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Abstract
Background  Coughing sounds contain various bio-metric information with regards to respiratory diseases that 
can help in the assessment of respiratory diseases. While clinicians find coughs insightful, non-experts struggle to 
identify abnormalities in cough sounds. Furthermore, respiratory diseases has characterized by widespread health 
complications and elevated mortality rates, the development of early diagnostic systems is imperative for ensuring 
timely intervention and improving outcomes for both clinicians and patients. Accordingly, we propose a deep 
learning–based model for early diagnosis. To enhance the reliability of the training data, we utilized annotations 
provided by multiple medical specialists. Additionally, we examined how clinical expertise and diagnostic input 
influence the model’s generalization performance.

Methods  This study introduces a deep learning framework utilizing VGGish as a transfer learning model, enhanced 
with additional detection and classification networks. The detection model identifies cough events within recorded 
audio, and then the classification model determines whether a detected cough is normal or abnormal. Both models 
were trained on raw cough sound data collected via smartphones and labeled by medical experts through a rigorous 
inspection process.

Results  Experimental evaluations demonstrated that the cough detection model achieved an average accuracy of 
0.9883, while the cough classification model attained accuracies of 0.8417, 0.8629, and 0.8662 among dataset1, 2, and 
3. To enhance interpretability, we applied Grad-CAM to visualize the features that influenced the model’s decision-
making. Model performance was further evaluated using the area under the receiver operating characteristic curve 
(AUROC) and the area under the precision-recall curve (AUPRC).

Conclusions  Our proposed cough classification model has the potential to assist individuals with limited access 
to healthcare as well as medical professionals with limited experience in diagnosing cough-related conditions. By 
leveraging deep learning and smartphone-recorded cough sounds, this approach aims to enhance early detection 
and management of respiratory diseases.
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Background
Over the past decade, artificial intelligence (AI) has 
attracted remarkable interest across various industries, 
including smart healthcare, driven by advancements in 
computing power and storage capacity [1–6]. Addition-
ally, several machine learning (ML)-based frameworks 
are being used for the general diagnosis of severe diseases 
affecting various systems, including the nervous, cardio-
vascular, digestive, and pulmonary systems [7–10].

In case of respiratory diseases, they represent a signifi-
cant global health burden, characterized by widespread 
health complications and elevated mortality rates. As 
these conditions increasingly affect global health, the 
importance of early diagnosis and effective monitoring 
strategies has become increasingly critical for improving 
patient outcomes and reducing healthcare costs. Owing 
to the significance of early diagnosis and effective moni-
toring, voice-based diagnosis has emerged as a promis-
ing area of interest. Although AI algorithms have already 
shown commendable performance in image-based diag-
nosis [11, 12], sounds can carry the signature of many 
diseases [13–15]. In particular, AI speech analysis cre-
ates new opportunities in healthcare, such as the remote 
monitoring of various clinical outcomes and symptoms 
using vocal biomarkers for diagnosis, risk prediction, 
and overall health assessment [16]. Various studies use 
deep learning to detect and diagnose respiratory abnor-
malities. In the case of cough diagnosis, research has 
been conducted to develop models for classifying cough 
sounds by collecting data on asthma and normal coughs 
from children under the age of 16 [17], research has stud-
ied a classification framework based on cough sounds for 
identifying bronchitis and pneumonia in children [18], 
research used Audio Spectrogram Transformer model 
to classify cough status [19], research used a Bi-LSTM 
model to learn coughs of diseased patients and coughs of 
normal people [20], and researches [21, 22] used Recur-
sive Feature Elimination with Cross-Validation (RFECV) 
for feature selection and compared the performance of 
Deep Neural Decision Tree (DNDT), Deep Neural Deci-
sion Forest (DNDF), and various other machine learn-
ing models. Other case of cough detection, studies have 
explored cough detection methods as efficient alter-
natives for monitoring patients with wearable devices 
[23] and developing algorithms to assess recovery from 
pulmonary tuberculosis in areas with limited facilities 
around the world [24]. A study on classifying of lung 
sound using the VGGish model [25] employs a learn-
ing model for symptom classification. Additionally, this 
research explores the application of several convolutional 

