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Purpose: The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) de-
termination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that 
enhances diagnostic and prognostic accuracy.
Methods: We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. 
Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and 
bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 
patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those pro-
duced by commercial software.
Results: In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and 
mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, 
demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion: This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation 
and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
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Introduction

Background
Breast cancer (BC) is the most common cancer among women 

and one of the leading causes of cancer‐related deaths worldwide 
[1,2]. With recurrence rates of 20%–30%, accurate prognostic 

prediction is essential for treatment planning [3]. Key prognostic 
factors include tumor size, nuclear grade, axillary lymph node in-
volvement, hormone receptor status, and the Ki‐67 proliferation 
index [4].

18F fluorodeoxyglucose positron-emission tomography/com-
puted tomography (18F-FDG PET/CT) is widely used to evalu-
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ate tumor metabolism, stage cancer, and guide treatment deci-
sions [5]. PET-derived parameters such as standardized uptake 
values (SUVs), metabolic tumor volume, and total lesion glycoly-
sis (TLG) have emerged as significant prognostic indicators in 
BC [6,7].

Traditional segmentation methods such as region-growing, 
thresholding, and level-set techniques have been widely used, yet 
they require manual intervention and suffer from interobserver 
variability. The Swin UNETR model, which integrates Swin trans-
formers with the UNETR architecture, offers improved spatial 
feature representation and enhanced segmentation accuracy. 
However, its computational cost and real-world feasibility remain 
areas of concern, as discussed later in this study.

Systemic inflammatory responses also influence cancer progres-
sion and prognosis [8]. Biomarkers such as the neutro-
phil-to-lymphocyte ratio and platelet-to-lymphocyte ratio have 
been associated with outcomes in multiple cancers [9]. The retic-
uloendothelial system (RES), which includes the bone marrow, 
spleen, and liver, plays a key role in systemic inflammation. FDG 
PET has been used to evaluate metabolic activity in these organs, 
and increased RES activity has been linked to poor prognosis in 
BC and other cancers [10,11].

Accurate delineation of BC lesions and RES organs is essential 

for quantifying PET parameters. Although manual segmentation by 
nuclear medicine physicians is the current gold standard, it is 
time-consuming and prone to interobserver variability, which can 
lead to potential errors [12]. Automated segmentation methods are 
therefore necessary to reduce variability and improve efficiency.

Objectives
This study employs the Swin-UNETR architecture to segment 

both the breast and RES organs, highlighting their prognostic sig-
nificance. Our goal is to develop an advanced diagnostic and 
prognostic system for BC. We aimed to automate the identifica-
tion of tumor location and size using SUVs derived from PET/
CT scans of BC patients. In addition, we developed a computa-
tional tool to calculate SUVs in organs associated with prognosis. 
A schematic representation of the study flow is shown in Fig. 1.

Methods

Ethics statement
All patient data used in this research were reviewed and ap-

proved by the Institutional Review Board (IRB) of Ewha Womans 
University Mokdong Hospital (IRB no., 2023-07-001-002). Ob-
taining informed consent from individual patients was exempt be-

Fig. 1. Schematic representation of the study flow. The left panel summarizes the steps involved in the study, while the right panel 
illustrates the inherent functionalities of the research findings. CT, computed tomography; PET, positron emission tomography; 
SUV, standardized uptake value. 
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cause of the retrospective design of this study.

Study design
This study is a retrospective, medical record-based prediction 

study. It is reported in accordance with the TRIPOD-artificial in-
telligence (AI) reporting guidelines for articles on deep learning 
in the medical field (development or prediction), available at 
https://www.tripod-statement.org/.

Setting
Data were collected between 2012 and 2014 from female pa-

tients (mean age, 54.5 ± 10.3 years; range, 33–77 years) who un-
derwent FDG-PET/CT for initial BC staging at Ewha Womans 
University Mokdong Hospital in Korea.

Participants
A total of 60 patients were included in the study. All eligible pa-

tients diagnosed during the study period were included. Among 
them, 32 underwent mastectomy, while 28 received breast-con-
serving surgery.

