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Abstract

Background Coughing sounds contain various bio-metric information with regards to respiratory diseases that
can help in the assessment of respiratory diseases. While clinicians find coughs insightful, non-experts struggle to
identify abnormalities in cough sounds. Furthermore, respiratory diseases has characterized by widespread health
complications and elevated mortality rates, the development of early diagnostic systems is imperative for ensuring
timely intervention and improving outcomes for both clinicians and patients. Accordingly, we propose a deep
learning—based model for early diagnosis. To enhance the reliability of the training data, we utilized annotations
provided by multiple medical specialists. Additionally, we examined how clinical expertise and diagnostic input
influence the model's generalization performance.

Methods This study introduces a deep learning framework utilizing VGGish as a transfer learning model, enhanced
with additional detection and classification networks. The detection model identifies cough events within recorded
audio, and then the classification model determines whether a detected cough is normal or abnormal. Both models
were trained on raw cough sound data collected via smartphones and labeled by medical experts through a rigorous
inspection process.

Results Experimental evaluations demonstrated that the cough detection model achieved an average accuracy of
0.9883, while the cough classification model attained accuracies of 0.8417, 0.8629, and 0.8662 among dataset1, 2, and
3.To enhance interpretability, we applied Grad-CAM to visualize the features that influenced the model’s decision-
making. Model performance was further evaluated using the area under the receiver operating characteristic curve
(AUROCQ) and the area under the precision-recall curve (AUPRC).

Conclusions Our proposed cough classification model has the potential to assist individuals with limited access
to healthcare as well as medical professionals with limited experience in diagnosing cough-related conditions. By
leveraging deep learning and smartphone-recorded cough sounds, this approach aims to enhance early detection
and management of respiratory diseases.
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Background

Over the past decade, artificial intelligence (AI) has
attracted remarkable interest across various industries,
including smart healthcare, driven by advancements in
computing power and storage capacity [1-6]. Addition-
ally, several machine learning (ML)-based frameworks
are being used for the general diagnosis of severe diseases
affecting various systems, including the nervous, cardio-
vascular, digestive, and pulmonary systems [7—10].

In case of respiratory diseases, they represent a signifi-
cant global health burden, characterized by widespread
health complications and elevated mortality rates. As
these conditions increasingly affect global health, the
importance of early diagnosis and effective monitoring
strategies has become increasingly critical for improving
patient outcomes and reducing healthcare costs. Owing
to the significance of early diagnosis and effective moni-
toring, voice-based diagnosis has emerged as a promis-
ing area of interest. Although AI algorithms have already
shown commendable performance in image-based diag-
nosis [11, 12], sounds can carry the signature of many
diseases [13—15]. In particular, Al speech analysis cre-
ates new opportunities in healthcare, such as the remote
monitoring of various clinical outcomes and symptoms
using vocal biomarkers for diagnosis, risk prediction,
and overall health assessment [16]. Various studies use
deep learning to detect and diagnose respiratory abnor-
malities. In the case of cough diagnosis, research has
been conducted to develop models for classifying cough
sounds by collecting data on asthma and normal coughs
from children under the age of 16 [17], research has stud-
ied a classification framework based on cough sounds for
identifying bronchitis and pneumonia in children [18],
research used Audio Spectrogram Transformer model
to classify cough status [19], research used a Bi-LSTM
model to learn coughs of diseased patients and coughs of
normal people [20], and researches [21, 22] used Recur-
sive Feature Elimination with Cross-Validation (RFECV)
for feature selection and compared the performance of
Deep Neural Decision Tree (DNDT), Deep Neural Deci-
sion Forest (DNDF), and various other machine learn-
ing models. Other case of cough detection, studies have
explored cough detection methods as efficient alter-
natives for monitoring patients with wearable devices
[23] and developing algorithms to assess recovery from
pulmonary tuberculosis in areas with limited facilities
around the world [24]. A study on classifying of lung
sound using the VGGish model [25] employs a learn-
ing model for symptom classification. Additionally, this
research explores the application of several convolutional

neural network (CNN) models—AlexNet [26], VGG [27],
Inception [28], and ResNet [29]—hich are highly effec-
tive in the image domain, to the audio domain as part
of an experimental approach [30]. In contrast to previ-
ous studies [21, 22] that developed Decision Tree, Ran-
dom Forest, and various machine learning models from
scratch, we have applied transfer learning method to our
experiment, because transfer learning is particularly use-
ful when dealing with limited data and when the model’s
performance needs to be enhanced. Some systems use
customized learning models [31-33], while others are
built using pretrained models with transfer learning [34,
35]. We trained a learning model to identify valid cough
samples from recordings labeled by professional medical
staff and classify these cough sounds to diagnose abnor-
malities. Our model is designed to assist individuals with
limited access to hospitals as well as assist doctors with
limited medical resources, as it relies on cough sounds
collected without any medical devices. Whereas stud-
ies [21, 22] depended on public COVID-19 datasets, we
gathered and employed a dataset tailored for cough dis-
ease classification. To develop the learning model, we col-
lected cough sounds from patients with asthma, COPD,
and pneumonia at the hospital and studied the correla-
tion between lung health and cough sounds.

