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Purpose: The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region-of-interest (ROI) de-
termination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning-based quantitative analysis method that
enhances diagnostic and prognostic accuracy.

Methods: We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis.
Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and
bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10
patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those pro-
duced by commercial software.

Results: In a dataset of 10 patients, our method achieved an auto-segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and
mean SUV values from our automated segmentation with those from traditional single-ROI methods revealed differences of 0.19 and 0.16, respectively,
demonstrating improved reliability and accuracy in whole-organ SUV analysis.

Conclusion: This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning-based automated organ segmentation
and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
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Introduction prediction is essential for treatment planning [3]. Key prognostic

factors include tumor size, nuclear grade, axillary lymph node in-

Background volvement, hormone receptor status, and the Ki-67 proliferation
Breast cancer (BC) is the most common cancer among women index [4].

and one of the leading causes of cancer-related deaths worldwide 18F fluorodeoxyglucose positron-emission tomography/com-

[1,2]. With recurrence rates of 20%-30%, accurate prognostic puted tomography (18F-FDG PET/CT) is widely used to evalu-
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ate tumor metabolism, stage cancer, and guide treatment deci-
sions [S]. PET-derived parameters such as standardized uptake
values (SUVs), metabolic tumor volume, and total lesion glycoly-
sis (TLG) have emerged as significant prognostic indicators in
BC [6,7].

Traditional segmentation methods such as region-growing,
thresholding, and level-set techniques have been widely used, yet
they require manual intervention and suffer from interobserver
variability. The Swin UNETR model, which integrates Swin trans-
formers with the UNETR architecture, offers improved spatial
feature representation and enhanced segmentation accuracy.
However, its computational cost and real-world feasibility remain
areas of concern, as discussed later in this study.

Systemic inflammatory responses also influence cancer progres-
sion and prognosis [8]. Biomarkers such as the neutro-
phil-to-lymphocyte ratio and platelet-to-lymphocyte ratio have
been associated with outcomes in multiple cancers [9]. The retic-
uloendothelial system (RES), which includes the bone marrow,
spleen, and liver, plays a key role in systemic inflammation. FDG
PET has been used to evaluate metabolic activity in these organs,
and increased RES activity has been linked to poor prognosis in
BC and other cancers [10,11].

Accurate delineation of BC lesions and RES organs is essential

for quantifying PET parameters. Although manual segmentation by
nuclear medicine physicians is the current gold standard, it is
time-consuming and prone to interobserver variability, which can
lead to potential errors [ 12]. Automated segmentation methods are

therefore necessary to reduce variability and improve efficiency.

Objectives

This study employs the Swin-UNETR architecture to segment
both the breast and RES organs, highlighting their prognostic sig-
nificance. Our goal is to develop an advanced diagnostic and
prognostic system for BC. We aimed to automate the identifica-
tion of tumor location and size using SUVs derived from PET/
CT scans of BC patients. In addition, we developed a computa-
tional tool to calculate SUVs in organs associated with prognosis.

A schematic representation of the study flow is shown in Fig. 1.

Methods

Ethics statement

All patient data used in this research were reviewed and ap-
proved by the Institutional Review Board (IRB) of Ewha Womans
University Mokdong Hospital (IRB no., 2023-07-001-002). Ob-

taining informed consent from individual patients was exempt be-
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Fig. 1. Schematic representation of the study flow. The left panel summarizes the steps involved in the study, while the right panel
illustrates the inherent functionalities of the research findings. CT, computed tomography; PET, positron emission tomography;

SUV, standardized uptake value.
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cause of the retrospective design of this study.

Study design

This study is a retrospective, medical record-based prediction
study. It is reported in accordance with the TRIPOD-artificial in-
telligence (AI) reporting guidelines for articles on deep learning
in the medical field (development or prediction), available at

https://www.tripod-statement.org/.

Setting

Data were collected between 2012 and 2014 from female pa-
tients (mean age, 54.5 + 10.3 years; range, 3377 years) who un-
derwent FDG-PET/CT for initial BC staging at Ewha Womans
University Mokdong Hospital in Korea.

Participants

A total of 60 patients were included in the study. All eligible pa-
tients diagnosed during the study period were included. Among
them, 32 underwent mastectomy, while 28 received breast-con-

serving surgery.

