD lasting ≥1 year, failure to respond to ≥4 weeks of TCS or TCI, and an EASI score ≥21. For infants and young children (6 months–5 years), the same criteria apply as for children aged 6-11 years, except that the 1-year disease duration requirement is waived. Patients meeting these criteria receive partial reimbursement with a 10% co-payment, while those who do not qualify must cover the full treatment cost. These restrictions significantly impact treatment accessibility, influencing treatment adherence and decision-making in clinical practice.

While these guidelines integrate both RCTs and real-world data, the latter is inherently subject to selection bias, confounding

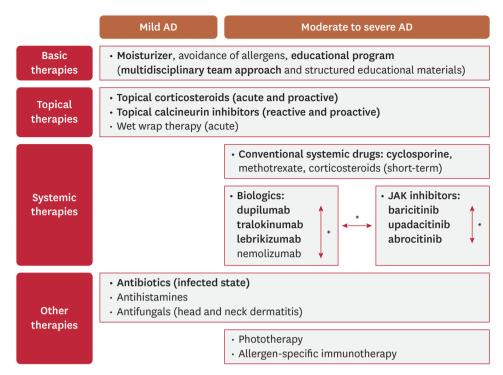


Fig. 1. Treatment algorithm for patients with atopic dermatitis in Korea. The text in bold indicates a treatment with recommendation A (strong recommendation for using an intervention).

AD: atopic dermatitis, JAK: Janus-kinase.

Joo Yeon Ko

Hye One Kim (D

variables, and heterogeneity in clinical practice. Consequently, recommendations based on real-world evidence or case series should be interpreted with caution, with explicit acknowledgment of their level of certainty. Further prospective studies and rigorously designed RCTs are required to validate these findings and strengthen evidence-based treatment strategies for moderate to severe AD. As new therapeutic modalities continue to emerge, these guidelines will undergo updates to incorporate the latest advancements in AD management.

In conclusion, KADA's updated guideline is the result of a thorough and careful assessment of the current state of the art in the treatment of AD, based on the latest scientific evidence and expert consensus. We believe that this guideline will serve as an important tool for clinicians, promoting optimized patient care and helping to manage the dynamic landscape of AD.

ORCID iDs

 https://orcid.org/0000-0001-5846-0008 Chan Ho Na https://orcid.org/0000-0001-5259-5382 Youin Bae 🗓 https://orcid.org/0000-0003-3184-7960 Young-Joon Seo (D) https://orcid.org/0000-0002-4955-590X Min Kyung Shin 📵 https://orcid.org/0000-0001-9834-7931 Jiyoung Ahn (D) https://orcid.org/0000-0002-6766-9978 Bark-Lynn Lew 📵 https://orcid.org/0000-0003-4443-4161 Dong Hun Lee https://orcid.org/0000-0002-2925-3074 Sang Eun Lee https://orcid.org/0000-0003-4720-9955 Sul Hee Lee 🗅 https://orcid.org/0000-0002-2990-9774 Yang Won Lee https://orcid.org/0000-0003-1268-1248 Ji Hyun Lee 🕩 https://orcid.org/0000-0002-3671-502X

https://orcid.org/0000-0003-4240-9675

^{*}Switchable in insufficient response† or intolerable due to adverse effects.

[†]Insufficient response is defined as an AD patient who fails to achieve Eczema Area and Severity Index 50, or meets one or more of the following criteria after 3 months of appropriate treatment: a daytime or nighttime itch numeric rating scale score ≥4, or a Dermatology Life Quality Index ≥6.

Yong Hyun Jang

https://orcid.org/0000-0003-1706-007X

Jiehyun Jeon 🔟

https://orcid.org/0000-0003-2456-7573

Sun Young Choi

https://orcid.org/0000-0003-0248-7708

Ju Hee Han 🗓

https://orcid.org/0000-0003-3194-5202

Tae Young Han

https://orcid.org/0000-0003-0317-9635

Sang Wook Son (D)

https://orcid.org/0000-0002-3332-7056

Sang Hyun Cho

https://orcid.org/0000-0001-8289-1190

FUNDING SOURCE

None.