Our cough data reflect the medical opinions of several
healthcare professionals, making it a valuable resource
for investigating how the inclusion of medical expertise
affects model performance. In this study, we categorized
the datasets based on the number of medical experts
involved, trained models on each dataset, and compared
their performance. Unlike previous studies, our research
enhances the reliability of the data by incorporating the
medical opinions of multiple healthcare professionals.

We utilized transfer learning with the pretrained
VGGish model [25] and incorporated additional learning
network blocks. We fine-tuned our learning model using
labeled data from medical experts and through data
inspection. After fine-tuning, we extracted Grad- CAM
[36] from the model to analyze the features of true posi-
tive (TP) and true negative (TN) cough sounds. We then
used the area under the receiver operating characteris-
tic curve (AUROC) and area under the precision-recall
curve (AUPRC) metrics to compare the model’s perfor-
mance across different datasets.

Methods

Ethics approval and consent to participate

This study was conducted in accordance with the Decla-
ration of Helsinki and approved by the Ethics Committee
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at Gangneung Asan Hospital (approval number: GNAH
2021-08-002-001). Informed consent was obtained from
all participants, who signed a form authorizing the anon-
ymous use of their clinical data for research, as approved
by the Ethics Committee.

We collected cough sounds from the patients, and the
process of collecting these sounds did not affect their
treatment. The cough sounds were gathered as unique
patient information in accordance with IRB approval.
Furthermore, individual patients cannot be identified
solely based on the cough sounds.

Data Availability

The cough audio dataset analyzed in this study was ethi-
cally collected with approval from the Ethics Committee
at Gangneung Asan Hospital (approval number: GNAH
2021-08-002-001). Given that individual cough record-
ings could potentially identify participants, full public
dissemination of the dataset and original source code
is restricted by ethical and privacy considerations man-
dated by the IRB. However, de-identified subsets of the
data and the custom-developed code utilized for model
training, validation, and evaluation can be made avail-
able upon reasonable request from qualified researchers.
Access requests should be directed to the corresponding
author and are subjected to review and approval by the
relevant institutional ethics committees.

Analyze

Record to analyze your respiratory
sound.

Please answer the following questions

Patient ID v
please enter patient ID

Record Cough Sound 0

Save

Clinical Diagnosis A
Gender
N\ -

Date of Birth

B 9 Al B® 9 Al

Fig. 1 App interface for collecting patient cough sounds
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Data collection
As shown in Figs. 1 and 2, medical staff directly collected
patients’ cough sounds using an app. The cough label
data provided by the medical staff includes information
on cough abnormality and the duration of cough. The
cough data, collected in a tertiary care hospital over six
months, involved a diverse cohort of patients. Our data
are labelled two subject groups; one is healthy group,
and the other is respiratory disease group. The respira-
tory diseased group includes conditions associated with
coughing, such as asthma, pneumonia, and chronic
obstructive pulmonary disease (COPD). As illustrated in
Fig. 1, we collect patients’ cough sounds using a smart-
phone app or a web page. With user consent, these plat-
forms facilitate easy collection of cough sounds. Figure 2
displays a web page where specialists review and examine
the cough recordings. The lower section of Fig. 2 is the
medical examination data section, and the upper part is
related to the cough signal. In the top section of Fig. 2,
the x-axis represents time, while the y-axis represents the
cough waveform. This interface allows medical experts to
listen to individual cough sounds and modify annotations
related to abnormality and cough duration. The labeling
of the data was based on the clinical judgment of medi-
cal professionals for disease diagnosis. To enhance objec-
tivity, the diagnoses from seven experts were aggregated
and utilized.

This process enabled us to gather cough data from a
total of 739 patients. Finally, we used data from a total of
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Fig. 2 Web interface for inspecting patient cough sounds

476 patients after filtering out 33 patients whose lacked
recording files, 63 patients whose data did not match
their personal information and medical records, and 157
patients whose data did not reach a consensus among
inspectors (Supplementary Tables 1, and Fig. 3).