neural network (CNN) models—AlexNet [26], VGG [27], 
Inception [28], and ResNet [29]—hich are highly effec-
tive in the image domain, to the audio domain as part 
of an experimental approach [30]. In contrast to previ-
ous studies [21, 22] that developed Decision Tree, Ran-
dom Forest, and various machine learning models from 
scratch, we have applied transfer learning method to our 
experiment, because transfer learning is particularly use-
ful when dealing with limited data and when the model’s 
performance needs to be enhanced. Some systems use 
customized learning models [31–33], while others are 
built using pretrained models with transfer learning [34, 
35]. We trained a learning model to identify valid cough 
samples from recordings labeled by professional medical 
staff and classify these cough sounds to diagnose abnor-
malities. Our model is designed to assist individuals with 
limited access to hospitals as well as assist doctors with 
limited medical resources, as it relies on cough sounds 
collected without any medical devices. Whereas stud-
ies [21, 22] depended on public COVID-19 datasets, we 
gathered and employed a dataset tailored for cough dis-
ease classification. To develop the learning model, we col-
lected cough sounds from patients with asthma, COPD, 
and pneumonia at the hospital and studied the correla-
tion between lung health and cough sounds.

Our cough data reflect the medical opinions of several 
healthcare professionals, making it a valuable resource 
for investigating how the inclusion of medical expertise 
affects model performance. In this study, we categorized 
the datasets based on the number of medical experts 
involved, trained models on each dataset, and compared 
their performance. Unlike previous studies, our research 
enhances the reliability of the data by incorporating the 
medical opinions of multiple healthcare professionals.

We utilized transfer learning with the pretrained 
VGGish model [25] and incorporated additional learning 
network blocks. We fine-tuned our learning model using 
labeled data from medical experts and through data 
inspection. After fine-tuning, we extracted Grad- CAM 
[36] from the model to analyze the features of true posi-
tive (TP) and true negative (TN) cough sounds. We then 
used the area under the receiver operating characteris-
tic curve (AUROC) and area under the precision-recall 
curve (AUPRC) metrics to compare the model’s perfor-
mance across different datasets.

Methods
Ethics approval and consent to participate
This study was conducted in accordance with the Decla-
ration of Helsinki and approved by the Ethics Committee 
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at Gangneung Asan Hospital (approval number: GNAH 
2021-08-002-001). Informed consent was obtained from 
all participants, who signed a form authorizing the anon-
ymous use of their clinical data for research, as approved 
by the Ethics Committee.

We collected cough sounds from the patients, and the 
process of collecting these sounds did not affect their 
treatment. The cough sounds were gathered as unique 
patient information in accordance with IRB approval. 
Furthermore, individual patients cannot be identified 
solely based on the cough sounds.

Data Availability
The cough audio dataset analyzed in this study was ethi-
cally collected with approval from the Ethics Committee 
at Gangneung Asan Hospital (approval number: GNAH 
2021-08-002-001). Given that individual cough record-
ings could potentially identify participants, full public 
dissemination of the dataset and original source code 
is restricted by ethical and privacy considerations man-
dated by the IRB. However, de-identified subsets of the 
data and the custom-developed code utilized for model 
training, validation, and evaluation can be made avail-
able upon reasonable request from qualified researchers. 
Access requests should be directed to the corresponding 
author and are subjected to review and approval by the 
relevant institutional ethics committees.

Data collection
As shown in Figs. 1 and 2, medical staff directly collected 
patients’ cough sounds using an app. The cough label 
data provided by the medical staff includes information 
on cough abnormality and the duration of cough. The 
cough data, collected in a tertiary care hospital over six 
months, involved a diverse cohort of patients. Our data 
are labelled two subject groups; one is healthy group, 
and the other is respiratory disease group. The respira-
tory diseased group includes conditions associated with 
coughing, such as asthma, pneumonia, and chronic 
obstructive pulmonary disease (COPD). As illustrated in 
Fig.  1, we collect patients’ cough sounds using a smart-
phone app or a web page. With user consent, these plat-
forms facilitate easy collection of cough sounds. Figure 2 
displays a web page where specialists review and examine 
the cough recordings. The lower section of Fig.  2 is the 
medical examination data section, and the upper part is 
related to the cough signal. In the top section of Fig.  2, 
the x-axis represents time, while the y-axis represents the 
cough waveform. This interface allows medical experts to 
listen to individual cough sounds and modify annotations 
related to abnormality and cough duration. The labeling 
of the data was based on the clinical judgment of medi-
cal professionals for disease diagnosis. To enhance objec-
tivity, the diagnoses from seven experts were aggregated 
and utilized.

This process enabled us to gather cough data from a 
total of 739 patients. Finally, we used data from a total of 

Fig. 1  App interface for collecting patient cough sounds
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476 patients after filtering out 33 patients whose lacked 
recording files, 63 patients whose data did not match 
their personal information and medical records, and 157 
patients whose data did not reach a consensus among 
inspectors (Supplementary Tables 1, and Fig. 3).