Data source
PET/CT scans were performed using a Siemens Biograph 

mCT system (128-slice CT; Siemens Medical Solutions). Patients 
fasted for at least 6 hours before scanning, and FDG was adminis-
tered when blood glucose levels were below 140 mg/dL. PET/
CT images were acquired 60 minutes after an intravenous FDG 
injection (5.18 MBq/kg), covering the skull base to mid-thigh. 
First, non-contrast CT images were obtained (120 kVp, 50 mAs, 
1.2 pitch), followed by 3D PET image acquisition (2 minutes per 
bed position, covering 5 to 7 positions). PET images were recon-

structed using a 3D-OSEM iterative algorithm (2 iterations, 21 
subsets) with time-of-flight and point-spread function correc-
tions.

Outcome variables
The outcome variables included segmentation results, PET/

CT alignment, SUVs, and TLG.

Study size
No sample size estimation was performed, as all eligible sub-

jects were included in the study.

Deep learning models

Auto segmentation
For AI model training, manual segmentation of CT scans from 

60 patients was performed using MIM software (MIM Software 
Inc.), focusing on the breasts, liver, spleen, and bone marrow. An 
experienced physician performed the segmentation, which was 
then verified by a second experienced physician. In cases of dis-
crepancy, the 2 physicians reached a consensus. The data were di-
vided into a training set (40 patients), a validation set (10 pa-
tients), and an independent test set (10 patients). The Swin UN-
ETR model, a deep learning architecture that integrates the Swin 
Transformer with convolutional neural networks, was employed 
for segmentation (Fig. 2).

Encoder: CT images were divided into non-overlapping 
2 × 2 × 2 patches, with each patch represented as a 48-dimensional 
feature vector. These patches were embedded into a sequence rep-
resentation and tokenized at a resolution of (H/2 × W/2 × D/2). 
The encoded features were processed through 2 consecutive Swin 

Fig. 2. The architecture (A) and transformer blocks (B) of Swin UNETR. MLP, multilayer perceptron; W-MSA, window-based multi-
head self-attention; SW-MSA, shifted window-based self-attention. 
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Transformer blocks that utilized window-based multi-head self-at-
tention (W-MSA) and shifted window-based self-attention (SW-
MSA) (Fig. 2B). A patch-merging layer then reduced the number 
of tokens while doubling the feature dimensions, and this process 
was repeated 4 times throughout the encoding stage.

Decoder: The encoded features were reshaped to a resolution 
of (H/32 × W/32 × D/32) and processed through residual blocks 
comprising 3 × 3 × 3 convolutional layers with instance normal-
ization. These features were then up-sampled using deconvolu-
tional layers and concatenated with outputs from previous stages. 
The final encoder output was integrated with these processed fea-
tures and passed through another residual block. A final 1 × 1 × 1 
convolutional layer with a SoftMax activation function produced 
segmentation probabilities.

Model parameters: Various preprocessing techniques were 
employed to enhance segmentation accuracy. Pixel values were 
normalized between 0 and 1 by clipping those outside the range 
of –175 to 250. CT image resolution was standardized at 1.5 ×  
1.5 × 2.0 mm3, and images were randomly cropped to 96 × 96 × 96. 
Data augmentation techniques included random flipping and rota-
tion (with a probability of 0.1) along all 3 axes, and intensity shift-
ing (with a probability of 0.5 and an offset of 0.1). The model was 
trained using a combination of dice loss and cross-entropy loss, op-
timized with the Adam optimizer and stabilized using GradScaler 
(PyTorch). Training was conducted over 20,000 iterations.

SUV acquisition
PET/CT alignment: To transfer CT-based segmentation to 

PET images, multimodal image alignment was performed using 
MATLAB’s alignment module. The optimizer was configured 
with an initial radius of 0.009, an epsilon of 1.5E-4, and a maxi-
mum of 1,000 iterations for optimal performance. Segmentation 
accuracy was evaluated by comparing contour coordinates from 
CT-based segmentation using the dice coefficient. PET con-
tours were aligned to CT contours using MIM software, and the 
PET/CT alignment metric was used to assess accuracy. This 
analysis was conducted on 2 patients, with image details provid-
ed in Table 1.

