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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder characterized by resting tremor, rigidity, and 
reduced voluntary movement. It affects approximately 
1.0% of individuals aged ≥70 years in Asia and 2.3% of 
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Objective: To evaluate the effect of deep learning (DL)-based artificial intelligence (AI) software on the diagnostic performance 
of radiologists with different experience levels in detecting nigrosome 1 (N1) abnormalities on susceptibility map-weighted 
imaging (SMwI).
Materials and Methods: This retrospective diagnostic case-control study analyzed 139 SMwI scans of 59 patients with 
Parkinson’s disease (PD) and 80 healthy participants. Participants were imaged using 3T MRI, and AI-generated assessments 
for N1 abnormalities were obtained using an AI model (version 1.0.1.0; Heuron Corporation, Seoul, Korea), which utilized 
YOLOX-based object detection and SparseInst segmentation models. Four radiologists (two experienced neuroradiologists 
and two less experienced residents) evaluated N1 abnormalities with and without AI in a crossover study design. Diagnostic 
performance metrics, inter-reader agreements, and reader responses to AI-generated assessments were evaluated.
Results: Use of AI significantly improved diagnostic performance compared with interpretation without it across three 
readers, with significant increases in specificity (0.86 vs. 0.94, P = 0.004; 0.91 vs. 0.97, P = 0.024; and 0.90 vs. 0.97, P = 
0.012). Inter-reader agreement also improved with AI, as Fleiss’s kappa increased from 0.73 (95% confidence interval [CI]: 
0.61–0.84) to 0.87 (95% CI: 0.76–0.99). The net reclassification index (NRI) demonstrated significant improvement in three 
of the four readers. When grouped by experience level, less experienced readers showed greater improvement (NRI = 12.8%, 
95% CI: 0.067–0.190) than experienced readers (NRI = 0.8%, 95% CI: -0.037–0.051). In the less experienced group, reader-
AI disagreement was significantly higher in the PD group than in the normal group (8.1% vs. 3.8%, P = 0.029).
Conclusion: DL-based AI enhances the diagnostic performance in detecting N1 abnormalities on SMwI, particularly benefiting 
less experienced radiologists. These findings underscore the potential for improving diagnostic workflows for PD.
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individuals in Western countries [1]. While the clinical 
diagnostic accuracy of the Movement Disorder Society (MDS) 
Criteria reaches 85% [2-5], differentiating PD from atypical 
Parkinsonism remains challenging. Diagnosis often requires 
prolonged observation of medication response or symptom 
progression. Although recommended, dopamine transporter 
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generated results affected the interpretations of radiologists 
with different levels of expertise.

MATERIALS AND METHODS

Participants
This diagnostic case-control study was conducted at a 

single tertiary center and was approved by our Institutional 
Review Board (IRB No. 2024-01-112). This study was a 
retrospective analysis of a cohort from a prospective study 
(NCT05513794). All participants provided informed consent. 
Those who withdrew consent during the study or were lost 
to follow-up were excluded. Initially, 142 participants were 
enrolled, including 62 patients with PD and 80 clinically 
normal (normal control, NC) patients; three patients with 
PD withdrew consent later. This study included 59 patients 
with clinically diagnosed PD and 80 intentionally enrolled 
NCs. Participants were conveniently sampled during the 
study period, with images acquired between November 7, 
2022, and April 15, 2023, and then retrospectively analyzed 
(Fig. 1).

The inclusion criteria for patients with PD were as follows: 
1) aged ≥19 years, 2) exhibited Parkinson’s symptoms 
(e.g., tremor, rigidity, bradykinesia, gait disturbance) and 
scheduled for MRI, 3) significant reduction in dopamine 
uptake in the bilateral substantia nigra on DaT PET, 4) able 
to read the consent form and participate in a Q&A session, 

(DaT) PET is costly and not widely accessible [2], driving 
the need for alternative diagnostic approaches. 

PD pathology primarily affects the substantia nigra pars 
compacta (SNpc), particularly nigrosome 1 (N1), where 
dopaminergic neuron loss and iron overload occur [6,7]. 
Advanced 3T MRI techniques, including susceptibility-
weighted imaging, gradient recall echo (GRE), and 
quantitative susceptibility mapping (QSM), allow N1 
visualization and differentiation between PD and normal 
conditions [7-13]. Recently, multi-echo susceptibility map-
weighted imaging (SMwI), which utilizes multi-echo GRE 
complex data to provide high susceptibility contrast, has 
enhanced N1 visibility by improving the contrast-to-noise 
ratio and spatial resolution [14,15]. 