After data collection, seven medical specialists listen to
each patient’s cough and assess its normality and dura-
tion in conjunction with clinical information. In this
process, medical specialists assess the cough sounds,
medical examination data, and apply their clinical exper-
tise, as shown in Fig. 2.

Coughs identified as abnormal were categorized to
have been collected from patients suffering from chronic
obstructive pulmonary disease (COPD), asthma, and
pneumonia. In contrast, normal coughs were extracted
from healthy individuals. When medical experts iden-
tify an abnormal cough, they use the definitions of
respiratory conditions (COPD, asthma, and pneumo-
nia) described below to determine the cough’s normality
across all datasets. COPD is a heterogeneous lung condi-
tion characterized by symptoms such as dyspnea, cough,
sputum production, and exacerbations [37]. Asthma is a
heterogeneous disease marked by chronic airway inflam-
mation and symptoms such as wheezing, shortness of
breath, chest tightness, and cough [38]. Pneumonia is an
acute infection of the lung parenchyma caused by various
pathogens, distinct from bronchiolitis [39].

Data pre-processing

We pre-processed the cough sounds to extract 1-second
samples for model training, each containing temporal
information and disease labels. Diagnosing respiratory
diseases generally requires the consideration of mul-
tiple symptoms and patient examination results, which
makes it difficult to accurately diagnose cough abnor-
malities based solely on cough sounds. Nevertheless,
previous studies [40—42] have shown that cough sounds
can serve as valuable biomarkers for cough classification.
Therefore, to improve the diagnostic value of our data for
cough classification, we conducted multiple rounds of
data review with medical experts.

Asthma is a respiratory disease characterized by symp-
toms such as shortness of breath and chest tightness. In
adults, asthma can lead to a distinct cough, often accom-
panied by wheezing and a high-pitched whistling sound
in the upper frequency spectrum (above 2 kHz) during
exhalation due to constricted airways [43]. This wheez-
ing falls within a distinct high-frequency range. Asthma
coughs are typically dry and have a sharp, abrupt qual-
ity, resulting in higher-frequency sound elements [44]. In
contrast, COPD presents with a heterogeneous lung con-
dition and chronic respiratory symptoms. COPD coughs
are characterized by coarse crackling sounds, a series of
short, explosive noises, and extended, low-pitched (typi-
cally below 1 kHz) tones [43]. These sounds may indicate
of the presence of fluid in the patient’s air sacs, a com-
mon symptom of COPD. Pneumonia, an acute respira-
tory infection commonly caused by viruses or bacteria,
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Dataset 3
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Fig. 3 Flowchart of dataset division

typically presents with a deeper or louder cough com-
pared to other coughs. A typical cough, which is com-
monly caused by a cold or a respiratory illness, affects
the acoustic properties and may add lower-frequency
components or a wide range of frequency characteristics.

When labeling coughs, medical experts classified each
one as normal or abnormal based on these symptom-
related criteria.

During the inspection, we gathered the assessments
from all medical experts and decided on the label (normal
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vs. abnormal) for each cough based on the majority
opinion. Once all medical opinions were collected, the
majority consensus was used to assign the final labels.
Following this data inspection process, we created three
versions of the dataset (Dataset 1, Dataset 2, and Dataset
3) and augmented the cough sample based on the final
labels.

As shown in Fig. 3, we divided the datasets based on
the number of inspecting medical experts to evaluate
model performance and suitability relative to the number
of inspectors. We created three datasets by integrating
the opinions of four, three, and seven reviewers, respec-
tively. Dataset 1 includes labels from four medical experts
(K. Moon, J. Lee, Y. Park, and M. Kim). The cough sam-
ples in Dataset 1 were labeled by these experts. Dataset 2
comprises the opinions of three medical experts (D. Kim,
J. Jun, and U. Ahn) who independently labeled the cough
samples, separate from Dataset 1. After labeling, we com-
bined the experts’ labels and removed samples where
there was no majority consensus. Dataset 3 includes the
combined opinions of all seven medical experts included
in both Datasets 1 and 2, all with over a decade of clini-
cal experience (four pulmonologists: K. Moon, J. Lee, M.
Kim, and U. Ahn; one cardiologist: D. Kim; one pediatri-
cian: Y. Park; one general practitioner: J. Jun). During the
first inspection (Dataset 1), we filtered out patient data
where there was no majority opinion, such as cases with
an equal number of normal and abnormal classifications.
As a result, we compiled a dataset set using data from
476 patients. For the second data inspection (Dataset 2),
we used the same patient data as in the first data inspec-
tion. In total 476 patients, the dataset consists of a total
of 12,970 cough sound samples. As shown in Table 1,
Dataset 1 consists of 4,390 normal and 8,580 abnormal
samples; Dataset 2 consists of 6,905 normal and 6,065
abnormal samples; and the final Dataset 3 consists of
5,780 normal and 7,190 abnormal samples. The variation
in the number of normal and abnormal samples across
the datasets is attributed to the fact that each dataset was
independently annotated by different medical experts
based on their diagnostic assessments. When recruit-
ing medical experts to validate our data, we encountered
challenges related to the workload of medical profession-
als and difficulties in finding suitable experts. As a result,
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we initially created Dataset 1 with four medical profes-
sionals, and later, we added three more professionals to
form Dataset 2.