Convert pixel values to SUVs of PET: SUVs were calculated us-
ing patient-specific parameters extracted from DICOM data 

(https://www.dicomstandard.org/), including acquisition time, 
radiopharmaceutical start time, radionuclide half-life, total dose, 
rescale slope, and patient weight. These factors enabled accurate 
SUV quantification per voxel, facilitating metabolic activity as-
sessment for each organ. SUVs were body weight-based and com-
puted using the following formula:

(1)

SUV
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡�𝑘𝑘𝑘𝑘𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

=
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑝𝑝𝑝𝑝 × 𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤ℎ𝑓𝑓𝑓𝑓)

𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ×  𝑝𝑝𝑝𝑝
(−log (2)×(𝑆𝑆𝑆𝑆𝑤𝑤𝑤𝑤𝑆𝑆𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤) 

𝐹𝐹𝐹𝐹18−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ℎ𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤 )
 

where pixel value represents the PET image’s raw intensity, and 
the DICOM rescale factor normalizes the pixel arrays. “Series 
time” refers to the scan initiation time, while “radiopharmaceutical 
start time” marks the time of 18F FDG administration.

Evaluation metrics

Auto segmentation
The Swin-UNETR model was employed to segment the 

breasts, spleen, liver, and bone marrow. Evaluation was conducted 
qualitatively by comparing predicted CT images with manually 
labeled organ structures, and quantitatively by calculating the av-
erage dice coefficient and loss over 20,000 iterations.

Organ-level SUV evaluation
To assess the accuracy of SUV measurements, maximum SUV 

(SUVmax) and mean SUV (SUVmean) values were compared 
using different PET image analysis methods. SUVmax was ex-
tracted from each contoured organ and compared with values ob-
tained via MIM software, ensuring that the volume of interest 
(VOI) excluded adjacent organs. SUVmean was evaluated using: 
(1) a single VOI in MIM software, (2) a single VOI in our pro-
gram, and (3) A whole-organ contour in our program.

Both SUVmax and SUVmean were consistently derived across 
methods using a fixed 1.2 cm radius VOI centered at each organ’s 
centroid. Statistical analysis was performed to characterize the re-
sults.

Table 1. Image size and slice thickness of the PET/CT images from 2 patients were used to verify PET/CT alignment

Patient 1 Patient 2
CT PET CT PET

Image size (pixels) 512×512×284 200×200×283 512×512×462 200×200×284
Slice thickness (mm) 3 3 2 3

CT, computed tomography; PET, positron emission tomography.

https://www.dicomstandard.org/
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Tumor contour based on SUV
Organ contour labels were aligned with PET images to localize 

tumors. By using registered contour labels and SUV maps, tumors 
were identified based on threshold values of 40% and 50% of SUV-
max. This approach provided tumor coordinate information and 
enabled visualization of tumor size and location on CT images.

Total lesion glycolysis evaluation
TLG quantifies metabolic activity by integrating tumor size and 

SUV. It is calculated by multiplying each lesion’s SUV by its corre-
sponding volume and summing these values across all lesions 
within a given region of interest. In this study, TLG was measured 
using SUV thresholds of 40% and 50%.

Cumulative SUV histogram
The cumulative SUV histogram represents intertumoral hetero-

geneity by plotting the percentage of tumor volume that exceeds 
specified SUV thresholds. This method provides a concise summa-
ry of tumor metabolic characteristics. Cumulative SUV histograms 
were generated for all segmented organs in PET images.

Python code for this study is available at Supplement 1.  

Statistical methods
Descriptive statistics were calculated.

Results

Auto segmentation
Fig. 3 presents the segmentation results for the breast, spleen, 

liver, and bone marrow using the Swin-UNETR model. The left 
images display the organ labels, and the right images show the 
predicted segmentation. Fig. 4 provides quantitative results, re-
vealing a maximum dice coefficient of 0.9311 and a minimum 
loss of 0.3813, which demonstrates the model’s effectiveness in 
accurately segmenting organs with diverse shapes and sizes. These 
results were obtained from the validation dataset during the train-
ing process.

PET/CT alignment
A comparison of the dice scores for the CT-based contours gen-

erated by the MIM program versus our alignment program, using 
datasets from 2 patients, yielded dice coefficients of 0.9114 and 
0.9315, respectively (Fig. 5).

SUV acquisition
SUVmax comparisons: Table 2 summarizes the SUVmax com-

parisons between the MIM software and our method, showing an 
average difference of 0.23 (range, 0.11–0.35). The liver exhibited 
the highest difference (0.35) due to its larger volume, whereas the 
spleen showed the lowest difference (0.11).