CONFLICTS OF INTEREST

Hyun-Chang Ko received honoraria from Sanofi, Lilly, AbbVie, Leo Pharma, and Pfizer. Jiehyun Jeon received honoraria for lectures from AbbVie, Pfizer, and Sanofi. Dong Hun Lee received grants from Sanofi, Amgen, AbbVie, Leo Pharma, Incyte, Novartis, Lilly, Galderma, Kangstem Bio, and EHL Bio. He also received honoraria for lectures from Sanofi, AbbVie, Leo Pharma, Novartis, Lilly, and Pfizer, and participated on the advisory board for AbbVie. Yu Ri Woo, Joo Yeon Ko, Hye One Kim, Chan Ho Na, Youin Bae, Young-Joon Seo, Min Kyung Shin, Jiyoung Ahn, Bark-Lynn Lew, Sang Eun Lee, Sul Hee Lee, Yang Won Lee, Ji Hyun Lee, Yong Hyun Jang, Sun Young Choi, Ju Hee Han, Tae Young Han, Sang Wook Son, and Sang Hyun Cho have no conflicts of interests to declare.

DATA SHARING STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

SUPPLEMENTARY MATERIALS

Supplementary Table 1

Expert consensus recommendations for the treatment of AD

Supplementary Data 1

Requirements to meet when switching agents

Supplementary Data 2

Other therapies

Supplementary Data 3

Special considerations for children, adolescents, elderly patients, and pregnant or breastfeeding women

REFERENCES

 Kim JE, Shin MK, Park GH, Lee UH, Lee JH, Han TY, et al. 2019 Consensus Korean diagnostic guidelines to define severity

- classification and treatment refractoriness for atopic dermatitis: objective and subjective assessment of severity. Ann Dermatol 2019;31:654-661. PUBMED | CROSSREF
- Lee JH, Kim JE, Park GH, Bae JM, Byun JY, Shin MK, et al. Consensus update for systemic treatment of atopic dermatitis. Ann Dermatol 2021;33:497-514. PUBMED | CROSSREF
- 3. Ahn J, Choi Y, Simpson EL. Therapeutic new era for atopic dermatitis: part 1. biologics. Ann Dermatol 2021;33:1-10. PUBMED | CROSSREF
- Lee SJ, Kim SE, Shin KO, Park K, Lee SE. Dupilumab therapy improves stratum corneum hydration and skin dysbiosis in patients with atopic dermatitis. Allergy Asthma Immunol Res 2021;13:762-775. PUBMED | CROSSREE
- de Bruin-Weller M, Thaçi D, Smith CH, Reich K, Cork MJ, Radin A, et al. Dupilumab with concomitant topical corticosteroid treatment in adults with atopic dermatitis with an inadequate response or intolerance to ciclosporin A or when this treatment is medically inadvisable: a placebocontrolled, randomized phase III clinical trial (LIBERTY AD CAFÉ). Br J Dermatol 2018;178:1083-1101. PUBMED | CROSSREF
- Blauvelt A, de Bruin-Weller M, Gooderham M, Cather JC, Weisman J,
 Pariser D, et al. Long-term management of moderate-to-severe atopic
 dermatitis with dupilumab and concomitant topical corticosteroids
 (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebocontrolled, phase 3 trial. Lancet 2017;389:2287-2303. PUBMED | CROSSREF
- Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med 2016;375:2335-2348. PUBMED | CROSSREF
- 8. Beck LA, Deleuran M, Bissonnette R, de Bruin-Weller M, Galus R, Nakahara T, et al. Dupilumab provides acceptable safety and sustained efficacy for up to 4 years in an open-label study of adults with moderate-to-severe atopic dermatitis. Am J Clin Dermatol 2022;23:393-408. PUBMED | CROSSREF
- Halling AS, Loft N, Silverberg JI, Guttman-Yassky E, Thyssen JP. Real-world evidence of dupilumab efficacy and risk of adverse events: a systematic review and meta-analysis. J Am Acad Dermatol 2021;84:139-147. PUBMED | CROSSEE
- Lee DH, Ko HC, Na CH, Roh JY, Park KY, Park YL, et al. Real-world experience of long-term dupilumab treatment for atopic dermatitis in Korea. Ann Dermatol 2022;34:157-160. PUBMED | CROSSREF
- Kamata M, Tada Y. A literature review of real-world effectiveness and safety of dupilumab for atopic dermatitis. JID Innov 2021;1:100042.
 PUBMED | CROSSREF
- Jang DH, Heo SJ, Kook HD, Lee DH, Jung HJ, Park MY, et al. A 52 weeks dupilumab treatment for moderate to severe atopic dermatitis in Korea: long-term efficacy and safety in real world. Sci Rep 2021;11:23539. PUBMED | CROSSREF
- 13. Jang DH, Heo SJ, Jung HJ, Park MY, Seo SJ, Ahn J. Retrospective study of dupilumab treatment for moderate to severe atopic dermatitis in Korea: efficacy and safety of dupilumab in real-world practice. J Clin Med 2020;9:1982. PUBMED | CROSSREF
- 14. Narla S, Silverberg JI, Simpson EL. Management of inadequate response and adverse effects to dupilumab in atopic dermatitis. J Am Acad Dermatol 2022;86:628-636. PUBMED | CROSSREF
- 15. Yang N, Chen L, Shao J, Jiang F, Liu J, Li Z. Dupilumab with concomitant Janus kinase inhibitor: a novel treatment strategy for atopic dermatitis with poor response to dupilumab. Br J Dermatol 2022;187:828-830. PUBMED | CROSSREF
- Kook HD, Hong N, Lee DH, Jung HJ, Park MY, Ahn J. The effect of baricitinib add-on therapy in atopic dermatitis patients treated with dupilumab. Dermatol Ther 2022;35:e15525. PUBMED | CROSSREF