After data collection, seven medical specialists listen to 
each patient’s cough and assess its normality and dura-
tion in conjunction with clinical information. In this 
process, medical specialists assess the cough sounds, 
medical examination data, and apply their clinical exper-
tise, as shown in Fig. 2.

Coughs identified as abnormal were categorized to 
have been collected from patients suffering from chronic 
obstructive pulmonary disease (COPD), asthma, and 
pneumonia. In contrast, normal coughs were extracted 
from healthy individuals. When medical experts iden-
tify an abnormal cough, they use the definitions of 
respiratory conditions (COPD, asthma, and pneumo-
nia) described below to determine the cough’s normality 
across all datasets. COPD is a heterogeneous lung condi-
tion characterized by symptoms such as dyspnea, cough, 
sputum production, and exacerbations [37]. Asthma is a 
heterogeneous disease marked by chronic airway inflam-
mation and symptoms such as wheezing, shortness of 
breath, chest tightness, and cough [38]. Pneumonia is an 
acute infection of the lung parenchyma caused by various 
pathogens, distinct from bronchiolitis [39].

Data pre-processing
We pre-processed the cough sounds to extract 1-second 
samples for model training, each containing temporal 
information and disease labels. Diagnosing respiratory 
diseases generally requires the consideration of mul-
tiple symptoms and patient examination results, which 
makes it difficult to accurately diagnose cough abnor-
malities based solely on cough sounds. Nevertheless, 
previous studies [40–42] have shown that cough sounds 
can serve as valuable biomarkers for cough classification. 
Therefore, to improve the diagnostic value of our data for 
cough classification, we conducted multiple rounds of 
data review with medical experts.

Asthma is a respiratory disease characterized by symp-
toms such as shortness of breath and chest tightness. In 
adults, asthma can lead to a distinct cough, often accom-
panied by wheezing and a high-pitched whistling sound 
in the upper frequency spectrum (above 2  kHz) during 
exhalation due to constricted airways [43]. This wheez-
ing falls within a distinct high-frequency range. Asthma 
coughs are typically dry and have a sharp, abrupt qual-
ity, resulting in higher-frequency sound elements [44]. In 
contrast, COPD presents with a heterogeneous lung con-
dition and chronic respiratory symptoms. COPD coughs 
are characterized by coarse crackling sounds, a series of 
short, explosive noises, and extended, low-pitched (typi-
cally below 1 kHz) tones [43]. These sounds may indicate 
of the presence of fluid in the patient’s air sacs, a com-
mon symptom of COPD. Pneumonia, an acute respira-
tory infection commonly caused by viruses or bacteria, 

Fig. 2  Web interface for inspecting patient cough sounds

 



Page 5 of 16Han et al. BMC Medical Informatics and Decision Making          (2025) 25:228 

typically presents with a deeper or louder cough com-
pared to other coughs. A typical cough, which is com-
monly caused by a cold or a respiratory illness, affects 
the acoustic properties and may add lower-frequency 
components or a wide range of frequency characteristics. 

When labeling coughs, medical experts classified each 
one as normal or abnormal based on these symptom-
related criteria.

During the inspection, we gathered the assessments 
from all medical experts and decided on the label (normal 

Fig. 3  Flowchart of dataset division
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vs. abnormal) for each cough based on the majority 
opinion. Once all medical opinions were collected, the 
majority consensus was used to assign the final labels. 
Following this data inspection process, we created three 
versions of the dataset (Dataset 1, Dataset 2, and Dataset 
3) and augmented the cough sample based on the final 
labels.

As shown in Fig.  3, we divided the datasets based on 
the number of inspecting medical experts to evaluate 
model performance and suitability relative to the number 
of inspectors. We created three datasets by integrating 
the opinions of four, three, and seven reviewers, respec-
tively. Dataset 1 includes labels from four medical experts 
(K. Moon, J. Lee, Y. Park, and M. Kim). The cough sam-
ples in Dataset 1 were labeled by these experts. Dataset 2 
comprises the opinions of three medical experts (D. Kim, 
J. Jun, and U. Ahn) who independently labeled the cough 
samples, separate from Dataset 1. After labeling, we com-
bined the experts’ labels and removed samples where 
there was no majority consensus. Dataset 3 includes the 
combined opinions of all seven medical experts included 
in both Datasets 1 and 2, all with over a decade of clini-
cal experience (four pulmonologists: K. Moon, J. Lee, M. 
Kim, and U. Ahn; one cardiologist: D. Kim; one pediatri-
cian: Y. Park; one general practitioner: J. Jun). During the 
first inspection (Dataset 1), we filtered out patient data 
where there was no majority opinion, such as cases with 
an equal number of normal and abnormal classifications. 
As a result, we compiled a dataset set using data from 
476 patients. For the second data inspection (Dataset 2), 
we used the same patient data as in the first data inspec-
tion. In total 476 patients, the dataset consists of a total 
of 12,970 cough sound samples. As shown in Table  1, 
Dataset 1 consists of 4,390 normal and 8,580 abnormal 
samples; Dataset 2 consists of 6,905 normal and 6,065 
abnormal samples; and the final Dataset 3 consists of 
5,780 normal and 7,190 abnormal samples. The variation 
in the number of normal and abnormal samples across 
the datasets is attributed to the fact that each dataset was 
independently annotated by different medical experts 
based on their diagnostic assessments. When recruit-
ing medical experts to validate our data, we encountered 
challenges related to the workload of medical profession-
als and difficulties in finding suitable experts. As a result, 