Data source

PET/CT scans were performed using a Siemens Biograph
mCT system (128-slice CT; Siemens Medical Solutions). Patients
fasted for at least 6 hours before scanning, and FDG was adminis-
tered when blood glucose levels were below 140 mg/dL. PET/
CT images were acquired 60 minutes after an intravenous FDG
injection (5.18 MBq/kg), covering the skull base to mid-thigh.
First, non-contrast CT images were obtained (120 kVp, SO mAs,
1.2 pitch), followed by 3D PET image acquisition (2 minutes per
bed position, covering S to 7 positions). PET images were recon-

structed using a 3D-OSEM iterative algorithm (2 iterations, 21
subsets) with time-of-flight and point-spread function correc-

tions.

Outcome variables
The outcome variables included segmentation results, PET/

CT alignment, SUVs, and TLG.

Study size
No sample size estimation was performed, as all eligible sub-

jects were included in the study.
Deep learning models

Auto segmentation

For Al model training, manual segmentation of CT scans from
60 patients was performed using MIM software (MIM Software
Inc.), focusing on the breasts, liver, spleen, and bone marrow. An
experienced physician performed the segmentation, which was
then verified by a second experienced physician. In cases of dis-
crepancy, the 2 physicians reached a consensus. The data were di-
vided into a training set (40 patients), a validation set (10 pa-
tients), and an independent test set (10 patients). The Swin UN-
ETR model, a deep learning architecture that integrates the Swin
Transformer with convolutional neural networks, was employed
for segmentation (Fig. 2).

Encoder: CT images were divided into non-overlapping
2 X2 x2 patches, with each patch represented as a 48-dimensional
feature vector. These patches were embedded into a sequence rep-
resentation and tokenized at a resolution of (H/2xW/2xD/2).
The encoded features were processed through 2 consecutive Swin
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Fig. 2. The architecture (A) and transformer blocks (B) of Swin UNETR. MLP, multilayer perceptron; W-MSA, window-based multi-
head self-attention; SW-MSA, shifted window-based self-attention.
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Transformer blocks that utilized window-based multi-head self-at-
tention (W-MSA) and shifted window-based self-attention (SW-
MSA) (Fig. 2B). A patch-merging layer then reduced the number
of tokens while doubling the feature dimensions, and this process
was repeated 4 times throughout the encoding stage.

Decoder: The encoded features were reshaped to a resolution
of (H/32xW/32xD/32) and processed through residual blocks
comprising 3 x 3 x 3 convolutional layers with instance normal-
ization. These features were then up-sampled using deconvolu-
tional layers and concatenated with outputs from previous stages.
The final encoder output was integrated with these processed fea-
tures and passed through another residual block. A final 1x1x 1
convolutional layer with a SoftMax activation function produced
segmentation probabilities.

Model parameters: Various preprocessing techniques were
employed to enhance segmentation accuracy. Pixel values were
normalized between 0 and 1 by clipping those outside the range
of =175 to 250. CT image resolution was standardized at 1.5 x
1.5x 2.0 mm’, and images were randomly cropped to 96 x 96 x 96.
Data augmentation techniques included random flipping and rota-
tion (with a probability of 0.1) along all 3 axes, and intensity shift-
ing (with a probability of 0.5 and an offset of 0.1). The model was
trained using a combination of dice loss and cross-entropy loss, op-
timized with the Adam optimizer and stabilized using GradScaler
(PyTorch). Training was conducted over 20,000 iterations.

SUV acquisition

PET/CT alignment: To transfer CT-based segmentation to
PET images, multimodal image alignment was performed using
MATLAB’s alignment module. The optimizer was configured
with an initial radius of 0.009, an epsilon of 1.5E-4, and a maxi-
mum of 1,000 iterations for optimal performance. Segmentation
accuracy was evaluated by comparing contour coordinates from
CT-based segmentation using the dice coefficient. PET con-
tours were aligned to CT contours using MIM software, and the
PET/CT alignment metric was used to assess accuracy. This
analysis was conducted on 2 patients, with image details provid-
ed in Table 1.

Convert pixel values to SUVs of PET: SUVs were calculated us-
ing patient-specific parameters extracted from DICOM data

(https:/ /www.dicomstandard.org/ ), including acquisition time,
radiopharmaceutical start time, radionuclide half-life, total dose,
rescale slope, and patient weight. These factors enabled accurate
SUV quantification per voxel, facilitating metabolic activity as-
sessment for each organ. SUVs were body weight-based and com-

puted using the following formula:

(1)

U (pixel value X Dicomrescale factor X Patient weight)

Vbady weight(%) =

—log (2)x(Series time — Radiophamaceutical start time) )

Total dose X e FT®—FDG half life time

where pixel value represents the PET image’s raw intensity, and
the DICOM rescale factor normalizes the pixel arrays. “Series
time” refers to the scan initiation time, while “radiopharmaceutical
start time” marks the time of 18F FDG administration.