- 17. Neagu N, Dianzani C, Avallone G, Dell'Aquila C, Morariu SH, Zalaudek I, et al. Dupilumab ocular side effects in patients with atopic dermatitis: a systematic review. J Eur Acad Dermatol Venereol 2022;36:820-835. PUBMED | CROSSREF
- Ahn J, Lee DH, Na CH, Shim DH, Choi YS, Jung HJ, et al. Facial erythema in patients with atopic dermatitis treated with Dupilumab - a descriptive study of morphology and aetiology. J Eur Acad Dermatol Venereol 2022;36:2140-2152. PUBMED | CROSSREF
- Jo CE, Finstad A, Georgakopoulos JR, Piguet V, Yeung J, Drucker AM. Facial and neck erythema associated with dupilumab treatment: a systematic review. J Am Acad Dermatol 2021;84:1339-1347. PUBMED | CROSSREF
- Seok SH, An JH, Shin JU, Lee HJ, Kim DH, Yoon MS, et al. Facial redness in atopic dermatitis patients treated with dupilumab: a case series. Allergy Asthma Immunol Res 2020;12:1063-1065. PUBMED | CROSSREF
- 21. Simpson EL, Guttman-Yassky E, Eichenfield LF, Boguniewicz M, Bieber T, Schneider S, et al. Tralokinumab therapy for moderate-to-severe atopic dermatitis: Clinical outcomes with targeted IL-13 inhibition.