we initially created Dataset 1 with four medical profes-
sionals, and later, we added three more professionals to 
form Dataset 2.

Training data
We labeled each 1-second sample of the recorded sound 
as either “cough” or “not cough”. As shown in Fig. 4a, we 
generated samples by sliding a window from 0 s to T (the 
end of the recording) in 0.2-second increments. The gray 
windows represent noise and silence, while the orange 
windows denote cough segments. This sampling method 
was used to create the dataset for the cough detection 
model. As shown in Fig. 4b, we extracted samples from 
each cough by sliding a window of 0.1  s around the 
median cough time, spanning from − 0.2 s to 0.2 s. Using 
sliding windows, we capture a range of cough variations 
from different individuals by generating samples with 
various time positions within each window. After apply-
ing the sliding window technique, we label each win-
dow sample based on its overlap with the labeled cough 
period. If the overlap with the cough period exceeds 
50% (0.5 s), the sample is labeled as abnormal if medical 
experts diagnose the cough as related to COPD, asthma, 
or pneumonia; otherwise, it is labeled as normal.

Model architecture
Recently, the use of AI models in the field of medical data 
research, particularly for analyzing and detecting cough 
sounds, has been growing rapidly. Deep learning net-
works, such as Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs), have proven 
effective in various domains and are increasingly being 
adapted for medical data analysis. However, these net-
works often suffer from overfitting when data are limited, 
leading to suboptimal performance. To address this issue, 
transfer learning can enhance the performance of deep 
learning models, especially in scenarios with insufficient 
data. Herein, we address the challenge of data scarcity by 
employing the VGGish model with transfer learning to 
improve performance.

Proposed model
We propose two models built upon the VGGish architec-
ture, augmented with two additional learning networks. 

Table 1  Training and testing data samples for each fold in classification
1-Fold 2-Fold 3-Fold 4-Fold 5-Fold
Normal Abnormal Normal Abnormal Normal Abnormal Abnormal Normal Normal Abnormal

Dataset 1 Train 3,510 6,860 3,510 6,865 3,510 6,865 3,515 6,865 3,515 6,865
Test 880 1,720 880 1,715 880 1,715 875 1,715 875 1,715

Dataset 2 Train 5,520 4,850 5,525 4,850 5,525 4,850 5,525 4,855 5,525 4,855
Test 1,385 1,215 1,380 1,215 1,380 1,215 1,380 1,210 1,380 1,210

Dataset 3 Train 4,620 5,750 4,625 5,750 4,625 5,750 4,625 5,755 4,625 5,755
Test 1,160 1,440 1,155 1,440 1,155 1,440 1,155 1,435 1,155 1,435
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As shown in Fig.  5, the VGGish model is composed of 
4 convolution blocks, max pooling layers, and 3 fully 
connected layers. To enhance the model’s capabilities, 
we integrate two additional networks at the end of the 
VGGish model: a cough detection network and a cough 
classification network that analyze the cough samples and 
determines whether they are normal or abnormal. Spe-
cifically, the cough detection network and the cough clas-
sification network each feature different configurations 
to address their respective tasks. The cough classification 

network includes 8 convolutional layers with channel 
sizes of [256, 128, 64, 32], while the cough detection net-
work comprises 4 convolutional layers with channel sizes 
of [256, 512, 1024, 512, 256, 128, 64, 32]. Both networks 
incorporate dropout layers to mitigate overfitting. Each 
convolution layer in the additional networks uses a kernel 
size of 2 and a stride of 1, with ReLU as the active func-
tion. We use the dropout layer because the transferred 
parameters of VGGish have already been sufficiently 
learned and reflect the characteristics of the sound signal, 

Fig. 5  Overall architecture of the model

 

Fig. 4  Visualized image of (a) event detection and (b) classification sampling. Event detection sampling (left) slides the window from the start to the end 
of the total cough sounds, while classification sampling (right) involves augmentation from a single cough sound
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since the general dataset of Google Audio Set includes a 
large number of samples and various categories.