Evaluation metrics

Auto segmentation

The Swin-UNETR model was employed to segment the
breasts, spleen, liver, and bone marrow. Evaluation was conducted
qualitatively by comparing predicted CT images with manually
labeled organ structures, and quantitatively by calculating the av-

erage dice coefficient and loss over 20,000 iterations.

Organ-level SUV evaluation

To assess the accuracy of SUV measurements, maximum SUV
(SUVmax) and mean SUV (SUVmean) values were compared
using different PET image analysis methods. SUVmax was ex-
tracted from each contoured organ and compared with values ob-
tained via MIM software, ensuring that the volume of interest
(VOI) excluded adjacent organs. SUVmean was evaluated using:
(1) a single VOI in MIM software, (2) a single VOI in our pro-
gram, and (3) A whole-organ contour in our program.

Both SUVmax and SUVmean were consistently derived across
methods using a fixed 1.2 cm radius VOI centered at each organ’s

centroid. Statistical analysis was performed to characterize the re-

sults.

Table 1. Image size and slice thickness of the PET/CT images from 2 patients were used to verify PET/CT alignment

Patient 1

Patient 2

cT

PET cr PET

Image size (pixels) 512x512x 284
Slice thickness (mm) 3 3

200x200x 283

512x 512 x 462 200x 200 x 284
2 3

CT, computed tomography; PET, positron emission tomography.
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Tumor contour based on SUV

Organ contour labels were aligned with PET images to localize
tumors. By using registered contour labels and SUV maps, tumors
were identified based on threshold values of 40% and 50% of SUV-
max. This approach provided tumor coordinate information and

enabled visualization of tumor size and location on CT images.

Total lesion glycolysis evaluation

TLG quantifies metabolic activity by integrating tumor size and
SUV. It is calculated by multiplying each lesion’s SUV by its corre-
sponding volume and summing these values across all lesions
within a given region of interest. In this study, TLG was measured
using SUV thresholds of 40% and 50%.

Cumulative SUV histogram

The cumulative SUV histogram represents intertumoral hetero-
geneity by plotting the percentage of tumor volume that exceeds
specified SUV thresholds. This method provides a concise summa-
ry of tumor metabolic characteristics. Cumulative SUV histograms
were generated for all segmented organs in PET images.

Python code for this study is available at Supplement 1.

Descriptive statistics were calculated.

Results

Fig. 3 presents the segmentation results for the breast, spleen,

A

Fig. 3. Segmentation results of the Swin-UNETR model: breast (A

liver, and bone marrow using the Swin-UNETR model. The left
images display the organ labels, and the right images show the
predicted segmentation. Fig. 4 provides quantitative results, re-
vealing a maximum dice coefficient of 0.9311 and a minimum
loss of 0.3813, which demonstrates the model’s effectiveness in
accurately segmenting organs with diverse shapes and sizes. These
results were obtained from the validation dataset during the train-

ing process.

A comparison of the dice scores for the CT-based contours gen-
erated by the MIM program versus our alignment program, using
datasets from 2 patients, yielded dice coefficients of 0.9114 and
0.9313, respectively (Fig. 5).

SUVmax comparisons: Table 2 summarizes the SUVmax com-
parisons between the MIM software and our method, showing an
average difference of 0.23 (range, 0.11-0.35). The liver exhibited
the highest difference (0.35) due to its larger volume, whereas the
spleen showed the lowest difference (0.11).

SUVmean comparisons: Table 3 presents the SUVmean com-
parisons. When using a single VOI, the average difference be-
tween our program and the MIM software was 0.138 (range,
0.07-0.24), with the highest variation observed in the liver (0.24)
and the lowest in the right breast (0.07). When using organ con-
tours, the difference increased to an average of 0.27 (range, 0.26—
0.30), with the greatest variation in the spleen (0.30). The differ-
ences between the single VOI and organ contour methods were

9--

), spleen (B), liver (C), and bone marrow (D). In each case, the left

image shows the label, and the right image shows the predicted result.

e-emj.org

5/ 1



em)

Ewha Medical Journal

1.2
1.0 4
0.8 1

| Wy

T T T T T T T T T
0 2,500 5,000 7,500 10,000 12,500 15,000 17,50020,000
Iteration

0.4 1

09 - F"ﬂ W/\ W
\

I

4

T T T T T T T T T
0 2,500 5,000 7,500 10,00012,500 15,000 17,50020,000
Iteration

Fig. 4. Quantitative results of organ segmentation using Swin-UNETR: loss (A) and dice scores (B) during 20,000 iterations.

