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Correlation matrices serve as fundamental representations of functional brain networks in 
neuroimaging. Conventional analyses often treat pairwise interactions independently within Euclidean 
space, neglecting the underlying geometry of correlation structures. Although recent efforts have 
leveraged the quotient geometry of the correlation manifold, they suffer from computational 
inefficiency and numerical instability, especially in high-dimensional settings. We propose a novel 
geometric framework that uses diffeomorphic transformations to embed correlation matrices into 
a Euclidean space while preserving critical manifold characteristics. This approach enables scalable, 
geometry-aware analyses and integrates seamlessly with standard machine learning techniques, 
including regression, dimensionality reduction, and clustering. Moreover, it facilitates population-
level inference of brain networks. Simulation studies demonstrate significant improvements in both 
computational speed and predictive accuracy over existing manifold-based methods. Applications 
to real neuroimaging data further highlight the framework’s versatility, improving behavioral score 
prediction, subject fingerprinting in resting-state fMRI, and hypothesis testing in EEG analyses. 
To support community adoption and reproducibility, we provide an open-source MATLAB toolbox 
implementing the proposed techniques. Our work opens new directions for efficient and interpretable 
geometric modeling in large-scale functional brain network research.

A widely accepted view of the human brain is that it operates as a network formed by interactions among 
distributed regions1. These interactions are often quantified using second-order statistics, including covariance, 
precision, and correlation matrices, which capture spontaneous fluctuations observed in resting-state functional 
magnetic resonance imaging (rs-fMRI)2 or through electroencephalogram (EEG) and magnetoencephalogram 
(MEG) recordings3,4.

In most studies employing correlation matrices, interactions along individual edges are analyzed either 
independently of other edges5–7 or collectively, to identify sets of edges that interact synergistically6,8. However, 
these approaches often fail to account for the intrinsic dependence structure among edges in a correlation 
matrix. A correlation matrix contains richer information as a whole than its individual pairwise correlations 
suggest, underscoring the need to treat it as a manifold-valued object with well-defined geometric properties.

Mathematically, the correlation matrix belongs to the class of symmetric, positive-definite (SPD) matrices9, 
the collection of which constitutes a Riemannian manifold. This SPD perspective has been actively employed 
across various tasks in brain functional network analysis, including dynamic modeling10, multi-frequency 
network fusion11, multi-site representation learning12, and identification of brain network reconfiguration 
under substance-use disorder13, among recent works. Note that an increasing number of studies have directly 
adopted the SPD-manifold framework for analyzing correlation-valued networks14–17. A significant challenge 
in treating correlation matrices as SPD-manifold objects arises because operations on these matrices often 
yield outputs that deviate from a valid correlation matrix, necessitating post hoc normalization to enforce unit 
diagonal elements. In a previous study18, we addressed this issue by iteratively normalizing the matrices at each 
intermediate step. Although effective in most scenarios, this heuristic lacks mathematical rigor and does not 
guarantee exact solutions.

Unlike the SPD manifold, the space of correlation matrices, referred to as the elliptope19, has received 
relatively limited attention. Only a few notable studies have explored this space, yet these efforts are hindered by 
either undesirable properties or a lack of efficient computational methods20,21. A promising alternative leverages 
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the quotient geometry of the SPD manifold, induced by the affine-invariant Riemannian metric, to represent the 
space of correlation matrices22–24.

Building upon these advancements, our previous study25 incorporated the quotient geometry of the 
correlation manifold into well-known algorithms in machine learning and statistical inference, specifically for 
FC analysis. Despite its mathematical soundness and high performance, this approach faces critical challenges. 
These include computational inefficiency and numerical instability when applied to high-dimensional data, 
raising concerns about the robustness of the results. Addressing these limitations requires new methods to 
enable routine learning tasks at a practical scale.

Recently, novel geometric structures for the correlation manifold based on specialized transformations 
were introduced26. These transformations preserve much of the geometric characteristics of the manifold 
while mapping correlation matrices to vectors by diffeomorphism, allowing the use of Euclidean geometry. 
This framework offers two key advantages: it facilitates the direct application of established algorithms from 
conventional learning paradigms and improves computational efficiency by confining expensive numerical 
operations to a one-time transformation.

The primary objective of the present study is to introduce these theoretical advancements to the neuroimaging 
community and demonstrate how this underutilized framework can enhance statistical learning with correlation-
valued data in population-level FC analysis. The proposed approach achieves substantial computational 
speedups, thereby enabling correlation-based analyses for large-scale network studies, a significant limitation of 
previous methods, including our own.

This study is organized into three main sections. First, we revisit the foundational theory of Riemannian 
geometry and correlation manifolds. Next, we present the novel geometric structures and extend a suite of 
learning algorithms across multiple task categories. Finally, we evaluate the performance of these algorithms 
from computational and theoretical perspectives and apply the proposed pipeline to experimental data. To 
promote broader adoption, all algorithms have been implemented in a MATLAB toolbox (MathWorks, Inc., 
USA), which is freely available on a code-sharing platform for use by the neuroimaging community.

Background
Geometry of SPD and CORR manifolds
Brain functional connectivity (FC) is commonly represented using second-order statistics, such as covariance, 
correlation, or precision matrices. Mathematically, these matrices belong to the class of symmetric positive-
definite (SPD) matrices, which are formally defined as follows:

Definition 1  S n
++ is the space of (n × n) symmetric positive-definite matrices:

	 S n
++ = {X ∈ Rn×n | X = X⊤, λmin(X) > 0},

where λmin(·) denotes the smallest eigenvalue of the matrix.
As a mathematical space, S n

++ has a dimension of (n2 + n)/2 and has attracted significant attention due to 
the frequent occurrence of such matrices in data analysis9. Among the various geometric structures available, 
the affine-invariant Riemannian metric (AIRM)23 is one of the most prominent for S n

++, defining it as a 
Riemannian manifold.

Under AIRM, the geodesic distance dS n
++

(P, Q) between two SPD matrices P, Q ∈ S n
++ is expressed as 

d2
S n

++
(P, Q) = ∥ log(P −1Q)∥2

F , where ∥A∥F =
√

Tr(A⊤A) is the Frobenius norm, and log(·) denotes the 
matrix logarithm27. For any symmetric positive-definite matrix, the matrix logarithm is computed through its 
eigendecomposition, making it a well-defined and computationally feasible operation.