SUVmean comparisons: Table 3 presents the SUVmean com-
parisons. When using a single VOI, the average difference be-
tween our program and the MIM software was 0.138 (range, 
0.07–0.24), with the highest variation observed in the liver (0.24) 
and the lowest in the right breast (0.07). When using organ con-
tours, the difference increased to an average of 0.27 (range, 0.26–
0.30), with the greatest variation in the spleen (0.30). The differ-
ences between the single VOI and organ contour methods were 

Fig. 3. Segmentation results of the Swin-UNETR model: breast (A), spleen (B), liver (C), and bone marrow (D). In each case, the left 
image shows the label, and the right image shows the predicted result.
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consistently larger than those observed between the 2 single VOI 
methods, highlighting the impact of VOI selection.

SUV-based tumor contour
Fig. 6 displays the results of contour-based insertion of volu-

metric information, specifically regions with SUVmax exceeding 
the 50% threshold based on BC patients’ PET images. This ap-
proach enables the identification of tumor location and size on 
both PET and CT images.

TLG evaluation
Table 4 presents the TLG values obtained for 10 patients, fo-

cusing on the breast region where the tumors were located.

Cumulative SUV histogram
The cumulative SUV histogram was used to analyze the pro-

portion of organ volume exceeding specific SUV thresholds. Fig. 
7 shows cumulative SUV histograms for a BC patient with a right 
breast tumor and no lesions in the left breast. The tumor histo-
gram exhibits a convex downward shape, indicating a higher pro-
portion of tumor volume with SUV values above the threshold. In 
contrast, the healthy breast histogram shows a convex upward 
shape, suggesting a lower proportion of high-SUV regions.

Discussion

Key results
This study introduces a novel automated method for PET im-

Fig. 4. Quantitative results of organ segmentation using Swin-UNETR: loss (A) and dice scores (B) during 20,000 iterations.
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Fig. 5. Results of positron emission tomography/computed tomography alignment using the MIM program for breast (A), and liver 
and spleen (B). In each image, the left side displays results from the MIM program, while the right side shows results from our 
technique.
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Table 2. Comparison of the SUVmax results obtained from the MIM software and our methodology

Patient index Methods for obtaining SUVmax
Target organs

Breast_R Breast_L Liver Spleen Bone marrow
1 MIM program result 12.03 1.59 2.51 1.68 1.50

Program results contour 11.97 1.65 2.48 1.56 1.65
2 MIM program result 4.67 0.66 3.10 1.43 1.13

Program results contour 4.31 0.68 3.66 1.25 1.23
3 MIM program result 10.96 1.96 5.43 4.47 2.60

Program results contour 10.79 2.18 5.98 4.71 2.74
4 MIM program result 7.03 1.14 6.12 2.15 2.46

Program results contour 6.92 1.36 6.44 1.95 2.63
5 MIM program result 1.05 7.38 2.87 2.46 2.32

Program results contour 0.96 7.37 3.06 2.51 2.68
6 MIM program result 7.89 1.99 2.92 2.05 2.70

Program results contour 7.15 1.77 2.06 2.00 2.61
7 MIM program result 6.91 2.54 2.38 2.14 2.29

Program results contour 7.55 2.77 2.18 2.10 2.18
8 MIM program result 5.29 1.50 3.09 2.20 3.90

Program results contour 5.45 1.60 3.12 2.18 4.14
9 MIM program result 4.68 2.58 6.60 3.69 3.19

Program results contour 5.47 2.68 6.99 3.68 3.56
10 MIM program result 1.58 3.61 4.54 1.93 2.10

Program results contour 1.83 3.32 4.19 1.73 2.30
Average difference MIM program result–Program results contour 0.34±0.27 0.15±0.09 0.35±0.25 0.11±0.08 0.19±0.10

Values are presented as number or mean±standard deviation. Each organ was analyzed in 10 patients.
SUVmax, maximum standardized uptake value.

age segmentation and quantitative evaluation based on the Swin 
UNETR architecture. The Swin-UNETR model achieved a dice 
coefficient of 0.9311 and a loss of 0.3813 for precise organ seg-
mentation. PET/CT alignment produced dice scores of 0.9114 
and 0.9315. Comparisons of SUVmax values revealed an average 
difference of 0.23, while SUVmean differences were 0.138 when 
using a single VOI and 0.27 when using organ contours. Tumor 
contouring successfully identified regions where SUVmax exceed-
ed 50%. Additionally, TLG values effectively quantified tumor 
metabolic activity, and cumulative SUV histograms distinguished 
tumor tissue from healthy tissue through distinct patterns.