Fig. 5. Results of positron emission tomography/computed tomography alignment using the MIM program for breast (A

), and liver

and spleen (B). In each image, the left side displays results from the MIM program, while the right side shows results from our

technique.

consistently larger than those observed between the 2 single VOI
methods, highlighting the impact of VOI selection.

Fig. 6 displays the results of contour-based insertion of volu-
metric information, specifically regions with SUVmax exceeding
the 50% threshold based on BC patients’ PET images. This ap-
proach enables the identification of tumor location and size on
both PET and CT images.

Table 4 presents the TLG values obtained for 10 patients, fo-
cusing on the breast region where the tumors were located.

e-emj.org

The cumulative SUV histogram was used to analyze the pro-
portion of organ volume exceeding specific SUV thresholds. Fig.
7 shows cumulative SUV histograms for a BC patient with a right
breast tumor and no lesions in the left breast. The tumor histo-
gram exhibits a convex downward shape, indicating a higher pro-
portion of tumor volume with SUV values above the threshold. In
contrast, the healthy breast histogram shows a convex upward

shape, suggesting a lower proportion of high-SUV regions.

Discussion

This study introduces a novel automated method for PET im-

6/ M1
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Table 2. Comparison of the SUVmax results obtained from the MIM software and our methodology

Target organs

Patient index Methods for obtaining SUVmax

Breast R Breast_L Liver Spleen Bone marrow
1 MIM program result 12.03 1.59 2.51 1.68 1.50
Program results contour 11.97 1.65 2.48 1.56 1.65
2 MIM program result 4.67 0.66 3.10 1.43 1.13
Program results contour 4.31 0.68 3.66 1.25 1.23
3 MIM program result 10.96 1.96 543 4.47 2.60
Program results contour 10.79 2.18 5.98 4.71 2.74
4 MIM program result 7.03 1.14 6.12 2.15 2.46
Program results contour 6.92 1.36 6.44 1.95 2.63
5 MIM program result 1.05 7.38 2.87 2.46 2.32
Program results contour 0.96 7.37 3.06 2.51 2.68
6 MIM program result 7.89 1.99 292 2.05 2.70
Program results contour 7.15 1.77 2.06 2.00 2.61
7 MIM program result 6.91 2.54 2.38 2.14 2.29
Program results contour 7.55 2.77 2.18 2.10 2.18
8 MIM program result 5.29 1.50 3.09 2.20 3.90
Program results contour 5.45 1.60 3.12 2.18 414
9 MIM program result 4.68 2.58 6.60 3.69 3.19
Program results contour 5.47 2.68 6.99 3.68 3.56
10 MIM program result 1.58 3.61 454 1.93 2.10
Program results contour 1.83 3.32 4.19 1.73 2.30
Average difference  MIM program result-Program results contour 0.34+0.27 0.15+0.09 0.35+£0.25 0.11+0.08 0.19+0.10

Values are presented as number or meantstandard deviation. Each organ was analyzed in 10 patients.

SUVmax, maximum standardized uptake value.

age segmentation and quantitative evaluation based on the Swin
UNETR architecture. The Swin-UNETR model achieved a dice
coefficient of 0.9311 and a loss of 0.3813 for precise organ seg-
mentation. PET/CT alignment produced dice scores of 0.9114
and 0.931S. Comparisons of SUVmax values revealed an average
difference of 0.23, while SUVmean differences were 0.138 when
using a single VOI and 0.27 when using organ contours. Tumor
contouring successfully identified regions where SUVmax exceed-
ed 50%. Additionally, TLG values effectively quantified tumor
metabolic activity, and cumulative SUV histograms distinguished

tumor tissue from healthy tissue through distinct patterns.