Our primary focus is on representing functional connectivity (FC) using correlation matrices, which 
constitute a specialized subset of SPD matrices. The space of correlation matrices, denoted as C n

++, is formally 
defined as follows:

Definition 2  C n
++ is the space of (n × n) symmetric positive-definite matrices with unit diagonal elements:

	 C n
++ = {X ∈ Rn×n | X ∈ S n

++, diag(X) = 1n},

where diag(A) is a vector consisting of the diagonal elements of matrix A, and 1n is the vector of length n with 
all elements equal to 1.
This definition establishes that C n

++ is a strict subset of S n
++. For illustration, consider the simple case n = 2, 

namely the collection of 2 × 2 SPD and correlation matrices. A convenient way to visualize S 2
++ is as the interior 

of the open upper cone in R39. Let C be a 2 × 2 correlation matrix,

	
C =

(1 r
r 1

)
.

Every matrix in C 2
++ has exactly one free parameter, the off-diagonal element r. Therefore, C 2

++ corresponds to 
a one-dimensional manifold in R3, appearing as an open line segment, as shown in Figure 1.

In more general settings, the space of correlation matrices can be endowed with a Riemannian manifold 
structure via the theory of quotient manifolds. In particular, the quotient-affine metric (QAM)22 inherits the 
affine-invariant Riemannian metric (AIRM) from S n

++ and thereby provides a Riemannian framework for 
correlation matrices.
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Under the QAM, the geodesic distance between P, Q ∈ C n
++ is given by d2

Cn
++

(P, Q) = min d2
S n

++
(P, DQD) 

for D ∈ Dn
++, where Dn

++ represents the set of (n × n) diagonal matrices with strictly positive entries, and 
dS n

++
 denotes the geodesic distance on the SPD manifold under AIRM.

Unlike the direct computation of geodesic distance in S n
++ using AIRM, calculating the geodesic distance 

on C n
++ under QAM involves solving a nonlinear optimization problem. Each iteration of this process requires 

eigendecomposition to compute matrix square roots and logarithms, making the procedure computationally 
intensive. For further details on the AIRM and QAM geometries in the context of FC analysis, we direct readers 
to our earlier works18,25.

New geometries
While the development of QAM geometry offers a promising framework for geometric learning on C n

++, it 
becomes computationally prohibitive as the number of FC matrices matrices or the dimensionality of the regions 
of interest (ROIs) increases. In this section, we examine two alternative geometries for C n

++.
We start by establishing the notations used throughout this section. The Cholesky decomposition is defined as 

the mapping Chol : S n
++ → L n

+ , where L n
+  denotes the set of (n × n) lower-triangular matrices with positive 

diagonal entries. For any Σ ∈ S n
++, the Cholesky decomposition Chol(Σ) = L ensures that Σ = LL⊤. The 

symbols L n
0  and L n

1  represent the sets of lower-triangular matrices with zero diagonals and unit diagonals, 
respectively. Additionally, the operation Diag(·), when applied to a square matrix A, zeros out all off-diagonal 
elements, such that Diag(A)i,j = Ai,j  if i = j and 0 otherwise. These notations will be integral in describing 
and analyzing the alternative geometries for C n

++.
The Euclidean-Cholesky metric (ECM) represents the first of these geometries, which transforms a correlation 

matrix into a lower-triangular matrix with unit diagonals. This transformation is defined as Θ : C n
++ → L n

1  
such that for any C ∈ C n

++,

	 Θ(C) = Diag(Chol(C))−1 · Chol(C).

This mapping ensures that the resulting lower-triangular matrix belongs to L n
1 , facilitating the application of 

Euclidean geometry in this transformed space.
The map Θ is smooth, allowing the use of the vector space structure of L n

1  to define a pullback metric 
through Θ, incorporating the logarithmic transformation of the diagonal elements in L n

1 . Under the ECM 
geometry, the distance between two correlation matrices C1, C2 ∈ C n

++ is defined as

	 dECM(C1, C2) = ∥Θ(C1) − Θ(C2)∥F ,� (1)

where ∥ · ∥F  denotes the standard Frobenius norm. The unique geodesic curve γ : [0, 1] → C n
++ connecting 

the two points C1 and C2 is expressed as

	 γECM(t) = Θ−1 ((1 − t) · Θ(C1) + t · Θ(C2)) ,

with γECM(0) = C1 and γECM(1) = C2. The inverse mapping Θ−1 : L n
1 → C n

++ for any L ∈ L n
1  is explicitly 

available as the following:

	 Θ−1(L) = Diag(LL⊤)−1/2 · LL⊤ · Diag(LL⊤)−1/2,

ensuring that Θ−1 ◦ Θ(C) = C  for all C ∈ C n
++.

Fig. 1.  Visualization of the 2 × 2 symmetric and positive-definite (SPD) manifold as the interior of the 
open upper cone in R3. The dashed gray lines indicate the coordinate axes, and the red line represents the 
correlation manifold, with its endpoints excluded, embedded within the SPD region.
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Building on ECM, the Log-Euclidean Cholesky metric (LEC) introduces a different vector space structure on 
C n

++ by applying the matrix logarithm to Θ. Recall that the logarithm of a square matrix Z is defined through 
the power series:

	
log(Z) =

∞∑
k=1

(−1)k−1

k
(Z − In)k,

where In is the identity matrix of size n × n. This series converges for matrices Z whose eigenvalues lie in the 
positive real half-plane, making it a suitable operation for matrices in S n

++.
Given Z ∈ L n

1 , it follows that Z − In ∈ L n
0  because Z has unit diagonals. Consequently, (Z − In)k  

remains strictly lower-triangular for k < n and becomes the zero matrix for k ≥ n. This property allows the 
matrix logarithm to serve as a smooth mapping from L n

1  to L n
0 , which involves only a finite number of matrix 

powers. The LEC defines the composite mapping log ◦ Θ : C n
++ → L n

0 , which acts as a diffeomorphism and 
equips C n

++ with the pullback metric of the standard Euclidean inner product. The distance between two points 
C1, C2 ∈ C n

++ under the LEC geometry is given by:

	 dLEC(C1, C2) = ∥ log ◦ Θ(C1) − log ◦ Θ(C2)∥F ,� (2)

where ∥ · ∥F  denotes the Frobenius norm. Similar to the ECM framework, the geodesic curve γ : [0, 1] → C n
++ 

under LEC geometry, connecting C1 and C2, is determined as:

	 γLEC(t) = (log ◦ Θ)−1(
(1 − t) · log ◦ Θ(C1) + t · log ◦ Θ(C2)

)
,

where (log ◦ Θ)−1 is the composite inverse of the matrix exponential and Θ, explicitly defined as 
(log ◦ Θ)−1 = Θ−1 ◦ exp. These transformations are illustrated in Figure 2.