Pretrained model
The VGGish model is a pre-trained model with Google 
Audio Set [45]. The Google Audio Set is a large labeling 
dataset in which people directly label about 10 s of audio 
extracted from YouTube videos. A total of 2,084,320 data 
consists of 632 classes, 527 classes of which are used for 
learning, whereas 105 classes are typically excluded due 
to ambiguity [45]. In the complete VGGish model, the 
transfer learning layer spans from the start of the VGGish 
architecture up to, but not including the final fully con-
nected layer. Both the pre-trained and VGGish models 
used for transfer learning share the same structure and 
parameters.

As depicted in Fig.  5, we extracted features for input 
into additional networks from the VGGish model using 
our collected data. For feature extraction, which pro-
duces a 128-dimensional vector, we utilized the param-
eters from the pretrained VGGish model.

Fine-tuning
We created two learning models: cough detection and 
cough classification models. We set the parameters of 
the VGGish model learned with Google Audio Set to the 
initial state of our model before fine-tuning. After setting 
the parameters, we fine-tuned each model to improve 
model performance using our collected data. As shown 
in Fig. 5, each additional network uses the input feature 
that was extracted from the VGGish model. While fine-
tuning, we updated all parameters of the VGGish model 
and the two additional networks (Cough Detection and 
Cough Classification) using our collected data. After this 
process, we obtained two fine-tuned models: one for 
cough detection and one for cough classification.

Analysis: AUROC, AUPRC graph
In this study, we investigated the AUROC and AUPRC 
to evaluate model performance. The AUROC is a valu-
able tool for assessing prediction accuracy and represents 
the model’s discriminatory performance. In the case of 
imbalanced data, AUPRC is often a more appropriate 
evaluation metric than AUROC [46]. For this reason, we 
used both AUROC and AUPRC to comprehensively com-
pare the performance of each dataset’s model.

AUROC is plotted with the true positive rate (recall) 
on the y-axis and the false positive rate on the x-axis. A 
higher AUROC value, approaching 1, indicates better 
model performance, with the curve skewed towards the 
top left corner of the plot.

AUPRC is plotted with precision on the y-axis and 
recall on the x-axis. A higher AUPRC value, approaching 

1, signifies better model performance, with the curve 
skewed towards the top right corner of the plot.

A detailed explanation of AUROC and AUPRC has 
been included in the supplementary material.

Analysis: Grad-Cam
We extracted the Grad-CAM from the cough classifica-
tion model to analyze the VGGish features. By examin-
ing the Grad-CAM, we can identify which frequency 
bands were most influential in the learning model, given 
that the input data are a spectrogram with both time 
and frequency axes. The Grad-CAM was obtained from 
the fourth convolution block of the VGGish model, 
which is part of the transfer learning component of our 
cough classification model. This fourth convolution 
block consists of two layers, and we focused on extract-
ing Grad-CAM from the second layer. In our analysis, 
we emphasized the magnitude of the Grad-CAM values 
rather than their sign [47].

Experiment
Experimental design
As shown in Fig.  5, we trained our two models using 
cough signal data extracted from the cough samples. We 
transformed our cough signal data (window samples) 
into a Log-Mel spectrogram using the Fourier transform 
and Mel-frequency spectrogram algorithm. The cough 
signal was converted to a Mel spectrum using the follow-
ing equation for the Mel frequency f:

	
f = 1172ln

(
1 + f

700

)

After data transformation, the signal data is converted 
from the time domain into a frequency band. We used 
this transformed signal as input for the VGGish model 
instead of the raw cough sound. The parameters for the 
Log-Mel spectrogram are as follows: a sample rate of 
16,000  Hz, 64 Mel bins, a minimum Mel frequency of 
125  Hz, a maximum Mel frequency of 7,500  Hz, and a 
short-term-Fourier transform window length of 0.025  s 
with a hop length of 0.01 s.

Data construction
As shown in Fig. 4, we sampled the cough window with 
a length of 1-second. Each sample was converted into a 
Log-Mel spectrogram (94 frames x 64 Mel bins) using 
the abovementioned data processing. The VGGish model 
then extracts a 128-dimensional feature vector from the 
Log-Mel spectrogram. We applied 5-fold cross-valida-
tion to Datasets 1, 2, and 3, and the number of samples 
in each dataset is shown in Tables  1 and 2. We applied 
the 5-fold cross-validation method, creating a training 
set and a test set for each fold. The data was divided into 
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training and test sets with an 8:2 ratio. We did not cre-
ate a separate validation set, as the 5-fold cross-validation 
process includes validation within each fold.