Interpretation/comparison with previous studies

Previous methods—including thresholding, gradient-based
techniques, and region growing—suffer from limitations such as
manual parameter adjustments, sensitivity to noise, and difficulty
in handling complex structures [13-15]. Our approach improves
segmentation accuracy by leveraging automated CT-based seg-
mentation applied to PET images, which allows for precise organ
delineation and accurate SUV extraction. By converting PET pixel
values to SUVs using DICOM data, our method ensures repro-

e-emj.org

ducibility in SUV measurements [16,17]. In contrast to conven-
tional clinical approaches that rely on variable region-of-interest
selection, our method standardizes the calculation of SUVmax
and SUVmean for specific organs, thereby enhancing reliability.
Moreover, analyzing SUVs from both tumor and normal tissues
offers valuable predictions for postoperative outcomes, given that
systemic inflammatory responses are key prognostic indicators in
cancer. 18F FDG PET/CT is widely used for assessing tumor
metabolism and systemic inflammation, especially in organs such
as the spleen, liver, and bone marrow, which are pivotal in cancer
progression.

Beyond SUV analysis, our method incorporates metabolic tu-
mor volume and TLG, both of which are crucial for evaluating tu-
mor burden and treatment response. By integrating SUV and tu-
mor volume, TLG offers insights into tumor aggressiveness; if
used in radiation therapy planning, this approach may lead to
more effective treatment strategies.

A comparative analysis revealed differences in SUVmean values
between our method and commercially available MIM software.
Because MIM calculates SUVmean using a circular VOI that does
not fully capture organ shape, slight variations occur. This finding

7/ M1
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Table 3. SUVmean results for each of the organs analyzed in 10 patients

Target organs

Patient index Methods for obtaining SUVmean

Breast (right) ~ Breast (left) Liver Spleen Bone marrow
1 MIM program result 0.76 0.74 2.18 1.30 1.23
Program results in one VVOI 0.84 0.71 1.96 1.30 1.21
Program results contour 1.14 0.81 1.73 1.16 0.98
2 MIM program result 0.57 0.32 1.14 0.98 0.45
Program results in one VOI 0.49 0.27 0.98 0.89 0.44
Program results contour 0.47 0.30 1.1 0.77 0.61
3 MIM program result 1.24 1.53 1.80 2.15 1.13
Program results in one VOI 1.28 1.40 1.85 2.02 117
Program results contour 0.60 0.43 2.34 1.38 1.10
4 MIM program result 0.64 0.45 2.06 1.97 2.08
Program results in one VOI 0.54 0.51 1.69 1.71 1.72
Program results contour 0.59 0.45 1.67 1.48 1.37
5 MIM program result 0.55 0.45 2.19 2.12 1.32
Program results in one VOI 0.36 0.41 1.79 1.90 1.07
Program results contour 0.44 0.34 2.02 1.62 1.19
6 MIM program result 0.94 0.76 2.23 1.59 1.67
Program results in one VOI 0.86 0.86 1.92 1.56 1.40
Program results contour 0.59 0.40 1.94 1.39 1.39
7 MIM program result 1.09 0.96 1.56 1.49 0.90
Program results in one VVOI 1.13 1.58 1.80 1.66 0.80
Program results contour 0.69 0.65 1.83 1.40 1.32
8 MIM program result 0.88 0.54 244 1.90 0.70
Program results in one VVOI 0.89 0.53 2.23 1.70 0.60
Program results contour 0.50 0.38 2.13 1.45 1.34
9 MIM program result 0.32 0.41 242 1.90 1.77
Program results in one VOI 0.39 0.44 2.24 2.00 1.76
Program results contour 0.40 0.35 2.30 1.84 1.68
10 MIM program result 1.02 1.07 1.38 0.52 0.73
Program results in one VOI 1.02 1.07 1.09 0.44 0.94
Program results contour 0.58 0.68 1.32 0.58 0.75
Average difference  MIM program result; program results in one VOl 0.07 £ 0.05 0.11+£0.18 0.24£0.10 0.13+£0.08 0.14£0.12
MIM program result; program results contour 0.29+0.19 0.26+0.31 0.26+0.16 0.30+0.23 0.27+0.23

Values are presented as number or meanztstandard deviation. A comparison of the SUVmean results obtained using the MIM program and our methodology
using a single VOI, with the SUVmean obtained from the contoured organs shown.

SUVmean, mean standardized uptake value; VOI, volume of interest.

emphasizes the importance of precise VOI selection and contour-
ing techniques when evaluating SUVs, especially for SUVmean
calculations.