Training data

We labeled each 1-second sample of the recorded sound
as either “cough” or “not cough” As shown in Fig. 4a, we
generated samples by sliding a window from 0 s to T (the
end of the recording) in 0.2-second increments. The gray
windows represent noise and silence, while the orange
windows denote cough segments. This sampling method
was used to create the dataset for the cough detection
model. As shown in Fig. 4b, we extracted samples from
each cough by sliding a window of 0.1 s around the
median cough time, spanning from -0.2 s to 0.2 s. Using
sliding windows, we capture a range of cough variations
from different individuals by generating samples with
various time positions within each window. After apply-
ing the sliding window technique, we label each win-
dow sample based on its overlap with the labeled cough
period. If the overlap with the cough period exceeds
50% (0.5 s), the sample is labeled as abnormal if medical
experts diagnose the cough as related to COPD, asthma,
or pneumonia; otherwise, it is labeled as normal.

Model architecture

Recently, the use of AI models in the field of medical data
research, particularly for analyzing and detecting cough
sounds, has been growing rapidly. Deep learning net-
works, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), have proven
effective in various domains and are increasingly being
adapted for medical data analysis. However, these net-
works often suffer from overfitting when data are limited,
leading to suboptimal performance. To address this issue,
transfer learning can enhance the performance of deep
learning models, especially in scenarios with insufficient
data. Herein, we address the challenge of data scarcity by
employing the VGGish model with transfer learning to
improve performance.

Proposed model
We propose two models built upon the VGGish architec-
ture, augmented with two additional learning networks.

Table 1 Training and testing data samples for each fold in classification

1-Fold 2-Fold 3-Fold 4-Fold 5-Fold
Normal Abnormal Normal Abnormal Normal Abnormal Abnormal Normal Normal Abnormal
Dataset 1 Train 3,510 6,860 3,510 6,865 3,510 6,865 3,515 6,865 3,515 6,865
Test 880 1,720 880 1,715 880 1,715 875 1,715 875 1,715
Dataset 2 Train 5,520 4,850 5525 4,850 5525 4,850 5,525 4,855 5525 4,855
Test 1,385 1,215 1,380 1,215 1,380 1,215 1,380 1,210 1,380 1,210
Dataset 3 Train 4,620 5,750 4,625 5,750 4,625 5,750 4,625 5,755 4,625 5,755
Test 1,160 1,440 1,155 1,440 1,155 1,440 1,155 1,435 1,155 1,435
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Additional network

Fig. 5 Overall architecture of the model

As shown in Fig. 5, the VGGish model is composed of
4 convolution blocks, max pooling layers, and 3 fully
connected layers. To enhance the model’s capabilities,
we integrate two additional networks at the end of the
VGGish model: a cough detection network and a cough
classification network that analyze the cough samples and
determines whether they are normal or abnormal. Spe-
cifically, the cough detection network and the cough clas-
sification network each feature different configurations
to address their respective tasks. The cough classification
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network includes 8 convolutional layers with channel
sizes of [256, 128, 64, 32], while the cough detection net-
work comprises 4 convolutional layers with channel sizes
of [256, 512, 1024, 512, 256, 128, 64, 32]. Both networks
incorporate dropout layers to mitigate overfitting. Each
convolution layer in the additional networks uses a kernel
size of 2 and a stride of 1, with ReLU as the active func-
tion. We use the dropout layer because the transferred
parameters of VGGish have already been sufficiently
learned and reflect the characteristics of the sound signal,
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since the general dataset of Google Audio Set includes a
large number of samples and various categories.

Pretrained model

The VGGish model is a pre-trained model with Google
Audio Set [45]. The Google Audio Set is a large labeling
dataset in which people directly label about 10 s of audio
extracted from YouTube videos. A total of 2,084,320 data
consists of 632 classes, 527 classes of which are used for
learning, whereas 105 classes are typically excluded due
to ambiguity [45]. In the complete VGGish model, the
transfer learning layer spans from the start of the VGGish
architecture up to, but not including the final fully con-
nected layer. Both the pre-trained and VGGish models
used for transfer learning share the same structure and
parameters.