We remark the advantages of adopting the geometries described above. First, these geometries exhibit the 
characteristics of standard Euclidean space via diffeomorphic transformations, leading to zero curvature as in 
Euclidean space. This property enables the straightforward application of interpolation, extrapolation, and the 
computation of unique centroids due to the homogeneous space property28. Furthermore, these geometries 
preserve critical manifold properties such as smooth manifold structure, existence and uniqueness of geodesics 
in their respective parametrizations, geodesic completeness, and uniqueness of Fréchet means, the components 
of which form theoretical soundness in many algorithms we introduce later.

Second, these geometries offer significant computational benefits. Both start with the Cholesky decomposition, 
which has a computational complexity of O(n3)29. In the case of the LEC geometry, the log ◦ Θ mapping requires 
an additional matrix logarithm step, with complexity O(nω) for ω ∈ (2, 2.376)30. Once the transformation is 
performed, subsequent computations follow standard multivariate analysis routines in the Euclidean space. In 
contrast, QAM geometry necessitates solving an optimization problem even for basic distance computations, 
making it significantly less efficient. For completeness, we describe memory and storage complexity as well as 
parallelization in the Supplementary Information.

This distinction is illustrated in the following example, where we compute the distance between two correlation 
matrices C1 and C2 ∈ C n

++. Here, C1 is the identity matrix, and C2 is derived from an AR(1) process with 
C2(i, j) = ρ|i−j| for ρ = 0.8. Figure 3 summarizes the average runtime over 50 trials for computing distances 
between perturbed versions of C1 and C2 across varying dimensions n = 10, 20, . . . , 100. The ECM and LEC 
geometries demonstrate remarkable computational efficiency, outperforming QAM geometry by several orders 
of magnitude.

Fig. 2.  Diagram of the transformation process for ECM and LEC geometries. Applying the mapping Θ to 
a full-rank correlation matrix (left) results in a lower-triangular matrix with unit diagonals (middle). The 
subsequent application of the matrix logarithm to L n

1  produces strictly lower-triangular matrices with zero 
diagonals (right).
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Methods
This section introduces several categories of algorithms tailored for analyzing populations of FC matrices, which 
is summarized in Table 1, where each connectivity matrix is treated as an element of C n

++. Throughout this 
section, the symbol d represents a general distance metric, which may correspond to distances defined by the 
ECM or LEC geometries, as described in Equations (1) and (2). Whenever these specific metrics are utilized, 
they will be explicitly indicated.

Exploratory analysis
Consider a random sample of FC representations {Σi}m

i=1 ⊂ C n
++. The initial step in data analysis often 

involves examining the sample’s summary statistics, such as its centroid and dispersion. These are referred to as 
generalized Fréchet means or Lp centers of mass in the context of manifold-valued data analysis28.

The Lp center of mass is defined as the minimizer of the functional:

	
Fp(Σ) = 1

m

m∑
i=1

dp(Σ, Σi),� (3)

Category Function Description

Exploratory Analysis
corr_mean.m compute the Fréchet mean and variation

corr_median.m compute the Fréchet median and variation

Regression

corr_gpreg.m Gaussian process regression

corr_kernreg.m kernel regression

corr_svmreg.m support vector regression

Dimensionality Reduction

corr_ae.m shallow autoencoder

corr_cmds.m classical multidimensional scaling

corr_mmds.m metric multidimensional scaling

corr_pga.m principal geodesic analysis

corr_tsne.m t-stochastic neighbor embedding

Cluster Analysis

corr_kmeans.m k-means clustering

corr_kmedoids.m k-medoids clustering

corr_specc.m spectral clustering

corr_silhouette.m cluster validity index of Silhouette score

corr_CH.m cluster validity index of Calinski and Harabasz

Hypothesis Testing

corr_test2bg.m two-sample test via Biswas-Ghosh method

corr_test2energy.m two-sample test with the energy distance

corr_test2mmd.m two-sample test via maximum mean discrepancy

corr_test2wass.m two-sample test with the Wasserstein distance

Table 1.  Summary of learning algorithm categories for population-level inference using correlation-based 
functional connectivity. The middle column provides the MATLAB function names included in the CORRbox 
package.

 

Fig. 3.  Comparison of average wall-clock runtime over 50 trials for computing the distance between perturbed 
versions of two model correlation matrices, C1 and C2, at varying dimensions n = 10, 20, . . . , 100. The y-axis 
represents the average runtime in seconds, displayed on a base-10 logarithmic scale.
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where p ≥ 1. For p = 2, the minimizer is known as the Fréchet mean (corr_mean.m), which generalizes 
the notion of the mean to general metric spaces. For p = 1, the minimizer of F1(Σ) is called the Fréchet or 
geometric median (corr_median.m), a robust alternative to the Fréchet mean31. The Fréchet variation, which 
measures dispersion, generalizes the concepts of variance and mean absolute deviation for p = 2 and p = 1, 
respectively. Denoting the minimizer of Equation (3) as Σ̂, the Fréchet variation is given by Fp(Σ̂), representing 
the value of the functional at its minimum.

We make a remark that both geometries guarantee the existence of a unique Fréchet mean. However, the 
uniqueness of the Fréchet median requires the assumption that the images of the mappings are not collinear, 
which is rare in practice.

Regression on scalars
Can individual FC predict phenotypic traits? This question falls under the domain of regression analysis, 
which investigates the relationship between individuals’ brain networks and variables of interest. Given a set of 
correlation-based connectivity matrices as independent variables and scalar phenotypes as dependent variables, 
the data pairs (Σi, Yi)m

i=1 ⊂ C n
++ × R are analyzed to identify a function f : C n

++ → R that satisfies

	 Yi = f(Σi) + ϵi,

where ϵi is an additive error term. The function f can be estimated under specific assumptions regarding the 
functional form and error distribution.

We explore three nonlinear regression models within the framework of kernel methods32: (1) Gaussian 
process regression (corr_gpreg.m), (2) kernel regression (corr_kernreg.m), and (3) support vector regression 
(corr_svmreg.m). Two main reasons motivate the inclusion of kernel-based approaches in this context.

First, while linear models are simple and interpretable, they often lack the flexibility required for capturing 
the inherent nonlinear relationships in correlation matrices. Although transformations such as Θ or log ◦ Θ 
could be applied to linear models, they still fail to improve interpretability due to the nonlinear nature of such 
transformations. Additionally, linear models may underperform when modeling the complexities of brain 
connectivity.