However, detecting N1 abnormalities in SMwI remains 
challenging, as it requires precise localization and intensity 
assessment of this small structure [9,15-17]. Experienced 
radiologists often struggle to allocate sufficient time to 
review N1 because of the increasing workload resulting 
from the rising imaging demands [18]. Therefore, deep 
learning (DL)-based artificial intelligence (AI) technologies 
may facilitate faster and more accurate diagnoses. AI has 
already shown potential in detecting aneurysms on brain 
MR angiography [19] and cartilage lesions on knee MRI [20]. 

 This study aimed to evaluate the diagnostic performance 
of commercially available DL-based AI [21] in detecting 
N1 abnormalities. Specifically, we assessed how the AI-

 Excluded due to common exclusion criteria
    • ‌�A history of central nervous system disease or 

cognitive disorder (n = 3)

 Withdrew consent
    • ‌�PD group (n = 3)

Final analysis (n = 139)
• PD group (n = 59)
• NC group (n = 80)

Inclusion criteria for PD group (n = 64)
     • ‌�Age 19 or older
     • ‌�Clinically manifesting Parkinson’s symptoms
     • ‌�Showing a prominent reduction in dopamine uptake 

in the bilateral substantia nigra on DaT PET 
     • ‌�Able to read the consent/explanatory document and 

participate in a Q&A session

Inclusion criteria for NC group (n = 81)
   • ‌�Age 19 or older
   • ‌�No neurological symptoms
   • ‌�No family or diagnostic history of movement disorders
   • ‌�A cross-cultural smell identification test score ≥8
   • ‌�A mini-mental state examination score ≥27

Enrolled (n = 142)
• PD group (n = 62)
• NC group (n = 80)

Fig. 1. Patient selection flow diagram. PD = Parkinson’s disease, NC = normal control, DaT = dopamine transporter 
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and 5) provided written informed consent, or consent 
obtained from a legal guardian if cognitively impaired. 

The inclusion criteria for normal participants were 
as follows: 1) aged ≥19 years, 2) no neurological 
symptoms, 3) no family history or prior diagnosis of 
movement disorders, 4) cross-cultural smell identification 
test score ≥8, 5) mini-mental state examination score 
≥27, and 6) provided informed consent after a detailed 
explanation. No more than 15 participants were included in 
each group, to ensure age diversity. 

The exclusion criteria for both groups were as follows: 
1) history of central nervous system disease or cognitive 
disorder, 2) claustrophobia or mental illness, 3) metallic 
implants, 4) females unwilling to use contraception, 5) 
pregnant or lactating female, and 6) any condition deemed 
unsuitable by the investigator. 

SMwI Data Acquisition
The imaging range was set to sufficiently include the 

midbrain to capture the N1 region, and 1 mm thin-
section non-contrast brain MRI images were obtained. 
The scan plane was an oblique coronal plane aligned 
parallel to the plane from the posterior commissure (PC) 
to the anterosuperior border of the pons, approximately 
perpendicular to the midbrain. Compared to SMwI obtained 
using the conventional anterior commissure-posterior 
commissure (AC-PC) line commonly used in brain MRI, 
SMwI obtained in the oblique coronal plane has been 
shown to result in no significant difference in Parkinson’s 
diagnostic accuracy [22,23]. Imaging was performed using 
a GRE sequence with three echoes. Subsequently, the QSM 
calculated using the iterative least-squares method was used 

to create masks to reconstruct the SMwIs. The settings for 
the 3T scanner (Ingenia CX, Philips Healthcare, Best, the 
Netherlands) were as follows: repetition time = 48 ms; echo 
time = 14, 27, and 40 ms; echo spacing = 13 ms; flip angle = 
20°; slice thickness = 1 mm; matrix size = 384 x 384; and 
field of view = 192 x 192.