As depicted in Fig. 5, we extracted features for input
into additional networks from the VGGish model using
our collected data. For feature extraction, which pro-
duces a 128-dimensional vector, we utilized the param-
eters from the pretrained VGGish model.

Fine-tuning

We created two learning models: cough detection and
cough classification models. We set the parameters of
the VGGish model learned with Google Audio Set to the
initial state of our model before fine-tuning. After setting
the parameters, we fine-tuned each model to improve
model performance using our collected data. As shown
in Fig. 5, each additional network uses the input feature
that was extracted from the VGGish model. While fine-
tuning, we updated all parameters of the VGGish model
and the two additional networks (Cough Detection and
Cough Classification) using our collected data. After this
process, we obtained two fine-tuned models: one for
cough detection and one for cough classification.

Analysis: AUROC, AUPRC graph

In this study, we investigated the AUROC and AUPRC
to evaluate model performance. The AUROC is a valu-
able tool for assessing prediction accuracy and represents
the model’s discriminatory performance. In the case of
imbalanced data, AUPRC is often a more appropriate
evaluation metric than AUROC [46]. For this reason, we
used both AUROC and AUPRC to comprehensively com-
pare the performance of each dataset’s model.

AUROC is plotted with the true positive rate (recall)
on the y-axis and the false positive rate on the x-axis. A
higher AUROC value, approaching 1, indicates better
model performance, with the curve skewed towards the
top left corner of the plot.

AUPRC is plotted with precision on the y-axis and
recall on the x-axis. A higher AUPRC value, approaching
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1, signifies better model performance, with the curve
skewed towards the top right corner of the plot.

A detailed explanation of AUROC and AUPRC has
been included in the supplementary material.

Analysis: Grad-Cam

We extracted the Grad-CAM from the cough classifica-
tion model to analyze the VGGish features. By examin-
ing the Grad-CAM, we can identify which frequency
bands were most influential in the learning model, given
that the input data are a spectrogram with both time
and frequency axes. The Grad-CAM was obtained from
the fourth convolution block of the VGGish model,
which is part of the transfer learning component of our
cough classification model. This fourth convolution
block consists of two layers, and we focused on extract-
ing Grad-CAM from the second layer. In our analysis,
we emphasized the magnitude of the Grad-CAM values
rather than their sign [47].

Experiment

Experimental design

As shown in Fig. 5, we trained our two models using
cough signal data extracted from the cough samples. We
transformed our cough signal data (window samples)
into a Log-Mel spectrogram using the Fourier transform
and Mel-frequency spectrogram algorithm. The cough
signal was converted to a Mel spectrum using the follow-
ing equation for the Mel frequency f:

_ /
f=1172In (1 + 700)

After data transformation, the signal data is converted
from the time domain into a frequency band. We used
this transformed signal as input for the VGGish model
instead of the raw cough sound. The parameters for the
Log-Mel spectrogram are as follows: a sample rate of
16,000 Hz, 64 Mel bins, a minimum Mel frequency of
125 Hz, a maximum Mel frequency of 7,500 Hz, and a
short-term-Fourier transform window length of 0.025 s
with a hop length of 0.01 s.

Data construction

As shown in Fig. 4, we sampled the cough window with
a length of 1-second. Each sample was converted into a
Log-Mel spectrogram (94 frames x 64 Mel bins) using
the abovementioned data processing. The VGGish model
then extracts a 128-dimensional feature vector from the
Log-Mel spectrogram. We applied 5-fold cross-valida-
tion to Datasets 1, 2, and 3, and the number of samples
in each dataset is shown in Tables 1 and 2. We applied
the 5-fold cross-validation method, creating a training
set and a test set for each fold. The data was divided into
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53 training and test sets with an 8:2 ratio. We did not cre-
g g E ate a separate validation set, as the 5-fold cross-validation
process includes validation within each fold.

In the cough detection experiment, we applied a down-

sampling method to address data imbalance. In the cough
2 '§, 8 g classification experiment, we compared the performance
189 2 of the classification models using Datasets 1, 2, and 3. We
designated normal cough samples as negative and abnor-
mal cough samples as positive.