Interpretation/comparison with previous studies
Previous methods—including thresholding, gradient-based 

techniques, and region growing—suffer from limitations such as 
manual parameter adjustments, sensitivity to noise, and difficulty 
in handling complex structures [13-15]. Our approach improves 
segmentation accuracy by leveraging automated CT-based seg-
mentation applied to PET images, which allows for precise organ 
delineation and accurate SUV extraction. By converting PET pixel 
values to SUVs using DICOM data, our method ensures repro-

ducibility in SUV measurements [16,17]. In contrast to conven-
tional clinical approaches that rely on variable region-of-interest 
selection, our method standardizes the calculation of SUVmax 
and SUVmean for specific organs, thereby enhancing reliability. 
Moreover, analyzing SUVs from both tumor and normal tissues 
offers valuable predictions for postoperative outcomes, given that 
systemic inflammatory responses are key prognostic indicators in 
cancer. 18F FDG PET/CT is widely used for assessing tumor 
metabolism and systemic inflammation, especially in organs such 
as the spleen, liver, and bone marrow, which are pivotal in cancer 
progression.

Beyond SUV analysis, our method incorporates metabolic tu-
mor volume and TLG, both of which are crucial for evaluating tu-
mor burden and treatment response. By integrating SUV and tu-
mor volume, TLG offers insights into tumor aggressiveness; if 
used in radiation therapy planning, this approach may lead to 
more effective treatment strategies.

A comparative analysis revealed differences in SUVmean values 
between our method and commercially available MIM software. 
Because MIM calculates SUVmean using a circular VOI that does 
not fully capture organ shape, slight variations occur. This finding 
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Table 3. SUVmean results for each of the organs analyzed in 10 patients

Patient index Methods for obtaining SUVmean
Target organs

Breast (right) Breast (left) Liver Spleen Bone marrow
1 MIM program result 0.76 0.74 2.18 1.30 1.23

Program results in one VOI 0.84 0.71 1.96 1.30 1.21
Program results contour 1.14 0.81 1.73 1.16 0.98

2 MIM program result 0.57 0.32 1.14 0.98 0.45
Program results in one VOI 0.49 0.27 0.98 0.89 0.44
Program results contour 0.47 0.30 1.11 0.77 0.61

3 MIM program result 1.24 1.53 1.80 2.15 1.13
Program results in one VOI 1.28 1.40 1.85 2.02 1.17
Program results contour 0.60 0.43 2.34 1.38 1.10

4 MIM program result 0.64 0.45 2.06 1.97 2.08
Program results in one VOI 0.54 0.51 1.69 1.71 1.72
Program results contour 0.59 0.45 1.67 1.48 1.37

5 MIM program result 0.55 0.45 2.19 2.12 1.32
Program results in one VOI 0.36 0.41 1.79 1.90 1.07
Program results contour 0.44 0.34 2.02 1.62 1.19

6 MIM program result 0.94 0.76 2.23 1.59 1.67
Program results in one VOI 0.86 0.86 1.92 1.56 1.40
Program results contour 0.59 0.40 1.94 1.39 1.39

7 MIM program result 1.09 0.96 1.56 1.49 0.90
Program results in one VOI 1.13 1.58 1.80 1.66 0.80
Program results contour 0.69 0.65 1.83 1.40 1.32

8 MIM program result 0.88 0.54 2.44 1.90 0.70
Program results in one VOI 0.89 0.53 2.23 1.70 0.60
Program results contour 0.50 0.38 2.13 1.45 1.34

9 MIM program result 0.32 0.41 2.42 1.90 1.77
Program results in one VOI 0.39 0.44 2.24 2.00 1.76
Program results contour 0.40 0.35 2.30 1.84 1.68

10 MIM program result 1.02 1.07 1.38 0.52 0.73
Program results in one VOI 1.02 1.07 1.09 0.44 0.94
Program results contour 0.58 0.68 1.32 0.58 0.75

Average difference MIM program result; program results in one VOI 0.07±0.05 0.11±0.18 0.24±0.10 0.13±0.08 0.14±0.12
MIM program result; program results contour 0.29±0.19 0.26±0.31 0.26±0.16 0.30±0.23 0.27±0.23

Values are presented as number or mean±standard deviation. A comparison of the SUVmean results obtained using the MIM program and our methodology 
using a single VOI, with the SUVmean obtained from the contoured organs shown.
SUVmean, mean standardized uptake value; VOI, volume of interest.

emphasizes the importance of precise VOI selection and contour-
ing techniques when evaluating SUVs, especially for SUVmean 
calculations.