Higher TLG values indicate increased glycolytic activity, sug-
gesting greater tumor aggressiveness, and underscore TLG’s value
as a biomarker for BC tumor burden and metabolic characteris-
tics. By quantifying metabolic activity, TLG provides valuable in-
formation for treatment planning and monitoring.

Although TLG findings are clinically significant, our current
study does not include follow-up data on tumor recurrence or pa-
tient mortality. Future research will evaluate the correlation be-

e-emj.org

tween TLG and clinical outcomes by incorporating both short-
term data for recurrence assessment and long-term data for sur-
vival analysis, thereby providing deeper insights into the prognos-
tic value of TLG in BC management.

Limitations

Inter-observer agreement could not be assessed because seg-
mentation was performed by a single physician and subsequently
verified by another, rather than being conducted independently
by multiple annotators. This approach may introduce potential
bias in the segmentation process. Future studies that include mul-
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Fig. 6. The tumor with a maximum standardized uptake value greater than the 50% threshold displayed on a breast cancer (BC)
positron emission tomography image (A) and a BC computed tomography image (B) using the contour method.

Table 4. Tumor locations and their TLG values in the 10 patients

TLG
Patient index Breast cancer location
Threshold (40%) Threshold (50%)
1 Right breast cancer in the inner pericentral area 5,794 4,551
2 Right breast cancer in the upper pericentral area 1,714 1,382
3 Right breast cancer in the upper outer area 1,185 889
4 Right breast cancer in the lower center area 1,898 1,296
5 Left breast cancer in the upper outer area 2,052 1,004
6 Right breast cancer in the lower pericentral area 3,098 1,893
7 Right breast cancer in the lower pericentral area 3,513 2,586
8 Right breast cancer in the upper outer area 1,358 733
9 Metastatic lymph node in the right axilla 383 275
10 Left breast cancer in the upper outer area 2,909 2,216
TLG was calculated by setting the maximum SUV threshold at 40% and 50% and calculating the mean SUV.
TLG, total lesion glycolysis; SUV, standardized uptake value.
L I L.- ] [N ———
| Right breast Right breast
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o] 80 \
= 70 | ~ 70t
2 60 ‘ PR
S 50} S 50t
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Fig. 7. Cumulative standardized uptake value (SUV) histogram results for a breast cancer patient with a tumor in the right breast. (A)
The x-axis represents the SUV threshold (%) and (B) the x-axis represents absolute SUV values.
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tiple independent annotations and calculate agreement metrics
could further validate the robustness of this segmentation meth-
odology.

Clinical implications

Our method offers several clinical advantages. Automated PET
segmentation facilitates early cancer detection and diagnosis
while improving treatment planning. Quantitative metabolic le-
sion evaluation using SUVs and TLG functions as an independent
prognostic factor that improves patient stratification and monitor-
ing. Additionally, our approach reduces inter-observer variability,
streamlines workflow, and enhances the efficiency of image inter-
pretation, ultimately leading to better patient management.

Although the training phase of the Swin UNETR model re-
quires substantial computational resources, the inference pro-
cess—where the trained model segments new scans—is highly
efficient and can be completed within seconds per scan. If further
validated, this approach could be integrated into clinical programs
to support automated segmentation. Moreover, applying optimi-
zation techniques such as model pruning and mixed-precision in-
ference could further enhance its real-time applicability in clinical
workflows. While this study focuses on the feasibility of using
Swin UNETR for segmentation and SUV quantification, the im-
pact of variations in SUV calculation methods on clinical deci-
sion-making remains to be fully understood. Future research
should investigate how these variations influence prognosis pre-
diction and treatment response assessment, thereby confirming
its practical utility in clinical workflows.

Suggestion for further studies

Despite the demonstrated benefits, challenges persist in cases
with a low signal-to-noise ratio or atypical PET images. Further
optimization is required to minimize errors during the transfer of
CT-based contours to PET images. Additionally, we plan to ex-
tend the segmentation to include the lungs and lymph nodes—
common metastatic sites in BC—to improve metastasis detection
and prognosis prediction. Future research will concentrate on re-
fining the algorithm’s performance and expanding its capabilities

to manage more complex cases.

Conclusion

This study introduces an automated PET segmentation and
evaluation method that enhances diagnostic accuracy and sup-
ports treatment planning in BC patients. Further optimization is
needed to address remaining segmentation challenges and to
broaden its clinical applications.
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