In the cough detection experiment, we applied a down-
sampling method to address data imbalance. In the cough 
classification experiment, we compared the performance 
of the classification models using Datasets 1, 2, and 3. We 
designated normal cough samples as negative and abnor-
mal cough samples as positive.

This paper investigates how variations in the number 
of data inspectors, who are medical experts, impact the 
classification model’s performance. All datasets consist of 
12,970 cough samples, and each is divided into approxi-
mately 10,370 samples for training and 2,600 samples 
for testing. Since each dataset has a different number of 
medical experts and combines the experts’ opinions, the 
number of normal and abnormal samples is different in 
dataset 1, 2 and 3.

Cough detection
In the cough detection part, the input data consists 
of both cough and other samples (Table  1). As shown 
in Fig.  4a, “other” samples include all sounds except 
cough samples (indicated in orange). These other sam-
ples encompass silence, patients’ speech, and back-
ground noise, while cough samples specifically represent 
patients’ coughs. The total sampling data spans from 0 to 
T seconds (end of the signal), and each window sample 
was labeled based on time label data. We trained our 
cough detection model, as shown in Fig. 5, using an opti-
mizer with a learning rate of 0.001 and a dropout rate of 
0.3 and applied a binary-cross entropy loss function.

Cough classification
In the cough classification part, the input data con-
sists of normal and abnormal cough samples. As shown 
in Fig.  4b, we sampled all patients’ coughs from Datas-
ets 1, 2, and 3. The number of medical experts inspect-
ing each dataset varies, resulting in different train data 
ratios. Dataset 1 was labeled based on the diagnoses of 
four medical experts, while Dataset 2 was labeled by 
three medical experts. Dataset 3 was constructed by inte-
grating the diagnostic results from both Datasets 1 and 2. 
The number of medical experts involved in the diagnos-
tic process varied for each dataset, resulting in different 
ratios of normal to abnormal samples across the datas-
ets. This deliberate variation allowed us to systematically 
investigate how the number of medical experts contrib-
uting to the labeling process affects the performance of 
cough classification models. We trained our cough clas-
sification model, as shown in Fig.  5, with an optimizer 
learning rate of 0.0003 and a dropout rate of 0.7 and 
applied a binary-cross entropy loss function. We set the 
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dropout rate to 0.7 to mitigate overfitting, given that the 
VGGish model was pretrained.

Results
We summarized the results of the detection and clas-
sification experiments in Table  3, presenting the per-
formance of each fold with mean values and standard 
deviations. The evaluation metrics used to compare the 
performance of each learning model included accuracy, 
precision, recall, specificity, and F1 score. We also calcu-
lated the AUROC and AUPRC to assess model perfor-
mance across different thresholds. As illustrated in Fig. 6, 
we have extracted the AUROC and AUPRC for each 
dataset to evaluate the performance comprehensively.

Detection model result
As shown in Table  3, the cough detection model 
achieved the following performance metrics: Accu-
racy: 0.9883 ± 0.0027, Precision: 0.9966 ± 0.0022, Recall: 
0.9816 ± 0.0033, Specificity: 0.9960 ± 0.0026, and F1 

Score: 0.9890 ± 0.0025. The model effectively differen-
tiates between coughs and other sounds, a distinction 
that is also clear to medical experts. Specifically, the 
model shows a marked difference in classifying silence 
samples versus cough samples, as well as distinguish-
ing between other samples and cough samples. Silence 
samples produce minimal signal in the Log-Mel spec-
trogram, while other sounds are more discernible to the 
human ear. These factors contribute to the model’s high 
performance.

Classification model result
For the classification models, the performance differ-
ences across the datasets are demonstrated. In Dataset 1, 
the classification model achieved the following metrics: 
Accuracy: 0.8417 ± 0.0181, Precision: 0.8845 ± 0.0269, 
Recall: 0.8771 ± 0.0365, Specificity: 0.7725 ± 0.0703, 
and F1 Score: 0.8798 ± 0.0143. For Dataset 2, the clas-
sification model yielded: Accuracy: 0.8629 ± 0.0085, 
Precision: 0.8658 ± 0.0262, Recall: 0.8384 ± 0.0300, 

Table 3  Performance scores for cough detection and classification models
AUROC Accuracy Precision Recall AUPRC Specificity F1 score

Detection NA 0.9883 ± 0.0027 0.9966 ± 0.0022 0.9816 ± 0.0033 NA 0.9960 ± 0.0026 0.9890 ± 0.0025
Classification Dset 