 Allergy 2023;78:2875-2891. PUBMED | CROSSREF
- 22. Wollenberg A, Blauvelt A, Guttman-Yassky E, Worm M, Lynde C, Lacour JP, et al. Tralokinumab for moderate-to-severe atopic dermatitis: results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2). Br J Dermatol 2021;184:437-449. PUBMED | CROSSREF
- 23. Silverberg JI, Toth D, Bieber T, Alexis AF, Elewski BE, Pink AE, et al. Tralokinumab plus topical corticosteroids for the treatment of moderate-to-severe atopic dermatitis: results from the double-blind, randomized, multicentre, placebo-controlled phase III ECZTRA 3 trial. Br J Dermatol 2021;184:450-463. PUBMED | CROSSREF
- 24. Blauvelt A, Langley RG, Lacour JP, Toth D, Laquer V, Beissert S, et al. Long-term 2-year safety and efficacy of tralokinumab in adults with moderate-to-severe atopic dermatitis: interim analysis of the ECZTEND open-label extension trial. J Am Acad Dermatol 2022;87:815-824. PUBMED | CROSSREF
- 25. Schlösser AR, Shareef M, Olydam J, Nijsten TEC, Hijnen DJ.
 Tralokinumab treatment for patients with moderate-to-severe atopic dermatitis in daily practice. Clin Exp Dermatol 2023;48:510-517.
 PUBMED | CROSSREF
- 26. Simpson EL, Merola JF, Silverberg JI, Reich K, Warren RB, Staumont-Sallé D, et al. Safety of tralokinumab in adult patients with moderate-to-severe atopic dermatitis: pooled analysis of five randomized, double-blind, placebo-controlled phase II and phase III trials. Br J Dermatol 2022;187:888-899. PUBMED | CROSSREF
- 27. Silverberg JI, Guttman-Yassky E, Thaçi D, Irvine AD, Stein Gold L, Blauvelt A, et al. Two phase 3 trials of lebrikizumab for moderate-to-severe atopic dermatitis. N Engl J Med 2023;388:1080-1091. PUBMED | CROSSREF
- 28. Simpson EL, Gooderham M, Wollenberg A, Weidinger S, Armstrong A, Soung J, et al. Efficacy and safety of lebrikizumab in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis: a randomized clinical trial (ADhere). JAMA Dermatol 2023;159:182-191. PUBMED | CROSSREF
- 29. Stein Gold L, Thaçi D, Thyssen JP, Gooderham M, Laquer V, Moore A, et al. Safety of lebrikizumab in adults and adolescents with moderate-to-severe atopic dermatitis: an integrated analysis of eight clinical trials. Am J Clin Dermatol 2023;24:595-607. PUBMED | CROSSREF
- 30. Saeki H, Akiyama M, Abe M, Igarashi A, Imafuku S, Ohya Y, et al. English version of Japanese guidance for biologics in treating atopic dermatitis. J Dermatol 2023;50:e311-e322. PUBMED | CROSSREF