AI Software
AI-generated interpretations were obtained using the 

Heuron IPD software (version 1.0.1.0; Heuron Corporation, 
Seoul, Korea) (Fig. 2). This software is based on the same 
core algorithm as described in a recent study by Suh et 
al. [24], which used an updated version trained with 
additional datasets. No data from the present study were 
used for training or adjustment. The system employs two 
AI models that operate independently to interpret SMwI 
images: 1) the YOLOX object detection model [25], which 
selects and analyzes five input slices covering the left or 
right substantia nigra and estimates the probability values 
for N1 abnormalities, and 2) the SparseInst segmentation 
model [26], which calculates the volumetric values of 
N1. For each slice, if the probability value exceeded a 
fixed threshold of 0.2, which was determined through 
internal validation to balance sensitivity and specificity 
while minimizing false negatives, the corresponding N1 
volume was used as a weight. The system then summed the 
weighted probabilities across the five slices for both the 
‘normal’ and ‘abnormal’ classes and assigned the class with 
the highest total as the final prediction for each N1 region 
(left and right) (Supplementary Fig. 1). This threshold 
was fixed and consistently applied across all datasets. The 
technical details and rationale for the AI model design are 

Fig. 2. Automatic detection and classification of nigrosome 1 abnormalities using deep learning models. Output from the deep learning 
model shows the analysis results for detecting abnormalities. SMwI = susceptibility map-weighted imaging
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described in the Supplement. The software does not provide 
interpretive assistance tools, such as abnormality scores or 
saliency maps. 

Image Analysis
Four radiologists participated in the study, two 

experienced neuroradiologists (B.S. with 14-year radiology 
experience and S.Y.W. with 10-year experience, referred to 
as readers A and B, respectively) and two less experienced 
radiology residents (C.Y.L. with 4-year experience and J.Y.P. 
with 3-year experience, referred to as readers C and D, 
respectively). Readers A and B had 3 years and 1 year of 
SMwI experience, respectively. While readers C and D had no 
clinical experience with SMwI, they completed a separate 
training with 10 SMwI cases that were not included as 
study participants before this study. The four radiologists 
were randomly divided into two groups, each including one 
experienced and one less experienced reader. Participants 
were divided into two equal groups. In the crossover design, 
reader group 1 initially evaluated half of the participants 
with AI and the other half without AI, whereas reader group 
2 evaluated the same half in the opposite manner. After 
a 2-month washout period, the assignments and reading 
modes were reversed. 

In the SMwI image, N1 was identified as a hyperintense 
area anterior to the inferior portion of the red nucleus and 
was visualized between the curvilinear hypointense bands. 
Abnormalities were defined as disruptions of the three-layer 
structure (inner, middle, and outer layers) (Fig. 3) [27]. 
The left and right N1 regions were evaluated separately as 
either ‘normal’ or ‘abnormal.’ In AI-assisted interpretation, 
readers reviewed the SMwI and AI-generated assessments 
simultaneously to make their final decisions.

Statistical Analyses 
Clinical and demographic data were compared using 

the Wilcoxon rank-sum and chi-square tests. Diagnostic 
performance (i.e., sensitivity, specificity, and accuracy) was 
assessed by integrating the evaluations of the right and 
left N1 regions using clinical diagnosis and DaT PET results 
as reference standards. Generalized estimating equations 
were used for statistical analysis. Fleiss’ kappa statistics 
measured the inter-reader agreement [28].

To better characterize the interaction between readers 
and the AI, the net reclassification index (NRI) [29] 
was calculated, and disagreements with AI-generated 
assessments were analyzed. Reader interpretations were 
compared with the AI results separately for PD and NC 

A

B

Fig. 3. Representative cases of normal and abnormal nigrosome 1. A: In a clinically normal 57-year-old female without neurological 
symptoms, the AI software detected bilateral normal nigrosome 1 region (arrowheads). The three-layer structure- hypointense inner, 
hyperintense middle, and hypointense outer- is clearly distinguishable anterior and inferior to the red nucleus. B: In a 67-year-old 
male clinically diagnosed with Parkinson’s disease and evaluated with SMwI, the AI software detected bilateral abnormalities in 
the nigrosome 1 region, characterized by disruption of the three distinct layers (arrowheads). AI = artificial intelligence, SMwI = 
susceptibility map-weighted imaging
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cases, with further stratification by reader experience 
level. For the NRI analysis, “PD up” and “NC up” referred 
to cases which AI corrected initial misclassifications 
into PD or NC, respectively, whereas “PD down” and “NC 
down” indicated cases where AI changed a correct initial 
classification to an incorrect one. The NRI was computed 
as the difference between the proportion of improved and 
worsened classifications based on the clinical diagnosis 
as a reference. Confidence intervals (CIs) were estimated 
using the bootstrap method with 1000 re-samples. For 
the disagreement analysis, the proportions of discordant 
interpretations between the readers and AI were compared 
using the chi-square test, and CIs were calculated.