Second, kernel methods built on ECM and LEC geometries offer theoretical and practical advantages. Kernel 
methods replace inner products in high-dimensional feature spaces with kernel functions, leveraging the Gram 
matrix K ∈ Rm×m, where Ki,j = k(xi, xj) for some kernel function k(·, ·). For consistent and generalizable 
performance, the Gram matrix must be positive semi-definite33. A positive-definite kernel is a continuous 
function k : X × X → R satisfying

	

m∑
i=1

m∑
j=1

cicjk(xi, xj) ≥ 0

for any x1, . . . , xm ∈ X  and c1, . . . , cm ∈ R. A commonly used positive-definite kernel is the squared 
exponential kernel, which is valid under both ECM and LEC geometries.

The following proposition establishes that the squared exponential kernel is positive-definite, the proof of 
which is available in the Supplementary Information.

Proposition 1  For Ci, Cj ∈ C n
++ and a non-negative constant θ ≥ 0, the squared exponential kernel

	 k(Ci, Cj) = exp
(
−θ · d2

∗(Ci, Cj)
)

� (4)

is a positive-definite kernel when d∗ = dECM or dLEC.
It is important to note that the distance in quotient geometry does not inherently guarantee positive 

definiteness of the induced kernels due to the intrinsic curvature of C n
++. We also emphasize that the three 

regression algorithms discussed, Gaussian process regression, kernel regression, and support vector regression 
rely on several hyperparameters. To optimize these hyperparameters, we utilized 5-fold cross-validation, 
ensuring robust fine-tuning for generalization and performance.

Dimensionality reduction
Visual examination of data distribution is an invaluable step in analyzing complex datasets, as it provides intuitive 
insights into patterns and relationships that might be obscured in high-dimensional representations. The field 
of dimensionality reduction addresses this challenge by focusing on techniques to represent high-dimensional 
data in low-dimensional spaces that are more interpretable by humans34. From a theoretical standpoint, 
dimensionality reduction involves finding a mapping f from the original data space onto Rd, where d = 2, 3 to 
facilitate visualization. This mapping can be defined either explicitly, where the transformation is mathematically 
described, or implicitly, where the relationship is inferred through computational algorithms. Another benefit of 
dimensionality reduction includes mitigating the curse of dimensionality in a non-trivial setting of correlation 
manifold as the number of samples is typically at a much smaller scale than the original dimensionality of the 
manifold induced by the number of variables such as ROI size.

In the context of our work, we leverage the Euclideanization properties of the proposed geometries, ECM and 
LEC, to incorporate several dimensionality reduction algorithms into our analysis toolkit without developing 
dedicated algorithms on C n

++. A list of algorithms capable of defining an explicit form of mapping from C n
++ to 

Rd includes principal geodesic analysis (corr_pga.m)35 and shallow autoencoders (corr_ae.m)36. On the other 
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hand, methods such as classical and metric multidimensional scaling (corr_cmds.m, corr_mmds.m)37, and t-
stochastic neighbor embedding (corr_tsne.m)38 belong to a category of algorithms that do not provide explicit 
mappings.

It is important to emphasize that except for principal geodesic analysis, the dimensionality reduction methods 
integrated into our framework are nonlinear. This nonlinearity is crucial for capturing and representing the low-
dimensional structures embedded within the correlation manifold. These methods are particularly advantageous 
for uncovering complex relationships in data, as they adapt to the curvature and geometry of C n

++, providing a 
more faithful representation of the intrinsic structure of the dataset.

Cluster analysis
Cluster analysis focuses on uncovering the inherent subgroup structure within data when the true labels of 
the data points are unknown39. This type of unsupervised learning is particularly valuable in exploratory data 
analysis, where prior knowledge about the underlying groups is limited. In this context, we emphasize partitional 
clustering algorithms, including geometry-aware version of k-means (corr_kmeans.m)40, k-medoids (corr_
kmedoids.m)41, and spectral clustering (corr_specc.m)42, all of which are designed to identify a predetermined 
number of clusters within a set of correlation matrices.

In partitional clustering, the primary objective is to minimize within-cluster variation while maximizing 
between-cluster separation. Algorithms such as k-means and k-medoids operate by iteratively refining the 
assignment of data points to clusters based on a predefined distance metric. In our case, the Euclideanized metrics 
derived from both geometries are employed. The k-means algorithm uses centroids to represent each cluster, 
which may be unsuitable for non-Euclidean spaces. However, the geometric adaptations in corr_kmeans.m 
ensure compatibility with C n

++. On the other hand, the k-medoids algorithm selects actual data points as cluster 
representatives, providing a robust alternative, especially when data distributions are non-convex or include 
outliers. Spectral clustering further enhances this toolkit by leveraging eigenvalue decomposition on an affinity 
matrix constructed from pairwise distances, allowing for flexible and effective identification of nonlinearly 
separable clusters.

In our context, these clustering methods facilitate the discovery of cohesive yet distinct subpopulations of FC 
patterns. This is particularly valuable in neuroimaging studies, where the data often exhibits high heterogeneity. 
For instance, in research on autism spectrum disorder, identifying meaningful subgroups can provide insights 
into the disorder’s variability across individuals and may even guide personalized therapeutic approaches43.

To evaluate clustering performance, we employ two metrics: the Silhouette score (corr_silhouette.m)44 and 
the Calinski-Harabasz (CH) index (corr_CH.m)45. The Silhouette score measures the degree of cohesion and 
separation within clusters, with higher values indicating well-defined and distinct clusters. It is computed as the 
difference between the average intra-cluster distance and the smallest average inter-cluster distance, normalized 
by the maximum of the two. This score provides an interpretable measure of how similar each data point is to its 
assigned cluster relative to other clusters.

The CH index evaluates clustering quality by comparing the dispersion of data points within clusters to the 
dispersion between clusters. Specifically, it computes the ratio of between-cluster dispersion to within-cluster 
dispersion, scaled by the number of clusters and the total number of data points. Higher CH values indicate 
better-defined cluster structures, making it an effective tool for selecting the optimal number of clusters.

Given the limited a priori knowledge of subgroup characterization in data-driven studies, these indices are 
critical for assessing clustering quality and determining the most appropriate or plausible number of clusters. 
They provide a quantitative basis for validating clustering outcomes, enabling researchers to interpret results 
with greater confidence.