This paper investigates how variations in the number
g5 o of data inspectors, who are medical experts, impact the
g|a G classification model’s performance. All datasets consist of

12,970 cough samples, and each is divided into approxi-
mately 10,370 samples for training and 2,600 samples
sl<|o for testing. Since each dataset has a different number of
:9 % § S medical experts and combines the experts’ opinions, the
AR SR number of normal and abnormal samples is different in
dataset 1, 2 and 3.
519 - Cough detection
g % % In the cough detection part, the input data consists
of both cough and other samples (Table 1). As shown
in Fig. 4a, “other” samples include all sounds except
cough samples (indicated in orange). These other sam-
2 '§, 8 g ples encompass silence, patients’ speech, and back-
s8le 2 ground noise, while cough samples specifically represent
patients’ coughs. The total sampling data spans from 0 to
T seconds (end of the signal), and each window sample
e was labeled based on time label data. We trained our
2182 cough detection model, as shown in Fig. 5, using an opti-
5|8 8 mizer with a learning rate of 0.001 and a dropout rate of
< 0.3 and applied a binary-cross entropy loss function.
6
Slolel o Cough classification
g S g g g In the cough classification part, the input data con-
g| Y~ sists of normal and abnormal cough samples. As shown
GC_J in Fig. 4b, we sampled all patients’ coughs from Datas-
2 ets 1, 2, and 3. The number of medical experts inspect-
g 508 ing each dataset varies, resulting in different train data
s g g § ratios. Dataset 1 was labeled based on the diagnoses of
O four medical experts, while Dataset 2 was labeled by
D three medical experts. Dataset 3 was constructed by inte-
e grating the diagnostic results from both Datasets 1 and 2.
E < '§a g g The number of medical experts involved in the diagnos-
@ Tl8g 2 tic process varied for each dataset, resulting in different
o ratios of normal to abnormal samples across the datas-
3 ets. This deliberate variation allowed us to systematically
é - investigate how the number of medical experts contrib-
s e E uting to the labeling process affects the performance of
£ cough classification models. We trained our cough clas-
E sification model, as shown in Fig. 5, with an optimizer
~ » learning rate of 0.0003 and a dropout rate of 0.7 and
% % applied a binary-cross entropy loss function. We set the
e 83
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Table 3 Performance scores for cough detection and classification models

AUROC Accuracy Precision Recall AUPRC Specificity F1 score

Detection NA 0.9883+0.0027 0.9966+0.0022 0.9816+0.0033 NA 0.9960+0.0026  0.9890+0.0025
Classification Dset 0.9345+0.0075  0.8417+0.0181 0.8845+0.0269 0.8771+0.0365 0.9298+0.0099  0.7725+0.0703 0.8798+0.0143

1

Dset 0.9028+0.0094  0.8629+0.0085 0.8658+0.0262 0.8384+0.0300 0.9415+0.0071 0.8845+0.0278 0.8511+0.0098

2

Dset 0.9348+0.0046 0.8662+0.0076 0.8818+0.0126 0.8765+0.0153 0.9443+£0.0032 0.8535+£0.0195 0.8790+0.007

3

Dset, Dataset; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve
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Fig. 6 AUPRC and AUROC for cough classification in Datasets 1, 2, and 3. AUPRC, area under the precision-recall curve; AUROC, area under the receiver

operating characteristic curve

dropout rate to 0.7 to mitigate overfitting, given that the
VGGish model was pretrained.

Results

We summarized the results of the detection and clas-
sification experiments in Table 3, presenting the per-
formance of each fold with mean values and standard
deviations. The evaluation metrics used to compare the
performance of each learning model included accuracy,
precision, recall, specificity, and F1 score. We also calcu-
lated the AUROC and AUPRC to assess model perfor-
mance across different thresholds. As illustrated in Fig. 6,
we have extracted the AUROC and AUPRC for each
dataset to evaluate the performance comprehensively.

Detection model result

As shown in Table 3, the cough detection model
achieved the following performance metrics: Accu-
racy: 0.9883+0.0027, Precision: 0.9966+0.0022, Recall:
0.9816+0.0033, Specificity: 0.9960+0.0026, and F1

Score: 0.9890+0.0025. The model effectively differen-
tiates between coughs and other sounds, a distinction
that is also clear to medical experts. Specifically, the
model shows a marked difference in classifying silence
samples versus cough samples, as well as distinguish-
ing between other samples and cough samples. Silence
samples produce minimal signal in the Log-Mel spec-
trogram, while other sounds are more discernible to the
human ear. These factors contribute to the model’s high
performance.