Finally, the standalone performance of the AI model was 
assessed by comparison with a reference standard (i.e., 
clinical diagnosis and DaT PET results). Incorrect AI results 
were reviewed by an expert neuroradiologist (E.Y.K., with 5 
years of SMwI experience) to examine their SMwI findings. 

RESULTS

A total of 139 SMwI scans were analyzed retrospectively, 
including 59 patients with PD (PD group) (50–88 years, 
mean ± standard deviation 71.1 ± 8.9 years; 38 males and 
21 females) and 80 clinically normal participants (NC group) 
(35–85 years, 60.5 ± 16.0 years; 27 males and 53 females). 
The PD group was significantly older than the NC group (P < 
0.001) (Table 1). The average Hoehn and Yahr (H&Y) score 
in the PD group was 2.74 points, with the most common 
score being 3 (26/59, 44.1%).

First, the diagnostic performances of the four readers, 
neuroradiologists A and B and radiology residents C and D, 
were evaluated by comparing their individual interpretations 
of the left or right N1 to the clinical diagnosis, both with and 
without referring to AI. Three of the four readers (A, C, and D) 
showed improved specificity when aided by AI: 0.86 vs. 0.94, 
P = 0.004; 0.91 vs. 0.97, P = 0.024; and 0.90 vs. 0.97, P = 
0.012). Further details are presented in Table 2.

Agreement among all four readers as measured with 
Fleiss’s kappa with corresponding 95% CIs improved with 
AI assistance, from 0.73 (95% CI: 0.61–0.84) without AI 
to 0.87 (95% CI: 0.76–0.99) with AI, based on integrated 
evaluations of the right and left N1 regions. 

To evaluate the readers’ responses to AI suggestions, the 
NRI and disagreement rates were assessed (Tables 3, 4). 
Statistically significant improvements in classification with AI 
(P < 0.05) were observed for readers D (NRI = 15.3%, 95% 
CI: 0.074–0.241), C (NRI = 10.3%, 95% CI: 0.005–0.192), 

Table 1. Study participants

Variable PD group (n = 59) NC group (n = 80) P
Age, yr 71.1 ± 8.87 (50–88) 60.5 ± 15.97 (35–85) <0.001*
Sex <0.001† 

Male 38 (64.4) 27 (33.8)
Female 21 (35.6) 53 (66.3)

H&Y score 2.7 ± 0.63 (1–5) NA NA

Data are presented as mean ± standard deviation with the range in 
parentheses or number of participants (%). 
*Wilcoxon rank sum test, †Chi-square test.
PD = Parkinson’s disease, NC = normal control, H&Y = Hoehn and 
Yahr scale for functional disability staging, NA = not applicable

Table 2. Diagnostic performances of readers with vs. without AI assistance

Performance parameter Reader Without AI With AI P
Sensitivity A 0.93 (0.85–0.97) [110/118] 0.92 (0.83–0.97) [109/118] 0.759 

B 0.96 (0.87–0.99) [113/118] 0.91 (0.81–0.96) [107/118] 0.168 
C 0.80 (0.72–0.91) [94/118] 0.83 (0.74–0.90) [98/118] 0.483 
D 0.84 (0.72–0.91) [99/118] 0.92 (0.84–0.97) [109/118] 0.096 

Specificity A 0.86 (0.77–0.91) [137/160] 0.94 (0.87–0.97) [150/160] 0.004 
B 0.96 (0.89–0.98) [153/160] 0.95 (0.88–0.98) [152/160] 0.764 
C 0.91 (0.84–0.96) [146/160] 0.97 (0.88–0.99) [157/160] 0.024 
D 0.90 (0.82–0.95) [144/160] 0.97 (0.90–0.99) [155/160] 0.012 

Accuracy A 0.89 (0.83–0.93) [247/278] 0.93 (0.88–0.96) [259/278] 0.039 
B 0.96 (0.91–0.98) [266/278] 0.93 (0.88–0.96) [259/278] 0.201 
C 0.86 (0.81–0.90) [240/278] 0.92 (0.87–0.96) [255/278] 0.041 
D 0.87 (0.81–0.92) [243/278] 0.95 (0.90–0.97) [264/278] 0.005 