Hypothesis testing
The final set of algorithms pertains to two-sample hypothesis testing, an essential framework for comparing 
two groups of FC matrices to identify statistically significant differences. Consider two sets of correlation 
matrices, C

(1)
1 , . . . , C

(1)
m1  and C

(2)
1 , . . . , C

(2)
m2 , sampled from underlying probability distributions P(1) and 

P(2), respectively. While many two-sample tests focus on differences in means, variances, or other summary 
statistics, our emphasis lies on testing the equality of entire distributions by formulating the null hypothesis 
as H0 : P(1) = P(2). This type of test is particularly relevant for studies involving FC matrices, where the 
data are naturally grouped based on population characteristics such as disease status, cognitive phenotype, or 
experimental condition.

Central to this framework is the concept of measuring dissimilarity D  between two probability distributions. 
This defines a class of two-sample testing algorithms that quantify the extent to which P(1) differs from P(2)46. 
Commonly used measures in the context of correlation matrices under ECM and LEC geometries include:

•	 Maximum mean discrepancy (corr_test2mmd.m) measures differences between distributions in a reproduc-
ing kernel Hilbert space, leveraging kernel-based representations of data.

•	 Wasserstein distance (corr_test2wass.m) captures the minimal cost of transforming one distribution into 
another, often referred to as the “earth mover’s distance.”

•	 Energy distance (corr_test2energy.m) computes pairwise distances between all samples, focusing on differ-
ences in inter-point relationships.

These measures share a crucial property: D ≥ 0, where equality implies that P(1) and P(2) are indistinguishable 
under the specific discrepancy measure. Viewing the two sets of observations as empirical measures:
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P(1) = 1

m1

m1∑
i=1

δ
C

(1)
i

and P(2) = 1
m2

m2∑
j=1

δ
C

(2)
j

,

where δ represents a Dirac mass, the null hypothesis is equivalently tested by checking whether D(P(1),P(2)) = 0.
An alternative perspective is provided by inter-point distance-based methods. Testing the equality of 

distributions can also be formulated by analyzing the distributions of distances d(C(1), C̃(1)), d(C(2), C̃(2)), and 
d(C(1), C(2)), where X̃  represents an independent sample identically distributed as X. This approach underpins 
the Biswas-Ghosh test (corr_test2bg.m)47.

Despite their theoretical soundness, these four tests face practical challenges. The limiting distributions of 
their test statistics are either unknown or are only known under restrictive assumptions, limiting their direct 
application in real-world scenarios. To address this, we adopt a permutation testing framework, a resampling-
based approach that establishes a threshold for the test statistic by permuting class labels48. This method provides 
robust control over Type I error rates without requiring strong parametric assumptions.

We outline a generic pipeline for the resampling procedure, applicable to all four tests introduced in this 
paper. Let Ci = {C

(i)
1 , . . . , C

(i)
mi } represent the two samples for i = 1, 2, and let C = C1 ∪ C2 denote the 

combined dataset with a total size of m1 + m2. Denote T (·, ·) as the mechanism for computing the test statistic 
for one of the four tests. The pipeline proceeds as follows: 

	1.	 Calculate the observed test statistic T̂m1,m2 = T (C1, C2) for the original data.
	2.	 For n = 1, . . . , N  iterations:

•	 Randomly permute the combined dataset C .
•	 Assign m1 observations to C (n)

1  and the remaining m2 observations to C (n)
2 .

•	 Compute the test statistic T (n) = T (C (n)
1 , C (n)

2 ).

	3.	 Calculate the permutation p-value using: 

	
p̂ = 1

N + 1

(
N∑

n=1

I(T̂m1,m2 ≤ T (n)) + 1

)
,

	 where I(·) is the indicator function.

Once a significance level α ∈ (0, 1) is specified, the test based on permutation rejects the null hypothesis of 
equal distributions if p̂ ≤ α. This approach provides strong theoretical guarantees for controlling false positive 
rates49,50.

Permutation-based testing has some advantages. First, it is distribution-free and avoids reliance on asymptotic 
approximations, making it suitable for small sample sizes or data with non-standard distributions. Second, the 
framework is easily adaptable to different test statistics and discrepancy measures. It further accommodates 
complex data structures such as correlation matrices on C n

++.

Results
In this section, we evaluate the proposed methods on real-world neuroimaging tasks, including behavioral 
score prediction, subject fingerprinting, and two-sample hypothesis testing for group differences. These 
tasks represent typical use cases in the field, where efficient processing and analysis of FC data are essential. 
All computations were performed on a consumer-grade laptop (MacBook Air M1 with an 8-core CPU and 
8GB of unified memory), illustrating the computational feasibility of our approach even on modest hardware. 
Benchmark simulation studies assessing the computational gain and estimation accuracy of centroid measures 
are provided in the Supplementary Information.

To demonstrate the utility and versatility of our framework, we employed two publicly available datasets 
spanning different imaging modalities. The first dataset was drawn from the 1200-subject release of the Human 
Connectome Project (HCP) database51. From this cohort, we selected 980 subjects (Age: 28.71 ± 3.71 years, 
range 22–37; Males: 460, Females: 520). Each subject completed two 15-minute resting-state fMRI recordings 
with left-to-right (LR) and right-to-left (RL) phase encoding, resulting in four sessions per subject. The time-
series data were sampled at 0.72 Hz, with 1200 time points per session. We used the version of the extensively 
processed fMRI data where preprocessing followed the HCP minimal preprocessing pipeline and mapped 
the data onto cortical surfaces52. Additional cleaning was performed using the HCP ICA-FIX pipeline, which 
regresses out motion-related artifacts and noise components identified via independent component analysis 
(ICA)53,54.

For network-level FC analysis, time series data were extracted using the Schaefer atlas55, which parcellates 
the cortical surface into 300 regions of interest (ROIs). Principal component analysis (PCA) was applied to 
the time series within each ROI, with the first principal component used to summarize the BOLD signal in 
each region. Empirical correlation matrices based on this parcellation were frequently rank-deficient due to 
the high number of ROIs relative to the available time points. To mitigate this, we applied three covariance 
matrix estimators: (1) Oracle Approximating Shrinkage (OAS)56, (2) Ledoit-Wolf (LW) Shrinkage57, and (3) 
Ridge Estimation58, incorporating a regularization term with τ = 1.0, such that ΣRidge = Σempirical + τ · I . 
All resulting covariance matrices were normalized to adhere to the constraints of C n

++, ensuring unit diagonals.
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The second dataset was the EEG motor movement and imagery dataset59, available through the PhysioNet 
database60. This dataset comprises 64-channel EEG recordings from 109 participants, collected using the 
BCI2000 system61. After excluding six participants due to annotation errors, we retained data from 103 subjects. 
Participants completed motor execution and motor imagery tasks involving fists and feet movements across 14 
experimental sessions. Neural activity was recorded at a sampling rate of 160 Hz. For this analysis, we selected a 
single participant (S001) and focused on the motor imagery tasks.