- 31. Kabashima K, Matsumura T, Komazaki H, Kawashima M; Nemolizumab-JP01 Study Group. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus. N Engl J Med 2020;383:141-150.
- 32. Kabashima K, Matsumura T, Komazaki H, Kawashima M; Nemolizumab JP01 and JP02 Study Group. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: results from two phase III, long-term studies. Br J Dermatol 2022;186:642-651. PUBMED | CROSSREF
- Wollenberg A, Thomsen SF, Lacour JP, Jaumont X, Lazarewicz S.
 Targeting immunoglobulin E in atopic dermatitis: a review of the existing evidence. World Allergy Organ J 2021;14:100519. PUBMED |
- 34. Wang HH, Li YC, Huang YC. Efficacy of omalizumab in patients with atopic dermatitis: a systematic review and meta-analysis. J Allergy Clin Immunol 2016;138:1719-1722.e1. PUBMED | CROSSREF
- Holm JG, Agner T, Sand C, Thomsen SF. Omalizumab for atopic dermatitis: case series and a systematic review of the literature. Int J Dermatol 2017;56:18-26. PUBMED | CROSSREF
- 36. Chan S, Cornelius V, Cro S, Harper JI, Lack G. Treatment effect of omalizumab on severe pediatric atopic dermatitis: the ADAPT randomized clinical trial. JAMA Pediatr 2020;174:29-37. PUBMED | CROSSREF
- 37. Gori N, Chiricozzi A, Malvaso D, D'Urso DF, Caldarola G, De Simone C, et al. Successful combination of systemic agents for the treatment of atopic dermatitis resistant to dupilumab therapy. Dermatology 2021;237:535-541. PUBMED | CROSSREF
- Blauvelt A, Ladizinski B, Prajapati VH, Laquer V, Fischer A, Eisman S, et al. Efficacy and safety of switching from dupilumab to upadacitinib versus continuous upadacitinib in moderate-to-severe atopic dermatitis: results from an open-label extension of the phase 3, randomized, controlled trial (Heads Up). J Am Acad Dermatol 2023;89:478-485. PUBMED | CROSSREF
- Shi VY, Bhutani T, Fonacier L, Deleuran M, Shumack S, Valdez H, et al. Phase 3 efficacy and safety of abrocitinib in adults with moderateto-severe atopic dermatitis after switching from dupilumab (JADE EXTEND). J Am Acad Dermatol 2022;87:351-358. PUBMED | CROSSREF
- 40. Lee DH, Park SY, Hong N, Kook HD, Jung HJ, Park MY, et al. Successful treatment of atopic dermatitis refractory to dupilumab with baricitinib. Dermatol Ther 2022;35:e15802. PUBMED | CROSSREF
- 41. Honda R, Suenaga A, Nakahara T, Shibata-Kikuchi S. Atopic dermatitis refractory to dupilumab but markedly responsive to baricitinib. Eur J Dermatol 2022;32:649-650. PUBMED | CROSSREF
- 42. Boesjes CM, Van der Gang LF, Zuithoff NPA, Bakker DS, Spekhorst LS, Haeck I, et al. Effectiveness of upadacitinib in patients with atopic dermatitis including those with inadequate response to dupilumab and/or baricitinib: results from the BioDay registry. Acta Derm Venereol 2023;103:adv00872. PUBMED | CROSSREF
- 43. Patruno C, Fabbrocini G, De Lucia M, Picone V, Genco L, Napolitano M. Psoriasiform dermatitis induced by dupilumab successfully treated with upadacitinib. Dermatol Ther 2022;35:e15788. PUBMED | CROSSREF
- 44. Licata G, Gambardella A, Tancredi V, Calabrese G, De Rosa A, Alfano R, et al. Face atopic dermatitis resistant to dupilumab: a case series of three patients successfully treated with upadacitinib. J Eur Acad Dermatol Venereol 2022;36:e150-e152. PUBMED | CROSSREF
- 45. Gori N, Ippoliti E, Antonelli F, Peris K, Chiricozzi A. Successful response to upadacitinib in the treatment of atopic dermatitis lesions involving sensitive and visible areas resistant to dupilumab treatment. Clin Exp Dermatol 2023;48:558-559. PUBMED | CROSSREF

- 46. De Stefano L, Bobbio-Pallavicini F, Montecucco C, Bugatti S. Dupilumab-induced enthesoarthritis and refractory atopic dermatitis successfully treated with baricitinib. Rheumatology (Oxford) 2022;61:e64-e66. PUBMED | CROSSREF
- 47. Kiely L, O'Connor C, Murphy M. Dupilumab therapy following JAK inhibitor withdrawal in moderate-severe atopic dermatitis. Dermatol Ther 2022;35:e15750. PUBMED | CROSSREF
- 48. Hayama K, Fujita H. Improvement of dupilumab-associated conjunctivitis after switching to upadacitinib in a patient with atopic dermatitis. Dermatol Ther 2022;35:e15575. PUBMED | CROSSREF
- 49. Kozera E, Flora A, Stewart T, Gill K, Xu J, De La Vega MA, et al. Dupilumab-associated head and neck dermatitis resolves temporarily with itraconazole therapy and rapidly with transition to upadacitinib, with *Malassezia*-specific immunoglobulin E levels mirroring clinical response. J Am Acad Dermatol 2023;88:255-257. PUBMED | CROSSREF
- 50. Uchida H, Kamata M, Egawa S, Nagata M, Fukaya S, Hayashi K, et al. Newly developed erythema and red papules in the face and neck with detection of demodex during dupilumab treatment for atopic dermatitis improved by discontinuation of dupilumab, switching to upadacitinib or treatment with oral ivermectin: a report of two cases. J Eur Acad Dermatol Venereol 2023;37:e300-e302. PUBMED | CROSSREF
- 51. Achten R, Dekkers C, Bakker D, van Luijk C, de Graaf M, van Wijk F, et al. Switching from dupilumab to tralokinumab in atopic dermatitis patients with ocular surface disease: preliminary case series. Clin Exp Allergy 2023;53:586-589. PUBMED | CROSSREF
- 52. De Greef A, Ghislain PD, Bulinckx A, Coster A, de Halleux C, Damsin T, et al. Real-life experience of tralokinumab for the treatment of adult patients with severe atopic dermatitis: a multicentric prospective study. Clin Drug Investig 2023;43:299-306. PUBMED | CROSSREF
- 53. Abędź N, Pawliczak R. Efficacy and safety of topical calcineurin inhibitors for the treatment of atopic dermatitis: meta-analysis of randomized clinical trials. Postepy Dermatol Alergol 2019;36:752-759.