1
0.9345 ± 0.0075 0.8417 ± 0.0181 0.8845 ± 0.0269 0.8771 ± 0.0365 0.9298 ± 0.0099 0.7725 ± 0.0703 0.8798 ± 0.0143

Dset 
2

0.9028 ± 0.0094 0.8629 ± 0.0085 0.8658 ± 0.0262 0.8384 ± 0.0300 0.9415 ± 0.0071 0.8845 ± 0.0278 0.8511 ± 0.0098

Dset 
3

0.9348 ± 0.0046 0.8662 ± 0.0076 0.8818 ± 0.0126 0.8765 ± 0.0153 0.9443 ± 0.0032 0.8535 ± 0.0195 0.8790 ± 0.007

Dset, Dataset; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve

Fig. 6  AUPRC and AUROC for cough classification in Datasets 1, 2, and 3. AUPRC, area under the precision-recall curve; AUROC, area under the receiver 
operating characteristic curve
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Specificity: 0.8845 ± 0.0278, and F1: 0.8511 ± 0.0098. 
For Dataset 3, the classification model showed: Accu-
racy: 0.8662 ± 0.076, Precision: 0.8818 ± 0.0126, Recall: 
0.8765 ± 0.0153, Specificity: 0.8535 ± 0.0195, and F1: 
0.8790 ± 0.007.

Based on the results, the model trained on Data-
set 1 achieved the highest precision, recall, and F1 
score, but demonstrated lower performance in specific-
ity. The model trained on Dataset 2, on the other hand, 
achieved the highest specificity but underperformed 
in the other metrics. In contrast, the model trained on 
Dataset 3 showed the best overall performance in terms 
of AUROC, AUPRC, and accuracy, indicating a more 
balanced and consistently high performance across all 
evaluation metrics. We consider the model trained on 
Dataset 3 to be the most optimal for cough classification, 
as it demonstrates more balanced performance across all 
evaluation metrics compared to the models trained on 
the other datasets.

Additionally, we trained the comparative models using 
Dataset 3 and evaluated their performance alongside our 
proposed model. The results of this comparison, includ-
ing models such as VGG + LSTM, VGG + ConvLSTM, 
and ResNet50, are summarized in Table 4. As shown in 
Table  4, the models that extend VGG with additional 
modules exhibit overall improved performance com-
pared to the ResNet-based model. Among them, the 
proposed VGG + CNN model demonstrates superior per-
formance relative to the other comparative models in the 
experiment. Thus, we believe the Dataset 3 model is the 
most effective for our needs, particularly for use by indi-
viduals with limited access to medical services and doc-
tors with constrained resources.

We attribute the observed differences in performance 
to the varying number of medical experts involved in 
inspecting the cough samples. As shown in Table  2, 
there is a remarkable disparity in the ratio of normal-
to-abnormal samples. Specifically, Dataset 1 contains 
approximately 2,000 more abnormal samples than 
normal samples. This imbalance leads to the Data-
set 1 model being biased towards detecting abnormal 
samples, resulting in higher precision and recall scores 
but lower specificity compared to the Dataset 3 model. 
Conversely, Dataset 3 features a more balanced ratio of 
normal and abnormal samples, yielding a more balanced 

performance overall. This balance is reflected in Fig.  6, 
where the AUPRC for Dataset 3 (Fig.  6c, right) shows 
denser lines compared to that of Datasets 1 (Fig. 6a, right) 
and 2 (Fig. 6b, right). Additionally, the AUROC for Data-
set 3 (Fig. 6c, left) exhibits lines that are closer together 
than those in Datasets 1 (Fig. 6a, left) and 2 (Fig. 6b, left). 
Figures  7 showed the confusion matrixes of the model 
trained with Dataset 1 (a), Dataset 2 (b), and Dataset 3 
(c). As discussed, we believe that the ratio of normal-
to-abnormal samples is an important factor influencing 
model performance. Additionally, improving the quality 
of data labeling, which is enhanced by involving more 
medical experts, will extensively impact the effectiveness 
of model training.

Grad-CAM analysis result
In this paper, we compared Grad-CAM images for true 
positives (TPs) and true negatives (TNs). A true positive 
occurs when an abnormal cough is correctly identified 
as abnormal, and a true negative occurs when a normal 
cough is correctly identified as normal. As shown in 
Fig. 8, we generated the mean Grad-CAM for TN and TP 
to compare across each dataset and this figure visualizes 
which aspects the classify model focuses on when clas-
sifying data structured based on medical expertise. For 
TPs, the model is predominantly influenced by the mid-
frequency bands, whereas for TNs, the model is influ-
enced by more dispersed frequency bands.