Preprocessing followed the pipeline outlined in our previous study25. First, 32 channels identified as 
‘bad’ (e.g., flat signals or poor signal-to-noise ratios) were removed. A Butterworth IIR band-pass filter with 
cutoff frequencies at 7 Hz and 35 Hz was applied using a two-pass zero-phase method. The filtered signals 
were segmented into epochs from each stimulus onset to one-second post-stimulus, resulting in 161 temporal 
measurements per epoch. This process yielded 45 samples, with 21 corresponding to feet movements and 
24 to fists. Empirical correlation matrices computed for this dataset were full-rank, eliminating the need for 
regularized correlation estimators.

Experiment 1. Predicting Behavior Score
The first experiment focuses on the predictive modeling of behavior scores using correlation matrices within 
a regression framework. Leveraging the rich data from the Human Connectome Project (HCP), we assessed 
the effectiveness of nonparametric regression models for correlation-valued covariates in predicting behavioral 
outcomes, with a particular emphasis on the Penn Matrix Test (PMAT). The PMAT24 is a cognitive assessment 
tool designed to measure abstract reasoning and problem-solving abilities, serving as a brief version of Raven’s 
Progressive Matrices62. We selected two outcome variables from the dataset: the number of correct responses 
(PMAT_A_CR) and the total number of skipped items (PMAT_A_SI), which serve as indicators of fluid intelligence. 
After excluding three subjects due to missing scores, the final sample consisted of 977 individuals.

Before predictive modeling, we first took a look at potential heterogeneity within the population of 
correlation-based FCs. Specifically, we considered two groups of subjects stratified by their PMAT_A_CR scores, 
selecting individuals from the top and bottom 10% of the score distribution. For each subject, their FC matrix 
was estimated using the oracle-approximating shrinkage estimator, followed by normalization. In Figure 4, we 
present the Fréchet means of the correlation networks for the two groups. To highlight prominent connections, 
each network was binarized by retaining only the top 2% of edges with the largest absolute magnitudes. 
Additionally, we computed the elementwise difference matrix between the two group-level mean FCs. Rows, and 
equivalently columns, of this difference matrix were then sorted and grouped based on a granular parcellation 
of the cerebral cortex into seven functional networks55. Notably, this visualization reveals distinct patterns of 
connectivity differences at a macroscopic level, suggesting that functional architecture varies systematically with 
fluid intelligence.

We compared the performance of our proposed models against two widely used approaches in neuroimaging-
based predictive modeling: connectome-based predictive modeling (CPM)63 and least absolute shrinkage and 
selection operator (LASSO) regression64. Both methods aim to predict behavioral or cognitive outcomes using 
FC matrices derived from preprocessed fMRI data. For both CPM and LASSO, we optimized hyperparameters 
using five-fold cross-validation on the training set, which was constructed by randomly splitting the data into an 
80% training subset and a 20% testing subset.

The CPM approach involves identifying significant brain connections by correlating them with the outcome 
variable, and grouping these connections into positive and negative networks. The summed strengths of these 
networks are used as predictors in a linear regression model to estimate the behavioral outcome. This model 
emphasizes interpretability, as the identified networks provide insights into connectivity patterns associated with 
the behavior in question.

LASSO regression, on the other hand, operates on a design matrix where each row represents the 
vectorized upper triangular part of a correlation connectome. By applying L1-regularization, LASSO shrinks 
the coefficients of less relevant variables toward zero, effectively performing variable selection. The non-zero 

Fig. 4.  Visualization of average correlation networks estimated using oracle-approximating shrinkage 
estimators. The Fréchet means of subjects with (A) the top 10% and (B) the bottom 10% of PMAT_A_CR scores 
were computed under the Euclidean-Cholesky metric. Each correlation matrix was binarized to retain only the 
top 2% of connections with the largest magnitudes. The elementwise difference matrix is shown in (C), where 
each entry represents the absolute difference between the two mean networks. Bounding boxes indicate the 
seven functional networks defined in55.
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coefficients correspond to the most influential features, which are then used to predict the behavioral outcome. 
Cross-validation ensures robust hyperparameter tuning and generalizability, with feature selection repeated 
independently for each fold.

Both CPM and LASSO offer advantages in linking FC patterns to behavior, particularly in terms of simplicity 
and interpretability. CPM highlights key networks by grouping edges into interpretable positive and negative 
categories, while LASSO identifies specific connections with predictive significance.

Table 2 summarizes the accuracy results for the predictive modeling task. It is immediately apparent that the 
nonparametric regression models leveraging the newly introduced geometries outperform the two competing 
models across all outcomes and estimators. This finding aligns with expectations, as nonlinear methods generally 
offer greater flexibility in capturing complex relationships between covariates and outcomes, albeit with a trade-
off in interpretability. The results, derived from test data errors, provide empirical evidence supporting the 
superior predictive power of the proposed regression framework utilizing the two alternative geometries of C n

++.
A noteworthy observation is that CPM consistently demonstrated the poorest performance, even when 

compared to the basic LASSO model applied to half-vectorized covariates. For CPM, we employed default options 
for training and cross-validation and observed that the results varied significantly based on hyperparameter 
configurations. Methodologically, CPM identifies covariates highly correlated with the outcome and aggregates 
them into a single predictive variable. This approach assigns uniform weights to the selected variables while 
setting the coefficients of all others to zero, akin to a standard linear regression model. However, the effectiveness 
of this strategy becomes questionable when applied to the large number of highly correlated covariates 
(O(n2)) inherent in correlation matrices. This limitation likely stems from the well-documented challenges of 
constructing linear regression models with highly correlated variables, highlighting potential drawbacks of CPM 
in this context. We note that the 95% bootstrap confidence interval fo Table 2 is provided in the Supplementary 
Information.