Classification model result

For the classification models, the performance differ-
ences across the datasets are demonstrated. In Dataset 1,
the classification model achieved the following metrics:
Accuracy: 0.8417+0.0181, Precision: 0.8845+0.0269,
Recall: 0.8771+0.0365, Specificity: 0.7725+0.0703,
and F1 Score: 0.8798 +0.0143. For Dataset 2, the clas-
sification model yielded: Accuracy: 0.8629+0.0085,
Precision: 0.8658+0.0262, Recall: 0.8384+0.0300,
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Specificity: 0.8845+0.0278, and F1: 0.8511+0.0098.
For Dataset 3, the classification model showed: Accu-
racy: 0.8662+0.076, Precision: 0.8818+0.0126, Recall:
0.8765+0.0153, Specificity: 0.8535+0.0195, and Fl:
0.8790+0.007.

Based on the results, the model trained on Data-
set 1 achieved the highest precision, recall, and F1
score, but demonstrated lower performance in specific-
ity. The model trained on Dataset 2, on the other hand,
achieved the highest specificity but underperformed
in the other metrics. In contrast, the model trained on
Dataset 3 showed the best overall performance in terms
of AUROC, AUPRC, and accuracy, indicating a more
balanced and consistently high performance across all
evaluation metrics. We consider the model trained on
Dataset 3 to be the most optimal for cough classification,
as it demonstrates more balanced performance across all
evaluation metrics compared to the models trained on
the other datasets.

Additionally, we trained the comparative models using
Dataset 3 and evaluated their performance alongside our
proposed model. The results of this comparison, includ-
ing models such as VGG+LSTM, VGG + ConvLSTM,
and ResNet50, are summarized in Table 4. As shown in
Table 4, the models that extend VGG with additional
modules exhibit overall improved performance com-
pared to the ResNet-based model. Among them, the
proposed VGG + CNN model demonstrates superior per-
formance relative to the other comparative models in the
experiment. Thus, we believe the Dataset 3 model is the
most effective for our needs, particularly for use by indi-
viduals with limited access to medical services and doc-
tors with constrained resources.

We attribute the observed differences in performance
to the varying number of medical experts involved in
inspecting the cough samples. As shown in Table 2,
there is a remarkable disparity in the ratio of normal-
to-abnormal samples. Specifically, Dataset 1 contains
approximately 2,000 more abnormal samples than
normal samples. This imbalance leads to the Data-
set 1 model being biased towards detecting abnormal
samples, resulting in higher precision and recall scores
but lower specificity compared to the Dataset 3 model.
Conversely, Dataset 3 features a more balanced ratio of
normal and abnormal samples, yielding a more balanced
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performance overall. This balance is reflected in Fig. 6,
where the AUPRC for Dataset 3 (Fig. 6c¢, right) shows
denser lines compared to that of Datasets 1 (Fig. 6a, right)
and 2 (Fig. 6b, right). Additionally, the AUROC for Data-
set 3 (Fig. 6¢, left) exhibits lines that are closer together
than those in Datasets 1 (Fig. 6a, left) and 2 (Fig. 6b, left).
Figures 7 showed the confusion matrixes of the model
trained with Dataset 1 (a), Dataset 2 (b), and Dataset 3
(c). As discussed, we believe that the ratio of normal-
to-abnormal samples is an important factor influencing
model performance. Additionally, improving the quality
of data labeling, which is enhanced by involving more
medical experts, will extensively impact the effectiveness
of model training.

Grad-CAM analysis result

In this paper, we compared Grad-CAM images for true
positives (TPs) and true negatives (TNs). A true positive
occurs when an abnormal cough is correctly identified
as abnormal, and a true negative occurs when a normal
cough is correctly identified as normal. As shown in
Fig. 8, we generated the mean Grad-CAM for TN and TP
to compare across each dataset and this figure visualizes
which aspects the classify model focuses on when clas-
sifying data structured based on medical expertise. For
TPs, the model is predominantly influenced by the mid-
frequency bands, whereas for TNs, the model is influ-
enced by more dispersed frequency bands.

Discussion

One limitation of our implementation is that it does not
account for the characteristics of time series data. To
address this, we propose using the entire cough record-
ing as input rather than a single sample. This approach
allows for variable input lengths and enables the model to
learn cough intervals more effectively. Additionally, it can
improve efficiency by eliminating the need for a separate
cough detection step.

Another limitation is that our data were exclusively col-
lected from Korean hospitals, which may present chal-
lenges when the model is used by individuals in other
countries. To overcome this, we plan to expand our data
collection to include cough sounds from hospitals in
other countries.