Discussion
One limitation of our implementation is that it does not 
account for the characteristics of time series data. To 
address this, we propose using the entire cough record-
ing as input rather than a single sample. This approach 
allows for variable input lengths and enables the model to 
learn cough intervals more effectively. Additionally, it can 
improve efficiency by eliminating the need for a separate 
cough detection step.

Another limitation is that our data were exclusively col-
lected from Korean hospitals, which may present chal-
lenges when the model is used by individuals in other 
countries. To overcome this, we plan to expand our data 
collection to include cough sounds from hospitals in 
other countries.

Table 4  Performance scores for comparing cough classification models
AUROC Accuracy Precision Recall AUPRC Specificity F1 score

Clas-
sifica-
tion
(Dset 
3)

VGG + CNN 0.9348 ± 0.0046 0.8662 ± 0.0076 0.8818 ± 0.0126 0.8765 ± 0.0153 0.9443 ± 0.0032 0.8535 ± 0.0195 0.8790 ± 0.007
VGG + LSTM 0.9127 ± 0.0041 0.8312 ± 0.0142 0.8338 ± 0.0319 0.8725 ± 0.0366 0.9258 ± 0.0049 0.7799 ± 0.0628 0.8515 ± 0.0104
VGG+
CONVLSTM

0.9126 ± 0.0090 0.8331 ± 0.0056 0.8585 ± 0.0168 0.8381 ± 0.0315 0.9261 ± 0.0071 0.8268 ± 0.0314 0.8475 ± 0.0083

ResNet50 0.8780 ± 0.0193 0.7977 ± 0.0231 0.7946 ± 0.0394 0.8611 ± 0.0163 0.8945 ± 0.0149 0.7188 ± 0.0701 0.8256 ± 0.0146
Dset, Dataset; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve
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Finally, the cough sounds with background noise have 
a negative effect on the classification model. To solve this 
problem, we plan to study how to remove noise in cough-
ing sounds.

For future work, we plan to expand our research in sev-
eral directions to further improve model performance 
and explore additional clinical insights.

First, we aim to develop a symptom-specific classifica-
tion model by utilizing the available symptom annota-
tions and patient severity levels for each cough sample. 
This will allow us to train models to classify various 
symptoms and compare their performance across symp-
tom categories.

Second, we intend to investigate the effect of patient 
sex on model performance. To do this, we will divide the 
dataset by sex, train separate models for each group, and 
analyze differences in classification accuracy.

Third, we plan to examine how increasing the dataset 
size influences model performance. By collecting more 
diverse cough data, we aim to evaluate the scalability and 
robustness of the model.

Additionally, we will explore the impact of medical 
experts’ specialties on model accuracy. Specifically, we 
will compare models trained on labels provided by respi-
ratory specialists versus those provided by non-respi-
ratory clinicians. This comparison will help determine 
whether specialist knowledge contributes to more reli-
able model outputs.

To support this study, we intend to expand our dataset 
by incorporating diagnostic annotations from a greater 
number of medical experts.

Fig. 7  Confusion matrix of the model trained with (a) Dataset 1, (b) Dataset 2, and (c) Dataset 3
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Conclusions
In this study, we investigated the influence of the num-
ber of medical experts involved in data annotation on 
the performance of cough classification models. As 
highlighted in Sect. 4.2, both data acquisition and label-
ing quality are critical to achieving reliable and effective 
model performance.

Our experimental setup focused on classifying cough 
sounds collected via smartphones into either normal 
or abnormal categories, without relying on additional 
clinical equipment or metadata. Among the models 
evaluated, the one trained on Dataset 3, which included 
annotations from seven medical specialists, demon-
strated the most balanced and robust performance. This 
model not only outperformed others across key evalu-
ation metrics but also proved to be the most generaliz-
able, making it well-suited for real-world applications. 
Therefore, as our model is trained using diagnostic data 
annotated by medical professionals, it may be suitable for 
self-screening purposes and could offer advantages in the 
early detection and management of respiratory diseases. 
Nonetheless, further clinical validation is necessary to 
confirm its practical applicability.

As illustrated in Fig.  9, the proposed model holds 
strong potential for deployment as a practical healthcare 
support tool. It may assist individuals in remote or under-
served areas with limited access to medical resources 
and help alleviate the diagnostic burden on healthcare 
professionals, particularly in environments facing labor 
shortages.

Moving forward, we aim to further enhance the model 
by expanding the dataset, incorporating symptom-
specific and demographic information, and exploring 
specialist-driven annotation strategies. These efforts will 
contribute to the development of more accurate, scalable, 
and accessible AI-based diagnostic tools.

Fig. 8  Visualized mean Grad-CAM of Datasets 1, 2, and 3
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