Experiment 2. Fingerprinting
Next, we evaluate the effectiveness of the novel geometric structures in the task of functional connectome 
fingerprinting65, which aims to capture individual variability in FC profiles. The fingerprinting task is formulated 
as follows: for M subjects, each undergoes two independent brain scan sessions, Session 1 and Session 2, 
producing corresponding FC representations. Given an individual’s FC from Session 2, without identifying 
information, the goal is to determine which subject it belongs to by comparing it to the FCs from Session 1 
based on a measure of similarity. This task can be viewed as a multiclass classification problem where each class 
contains a single observation. A 1-nearest neighbor (1-NN) classification method is naturally employed to assign 
the label of the most similar subject to the test sample. Identification accuracy Iacc is calculated as the number 
of correctly identified objects divided by the total number of subjects, and ranges from 0 to 1, with higher values 
indicating better identification accuracy.

In our experiment, we selected 100 unrelated subjects from the Human Connectome Project (HCP) 
dataset. Time series data were extracted from all four sessions of resting-state scans, and correlation-based FC 
representations were constructed for each session using three different estimators: the oracle approximating 
shrinkage (OAS) estimator, the Ledoit-Wolf (LW) estimator, and the L2-regularized Ridge estimator. This 
procedure resulted in four distinct FCs for each subject per estimator. The experimental design considered 12 
combinations of session pairs, where one session served as the training data and another as the test data. To 
streamline the reporting, symmetric pairs, such as (Session 1, Session 2) and (Session 2, Session 1), were treated 
as equivalent. Their identification accuracy scores were averaged, reducing the number of reportable cases to six.

For comparison, we employed the similarity-based fingerprinting approach proposed by65. This method 
identifies the subject corresponding to a query by finding the individual with the maximum Pearson correlation 
coefficient between vectorized FCs. From a machine learning perspective, this approach aligns with a 1-NN 
classification model where vectorized FCs serve as the data and Pearson correlation defines the similarity 
metric. In our adaptation, we retained the identical experimental pipeline but replaced the definition of data and 

Outcome
Correlation
estimator

Geometry

LASSO
Regression CPM

ECM LEC

GP KERN SVR GP KERN SVR

PMAT_A_CR

LW 4.50 4.60 4.41 4.50 4.60 4.44 13.29 32.33

OAS 4.50 4.56 4.50 4.50 4.43 4.45 12.58 28.00

Ridge 4.50 4.56 4.50 4.50 4.59 4.50 9.41 28.73

PMAT_A_SI

LW 3.69 3.90 3.66 3.69 3.79 3.69 5.46 28.36

OAS 3.69 3.91 3.69 3.69 4.13 3.69 11.58 27.06

Ridge 3.69 3.75 3.69 3.69 3.82 3.69 8.57 26.53

Table 2.  Accuracy of fluid intelligence prediction. For each setting, the mean squared error (MSE) between 
the predicted and actual scores on the test data is reported. Across two correlation geometries - the Euclidean-
Cholesky metric (ECM) and the Log-Euclidean Cholesky metric (LEC) - three regression models (Gaussian 
process regression [GP], kernel regression [KERN], and support vector regression [SVR]) were applied to 
correlation-valued functional connectomes estimated using the Ledoit-Wolf estimator (LW), the oracle 
approximating shrinkage estimator (OAS), and the L2-regularized estimator (Ridge) with a penalty τ = 1.
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similarity with the correlation-based FCs and the geometric structures introduced previously. This modification 
allowed us to directly assess how the proposed geometries impact the accuracy of functional connectome 
fingerprinting, providing insights into their utility for capturing individual-specific patterns in FC.

Figure 5 summarizes the experimental results. The patterns observed across different pairs of runs are 
consistent, indicating low heterogeneity in the relative association of FCs across sessions for identification 
purposes. Across all estimators, the baseline method outperformed naive identification based on the Euclidean 
distance between FCs, which aligns with prior expectations and the findings of65. Notably, the incorporation 
of appropriate geometric structures into the space of FCs significantly enhanced performance. While the ECM 
geometry provided marginal improvements (except in the case of the Ridge estimator), the LEC geometry 
demonstrated substantial gains over the baseline method, with identification rates rising from below 75% to 
approximately 90% for both the OAS and LW estimators and even higher for the Ridge estimator.

These findings offer strong empirical support for the effectiveness of novel geometries on the correlation 
manifold in achieving fine-grained classification tasks. Additionally, it is worth noting the near-optimal 
performance of AIRM, which was comparable to LEC. AIRM, as a geometric structure on S n

++, serves as a valid 
distance metric for correlation matrices and has been shown to perform well in similar tasks17. In this study, 
AIRM’s performance closely approached that of LEC, differing only slightly. However, this does not diminish the 
importance of our proposed framework. For example, AIRM does not preserve the correlation structure during 
operations such as mean computation, which limits its utility in specific scenarios compared to the proposed 
geometries.

Experiment 3. Hypothesis Testing
The final experiment focuses on two-sample hypothesis testing to determine whether two sets of correlations 
share the same underlying distribution, using an EEG dataset as the basis for analysis. For each 32-channel 
signal, after removing any bad channels, three types of FC representations were computed: the LW estimator, the 
OAS estimator, and the sample correlation matrix (SCM). After normalization, these representations served as 
inputs for the hypothesis testing framework, enabling a robust assessment of distributional equivalence between 
the two sets of correlations.

Before conducting the hypothesis testing, we visualized the data distributions by projecting them into a 
two-dimensional space using various geometries and algorithms, as illustrated in Figure 6. The resulting 
visualizations reveal noticeable differences in the data distribution shapes depending on the chosen geometry. 
With the ECM geometry, all estimators exhibited some degree of separation between the two classes, suggesting 
distinguishable patterns in the data. In contrast, visualizations based on the LEC geometry showed nearly 
overlapping distributions for the two sets of correlations, indicating reduced separability. This stark contrast 
between the geometries underscores their significant influence on data representation and the subsequent 
interpretability of results.

Next, we performed hypothesis testing to evaluate the equality of distributions using three proposed tests 
under both geometries for all considered estimators. The number of resampling iterations was set to 104 − 1, 
which is adequate for the size of our dataset. Table 3 summarizes the attained empirical p-values after the false 
discovery rate correction66. Notably, the Biswas-Ghosh test rejected the null hypothesis of equal distributions for 
all estimators under the ECM geometry, whereas the LEC geometry showed no statistically significant differences. 
This result aligns with the prior visualizations, reinforcing the conclusion that the choice of geometry strongly 
influences both low-dimensional embeddings and statistical outcomes.