Table 4 Performance scores for comparing cough classification models

AUROC Accuracy Precision Recall AUPRC Specificity F1 score
Clas- VGG+CNN 0.9348+0.0046 0.8662+0.0076 0.8818+0.0126 0.8765+0.0153 0.9443+0.0032 0.8535+0.0195 0.8790+0.007
sifica- VGG+LSTM 09127400041  08312+00142  08338+00319  0.8725+0.0366 09258+0.0049 0.7799+0.0628 0.8515+0.0104
tion v+ 09126+0.0090 0.8331+£0.0056 0.8585+0.0168 0.8381+£0.0315 0.9261+0.0071 0.8268+0.0314 0.8475+0.0083
(Dset convisTM
3 ResNet50 0.8780+£0.0193 0.7977+£0.0231 0.7946+£0.0394 0.8611£0.0163 0.8945+£0.0149 0.7188+0.0701 0.8256+0.0146

Dset, Dataset; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve



Han et al. BMC Medical Informatics and Decision Making

true label
true label
true label

0 1 0 1
predicted label predxted label

(a) Fold 1 (b) Fold 2

true label

true label
true label

0 1
predicted label

(a) Fold 1

0
predicted label

(b) Fold 2

true label
true label
true label

0 1
predicted ladel

(a) Fold 1

0
preducted label

(b) Fold 2

(2025) 25:228

predicted el

(c) Fold 3

predited label

(c) Fold 3

predicted label

(c) Fold 3

Page 12 of 16

true label
true label

0 1 0 1
predicted label predicted label

(d) Fold 4 (e) Fold 5

true label
true label

1 0 1 0 1
predicted label predicted label

(d) Fold 4 (e) Fold 5

true label
true label

1 0 1 0 1
predicted label predicted label

(d) Fold 4 (e) Fold 5

Fig. 7 Confusion matrix of the model trained with (a) Dataset 1, (b) Dataset 2, and (c) Dataset 3

Finally, the cough sounds with background noise have
a negative effect on the classification model. To solve this
problem, we plan to study how to remove noise in cough-
ing sounds.

For future work, we plan to expand our research in sev-
eral directions to further improve model performance
and explore additional clinical insights.

First, we aim to develop a symptom-specific classifica-
tion model by utilizing the available symptom annota-
tions and patient severity levels for each cough sample.
This will allow us to train models to classify various
symptoms and compare their performance across symp-
tom categories.

Second, we intend to investigate the effect of patient
sex on model performance. To do this, we will divide the
dataset by sex, train separate models for each group, and
analyze differences in classification accuracy.

Third, we plan to examine how increasing the dataset
size influences model performance. By collecting more
diverse cough data, we aim to evaluate the scalability and
robustness of the model.

Additionally, we will explore the impact of medical
experts’ specialties on model accuracy. Specifically, we
will compare models trained on labels provided by respi-
ratory specialists versus those provided by non-respi-
ratory clinicians. This comparison will help determine
whether specialist knowledge contributes to more reli-
able model outputs.

To support this study, we intend to expand our dataset
by incorporating diagnostic annotations from a greater
number of medical experts.
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Fig. 8 Visualized mean Grad-CAM of Datasets 1, 2, and 3

Conclusions

In this study, we investigated the influence of the num-
ber of medical experts involved in data annotation on
the performance of cough classification models. As
highlighted in Sect. 4.2, both data acquisition and label-
ing quality are critical to achieving reliable and effective
model performance.

Our experimental setup focused on classifying cough
sounds collected via smartphones into either normal
or abnormal categories, without relying on additional
clinical equipment or metadata. Among the models
evaluated, the one trained on Dataset 3, which included
annotations from seven medical specialists, demon-
strated the most balanced and robust performance. This
model not only outperformed others across key evalu-
ation metrics but also proved to be the most generaliz-
able, making it well-suited for real-world applications.
Therefore, as our model is trained using diagnostic data
annotated by medical professionals, it may be suitable for
self-screening purposes and could offer advantages in the
early detection and management of respiratory diseases.
Nonetheless, further clinical validation is necessary to
confirm its practical applicability.

As illustrated in Fig. 9, the proposed model holds
strong potential for deployment as a practical healthcare
support tool. It may assist individuals in remote or under-
served areas with limited access to medical resources
and help alleviate the diagnostic burden on healthcare
professionals, particularly in environments facing labor
shortages.

0 20 40
(b) True negative mean Grad-CAM of Dataset 2

60 80 0 20 40 60 80

(c) True negative mean Grad-CAM of Dataset 3

Moving forward, we aim to further enhance the model
by expanding the dataset, incorporating symptom-
specific and demographic information, and exploring
specialist-driven annotation strategies. These efforts will
contribute to the development of more accurate, scalable,
and accessible Al-based diagnostic tools.
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