 PUBMED | CROSSREF
- 54. Quattrini L, Caldarola G, Falco GM, Pinto LM, Peris K. Successful treatment with tralokinumab in patients with atopic dermatitis and dupilumab-induced psoriasis. J Eur Acad Dermatol Venereol 2023;37:e1432-e1434. PUBMED | CROSSREF
- Blauvelt A, Thyssen JP, Guttman-Yassky E, Bieber T, Serra-Baldrich E, Simpson E, et al. Efficacy and safety of lebrikizumab in moderateto-severe atopic dermatitis: 52-week results of two randomized double-blinded placebo-controlled phase III trials. Br J Dermatol 2023;188:740-748. PUBMED | CROSSREF
- Lee Y, Kim ME, Nahm DH. Real clinical practice data of monthly dupilumab therapy in adult patients with moderate-to-severe atopic dermatitis: clinical efficacy and predictive markers for a favorable clinical response. Allergy Asthma Immunol Res 2021;13:733-745.
 PUBMED | CROSSREF
- 57. Silverberg JI, Simpson EL, Wollenberg A, Bissonnette R, Kabashima K, DeLozier AM, et al. Long-term efficacy of baricitinib in adults with moderate to severe atopic dermatitis who were treatment responders or partial responders: an extension study of 2 randomized clinical trials. JAMA Dermatol 2021;157:691-699. PUBMED | CROSSREF
- 58. Drucker AM, Morra DE, Prieto-Merino D, Ellis AG, Yiu ZZN, Rochwerg B, et al. Systemic immunomodulatory treatments for atopic dermatitis: update of a living systematic review and network meta-analysis. JAMA Dermatol 2022;158:523-532. PUBMED | CROSSREF
- 59. de Bruin-Weller MS, Serra-Baldrich E, Barbarot S, Grond S, Schuster C, Petto H, et al. Indirect treatment comparison of baricitinib versus dupilumab in adults with moderate-to-severe atopic dermatitis.

 Dermatol Ther (Heidelb) 2022;12:1481-1491. PUBMED | CROSSREF

- 60. Wan H, Jia H, Xia T, Zhang D. Comparative efficacy and safety of abrocitinib, baricitinib, and upadacitinib for moderate-to-severe atopic dermatitis: a network meta-analysis. Dermatol Ther 2022;35:e15636.