For the other tests, based on MMD and Wasserstein distance, the results were mixed, with some cases 
rejecting the null hypothesis and others failing to do so. While this variability might appear unsatisfactory, it 
highlights critical considerations for practitioners. The MMD test, which relies on kernel methods, is sensitive 

Fig. 5.  Results for the fingerprinting example with different estimators: (A) Ledoit-Wolf (LW), (B) Oracle 
Approximating Shrinkage (OAS), and (C) Ridge. Identification rates for six pairs of runs are reported, where 
each ‘pair’ represents the average of two runs with flipped training and test dataset indices.
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to the choice of kernel and its parameters. We used the squared exponential kernel, as discussed in Proposition 
1, with a default parameter value of θ = 1. This choice likely led to conservative results, as optimal performance 
requires careful tuning of θ, which controls the penalization of distant observations. Adjusting θ to better suit 
the data could improve the sensitivity of the test.

In contrast, the Wasserstein distance-based test rejected the null hypothesis for all combinations. However, 
the p-values obtained from the LEC geometry were notably higher than those from the ECM geometry, 
indicating that the test detected smaller discrepancies under the LEC geometry. The consistent rejection of the 
null hypothesis across all combinations may be attributed to challenges in estimating the Wasserstein distance 
in high-dimensional settings67. The EEG dataset used in this experiment consists of signals from 32 channels, 
resulting in an intrinsic dimensionality of 496 for the correlation FCs, while the sample size is only 45. This 
imbalance between dimensionality and sample size likely complicates the estimation process and hinders the 
ability to draw robust statistical inferences, as evidenced by the observed outcomes. For completeness, we also 
computed raw p-values and the ones adjusted by the Bonferroni correction in the Supplementary Information.

Discussion
The correlation matrix, a fundamental tool in functional network analysis, encapsulates collective information 
that extends beyond independent pairwise correlation coefficients. As such, treating it as a manifold-valued 
object with distinct geometric structures is a natural and advantageous perspective.

Our previous work25 has integrated the quotient geometry of the correlation manifold into machine learning 
and statistical inference, enabling more robust FC analysis. However, challenges like computational inefficiency 
and instability in high-dimensional settings with many ROIs have limited its practical use.

To overcome these limitations, we introduced alternative geometric characterizations of the correlation 
manifold26. These alternatives offer dual advantages: they enable the application of well-established learning 
algorithms in traditional Euclidean settings and provide substantial computational benefits over the quotient 
geometry. Using these advancements, we implemented a suite of computational operations on the correlation 
manifold, including measures of central tendency, cluster analysis, hypothesis testing, and low-dimensional 
embedding. These tools are particularly advantageous for large-scale functional network analyses, where the 
brain is typically divided into hundreds of regions. Consequently, we proposed new techniques for FC and 
statistical learning aimed at population-level inference. The efficacy of these algorithms, grounded in the novel 
geometric structures, was validated using both simulated and real datasets, encompassing a variety of common 
neuroimaging analysis tasks. From a theoretical point, both ECM and LEC geometries employ diffeomorphism, 
which is a smooth bijection with a smooth inverse. This ensures that all statistical information encoded in the 
original correlation matrices, including higher-order interactions, remains fully recoverable.

Geometry ECM LEC

Estimator LW OAS SCM LW OAS SCM

Tests

Biswas-Ghosh 0.0335* 0.0394* 0.0335* 0.4794 0.3920 0.6650

MMD 0.5993 0.3537 1 0.1800 0.3436 0.7204

Wasserstein 0.0018** 0.0018** 0.0024** 0.0097** 0.0032** 0.0335*

Table 3.  Adjusted empirical p-values from the hypothesis testing example with EEG data. (* p < 0.05, ** 
p < 0.01)

 

Fig. 6.  Low-dimensional embedding of EEG hypothesis testing data with different estimators in R2: (A) 
Ledoit-Wolf (LW), (B) Oracle Approximating Shrinkage (OAS), and (C) empirical correlation matrix (SCM). 
Each subplot presents embeddings generated by a combination of different geometries and algorithms.
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Despite these contributions, some questions remain unresolved, opening avenues for future exploration. 
One critical issue is the selection of an appropriate geometry. While our study highlighted the comparative 
advantages of ECM and LEC geometries over QAM and other ambient geometries, no single geometry emerged 
as universally superior. In practical applications, it is often impossible to determine the optimal model in advance, 
and theoretical guarantees are lacking. This makes geometry selection a hyperparameter tuning problem, best 
addressed through data-driven approaches such as cross-validation. Another point of interest is its plausibility 
for deep learning. While deep architectures have been successfully adapted to the SPD space such as SPDNet68 
and graph neural networks69, the diffeomorphic nature of the new geometries on the correlation manifold 
calls for a mathematical investigation into how standard neural network layers can be effectively extended to 
correlation matrices while preserving their geometric constraints.

Beyond the coverage of this paper, these contributions can be applied to a broader range of problems. For 
instance, multi-site harmonization of FC, recently approached from a Riemannian geometric perspective, 
may benefit from the computational efficiencies introduced by our framework. Techniques such as replacing 
centroids with the Fréchet mean and translation operations with parallel transport have been demonstrated on 
the SPD manifold70,71. Our work could facilitate the efficient application of such methods to correlation-valued 
FC. Furthermore, modeling continuous trajectories of dynamic FC72, a task that usually relies on window-based 
segmentation, could be improved through manifold-valued regression.

The potential applications of these computational advancements extend well beyond neuroscience. In finance, 
for example, correlation matrices have long been used to model associations among asset returns, supporting 
tasks such as portfolio optimization, risk assessment, and change-point detection73–75. Climate science could 
benefit from geometric analysis of correlation matrices to study interdependencies among climate variables over 
spatial and temporal scales76,77. The development of scalable and efficient computational pipelines for correlation 
matrix analysis thus holds promise for diverse fields.

To encourage broader adoption and foster further exploration, we have consolidated all the algorithms 
discussed in this paper into a MATLAB toolbox, CORRbox, which is publicly available online. By providing an 
accessible and optimized platform, we aim to democratize the analysis of functional networks and inspire the 
integration of geometric approaches to correlation matrix analysis in a wide array of scientific disciplines. Future 
research could expand this foundation by exploring multi-modal integration, real-time analysis pipelines, and 
deeper theoretical characterizations of manifold structures to further enhance the capabilities and applications 
of these tools.

Data availability
The fMRI and EEG datasets used for the real data analysis are publicly available at ​h​t​t​p​s​:​/​/​w​w​w​.​h​u​m​a​n​c​o​n​n​e​c​t​o​
m​e​.​o​r​g​/​​​​ and https://physionet.org, respectively. The CORRbox toolbox is openly accessible via GitHub at https://
github.com/kisungyou/corrbox, along with illustrative examples.
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