Higher TLG values indicate increased glycolytic activity, sug-
gesting greater tumor aggressiveness, and underscore TLG’s value 
as a biomarker for BC tumor burden and metabolic characteris-
tics. By quantifying metabolic activity, TLG provides valuable in-
formation for treatment planning and monitoring.

Although TLG findings are clinically significant, our current 
study does not include follow-up data on tumor recurrence or pa-
tient mortality. Future research will evaluate the correlation be-

tween TLG and clinical outcomes by incorporating both short-
term data for recurrence assessment and long-term data for sur-
vival analysis, thereby providing deeper insights into the prognos-
tic value of TLG in BC management.

Limitations
Inter-observer agreement could not be assessed because seg-

mentation was performed by a single physician and subsequently 
verified by another, rather than being conducted independently 
by multiple annotators. This approach may introduce potential 
bias in the segmentation process. Future studies that include mul-
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Fig. 6. The tumor with a maximum standardized uptake value greater than the 50% threshold displayed on a breast cancer (BC) 
positron emission tomography image (A) and a BC computed tomography image (B) using the contour method.

AA BB

Table 4. Tumor locations and their TLG values in the 10 patients

Patient index Breast cancer location
TLG

Threshold (40%) Threshold (50%)
1 Right breast cancer in the inner pericentral area 5,794 4,551
2 Right breast cancer in the upper pericentral area 1,714 1,382
3 Right breast cancer in the upper outer area 1,185 889
4 Right breast cancer in the lower center area 1,898 1,296
5 Left breast cancer in the upper outer area 2,052 1,004
6 Right breast cancer in the lower pericentral area 3,098 1,893
7 Right breast cancer in the lower pericentral area 3,513 2,586
8 Right breast cancer in the upper outer area 1,358 733
9 Metastatic lymph node in the right axilla 383 275
10 Left breast cancer in the upper outer area 2,909 2,216

TLG was calculated by setting the maximum SUV threshold at 40% and 50% and calculating the mean SUV.
TLG, total lesion glycolysis; SUV, standardized uptake value.
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tiple independent annotations and calculate agreement metrics 
could further validate the robustness of this segmentation meth-
odology.

Clinical implications
Our method offers several clinical advantages. Automated PET 

segmentation facilitates early cancer detection and diagnosis 
while improving treatment planning. Quantitative metabolic le-
sion evaluation using SUVs and TLG functions as an independent 
prognostic factor that improves patient stratification and monitor-
ing. Additionally, our approach reduces inter-observer variability, 
streamlines workflow, and enhances the efficiency of image inter-
pretation, ultimately leading to better patient management.

Although the training phase of the Swin UNETR model re-
quires substantial computational resources, the inference pro-
cess—where the trained model segments new scans—is highly 
efficient and can be completed within seconds per scan. If further 
validated, this approach could be integrated into clinical programs 
to support automated segmentation. Moreover, applying optimi-
zation techniques such as model pruning and mixed-precision in-
ference could further enhance its real-time applicability in clinical 
workflows. While this study focuses on the feasibility of using 
Swin UNETR for segmentation and SUV quantification, the im-
pact of variations in SUV calculation methods on clinical deci-
sion-making remains to be fully understood. Future research 
should investigate how these variations influence prognosis pre-
diction and treatment response assessment, thereby confirming 
its practical utility in clinical workflows.

Suggestion for further studies
Despite the demonstrated benefits, challenges persist in cases 

with a low signal-to-noise ratio or atypical PET images. Further 
optimization is required to minimize errors during the transfer of 
CT-based contours to PET images. Additionally, we plan to ex-
tend the segmentation to include the lungs and lymph nodes—
common metastatic sites in BC—to improve metastasis detection 
and prognosis prediction. Future research will concentrate on re-
fining the algorithm’s performance and expanding its capabilities 
to manage more complex cases.

Conclusion
This study introduces an automated PET segmentation and 

evaluation method that enhances diagnostic accuracy and sup-
ports treatment planning in BC patients. Further optimization is 
needed to address remaining segmentation challenges and to 
broaden its clinical applications.
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