 PUBMED | CROSSREF
- 61. Bieber T, Thyssen JP, Reich K, Simpson EL, Katoh N, Torrelo A, et al. Pooled safety analysis of baricitinib in adult patients with atopic dermatitis from 8 randomized clinical trials. J Eur Acad Dermatol Venereol 2021;35:476-485. PUBMED | CROSSREF
- 62. Bieber T, Katoh N, Simpson EL, de Bruin-Weller M, Thaçi D, Torrelo A, et al. Safety of baricitinib for the treatment of atopic dermatitis over a median of 1.6 years and up to 3.9 years of treatment: an updated integrated analysis of eight clinical trials. J Dermatolog Treat 2023;34:2161812. PUBMED | CROSSREF
- 63. Silverberg JI, Hong HC, Thyssen JP, Calimlim BM, Joshi A, Teixeira HD, et al. Comparative efficacy of targeted systemic therapies for moderate to severe atopic dermatitis without topical corticosteroids: systematic review and network meta-analysis. Dermatol Ther (Heidelb) 2022;12:1181-1196. PUBMED | CROSSREF
- 64. Katoh N, Ohya Y, Murota H, Ikeda M, Hu X, Ikeda K, et al. Safety and efficacy of upadacitinib for atopic dermatitis in Japan: 2-year interim results from the phase 3 rising up study. Dermatol Ther (Heidelb) 2023;13:221-234. PUBMED | CROSSREF
- 65. Blauvelt A, Teixeira HD, Simpson EL, Costanzo A, De Bruin-Weller M, Barbarot S, et al. Efficacy and safety of upadacitinib vs dupilumab in adults with moderate-to-severe atopic dermatitis: a randomized clinical trial. JAMA Dermatol 2021;157:1047-1055. PUBMED | CROSSREF
- 66. Simpson EL, Papp KA, Blauvelt A, Chu CY, Hong HC, Katoh N, et al. Efficacy and safety of upadacitinib in patients with moderate to severe atopic dermatitis: analysis of follow-up data from the measure up 1 and measure up 2 randomized clinical trials. JAMA Dermatol 2022;158:404-413. PUBMED | CROSSREF
- 67. Paller AS, Ladizinski B, Mendes-Bastos P, Siegfried E, Soong W, Prajapati VH, et al. Efficacy and safety of upadacitinib treatment in adolescents with moderate-to-severe atopic dermatitis: analysis of the measure up 1, measure up 2, and ad up randomized clinical trials. JAMA Dermatol 2023;159:526-535. PUBMED | CROSSREF
- 68. Blauvelt A, Silverberg JI, Lynde CW, Bieber T, Eisman S, Zdybski J, et al. Abrocitinib induction, randomized withdrawal, and retreatment in patients with moderate-to-severe atopic dermatitis: results from the JAK1 Atopic Dermatitis Efficacy and Safety (JADE) REGIMEN phase 3 trial. J Am Acad Dermatol 2022;86:104-112. PUBMED | CROSSREF
- 69. Pereyra-Rodriguez JJ, Alcantara-Luna S, Domínguez-Cruz J, Galán-Gutiérrez M, Ruiz-Villaverde R, Vilar-Palomo S, et al. Short-term effectiveness and safety of biologics and small molecule drugs for moderate to severe atopic dermatitis: a systematic review and network meta-analysis. Life (Basel) 2021;11:927. PUBMED | CROSSREF
- 70. Reich K, Thyssen JP, Blauvelt A, Eyerich K, Soong W, Rice ZP, et al. Efficacy and safety of abrocitinib versus dupilumab in adults with moderate-to-severe atopic dermatitis: a randomised, double-blind, multicentre phase 3 trial. Lancet 2022;400:273-282. PUBMED | CROSSREF
- Simpson EL, Silverberg JI, Nosbaum A, Winthrop KL, Guttman-Yassky
 E, Hoffmeister KM, et al. Integrated safety analysis of abrocitinib for the
 treatment of moderate-to-severe atopic dermatitis from the phase II and
 phase III clinical trial program. Am J Clin Dermatol 2021;22:693-707.
 PUBMED | CROSSREF
- 72. Wollenberg A, Kinberger M, Arents B, Aszodi N, Avila Valle G, Barbarot S, et al. European guideline (EuroGuiDerm) on atopic eczema: part I systemic therapy. J Eur Acad Dermatol Venereol 2022;36:1409-1431.

 PUBMED | CROSSREF

- 73. Olydam JI, Schlösser AR, Custurone P, Nijsten TEC, Hijnen D. Realworld effectiveness of abrocitinib treatment in patients with difficult-to-treat atopic dermatitis. J Eur Acad Dermatol Venereol 2023;37:2537-2542.
- 74. Reich K, Simpson E, Wollenberg A, Bissonnette R, Abe M, Cardillo T, et al. Efficacy of downtitration or treatment withdrawal compared

with continuous dosing after successful treatment with baricitinib in patients with moderate-to-severe atopic dermatitis in a randomized substudy from the long-term extension study BREEZE-AD3. Br J Dermatol 2023;188:208-217. PUBMED | CROSSREF