Values are presented as the proportion with 95% confidence interval in parentheses and numerator/denominator in brackets. Statistical 
analysis was conducted using generalized estimating equations. Readers A and B are experienced neuroradiologists with 14 and 10 years of 
experience, respectively; Readers C and D are relatively less experienced radiology residents with 4 and 3 years of experience, respectively. 
AI = artificial intelligence
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and A (NRI = 7.3%, 95% CI: 0.011–0.141), because their 
95% CIs did not include zero. Reader B showed a negative 
and non-significant NRI (NRI = -5.7%, 95% CI: -0.120–
0.004). When grouped, the less experienced readers (C and 
D) demonstrated a statistically significant NRI (NRI = 12.8%, 
95% CI: 0.067–0.190), whereas the experienced group (A and 
B) did not (NRI = 0.8%, 95% CI: -0.037–0.051). The overall 
NRI across all readers was 6.8% (95% CI: 0.027–0.107), 
also indicating statistical significance. Disagreement 

rates between readers and AI were significantly higher in 
PD cases for reader C (PD: 11.9%, 95% CI: 0.060–0.177; 
NC: 3.1%, 95% CI: 0.004–0.058; P = 0.004) and in less 
experienced groups C and D (PD: 8.1%, 95% CI: 0.046–
0.115; NC: 3.8%, 95% CI: 0.017–0.058; P = 0.029). No 
consistent trends were observed for the other readers. 

Finally, AI-generated assessments were compared with 
the reference standard. Of the 278 cases, the AI-generated 
results were correct in 264 cases (264/278, 95.0%) and 
incorrect in 14 cases (14/278, 5.0%). Among the incorrect 
cases, 6 cases (6/278, 2.2%) were deemed apparent AI 
errors, as the SMwI findings were clearly abnormal (n = 3) 
or normal (n = 3). Six other cases (6/278, 2.2%) had 
ambiguous SMwI findings, which made interpretation by 
human experts challenging. The remaining 2 cases (2/278, 
0.7%), bilateral N1 regions from a single patient, showed 
normal-appearing SMwI; however, the patient was confirmed 
to have PD, highlighting instances in which the disease 
may not be visually apparent on SMwI. 

DISCUSSION

This study revealed that the DL-based AI software 
improved the diagnostic performance of radiologists in 
detecting PD-associated abnormalities when analyzing N1 
on brain MRI. Previous studies have shown that patients 
with PD show decreased hyperintensity of N1, a subregion 
of the SNpc, on SMwI. However, a detailed SNpc analysis 
can be time-consuming and error-prone, particularly 
for those with less expertise. Recently, a DL-based AI 
software was developed to assist radiologists by improving 
object detection using the YOLOX model [24] and precise 
segmentation with SparseInst [25], aiding the classification 
and quantification of N1 abnormalities.

This study compared the diagnostic performances of 
two experienced neuroradiologists (A and B) and two less 
experienced radiology residents (C and D) with and without 
AI assistance. Three (neuroradiologist A and residents C 
and D) of the four readers demonstrated improvements 
in the diagnostic performance with AI. Specifically, AI 
significantly enhanced the specificity and accuracy of 
these readers (P < 0.05), suggesting its potential to 
reduce false-positives and improve diagnostic reliability. 
It also improved inter-reader agreement, as reflected by 
the increased Fleiss’ kappa values and narrower CIs across 
both experienced and less experienced readers. In contrast, 
neuroradiologist B showed a slight decrease in diagnostic 

Table 3. Diagnostic reclassification analysis

NRI (%) 95% CI
By reader A   7.3  0.011–0.141

B  -5.7 -0.120–0.004
C 10.3  0.005–0.192
D 15.3  0.074–0.241

By group A & B   0.8 -0.037–0.051
C & D 12.8  0.067–0.190

By total A–D   6.8  0.027–0.107

NRI by reader and group. Positive values indicate improved 
diagnostic performance with artificial intelligence. 95% CIs were 
calculated using the bootstrap method. Readers A and B are 
experienced neuroradiologists with 14 and 10 years of experience, 
respectively. Readers C and D are less experienced radiology 
residents with 4 and 3 years of experience, respectively.
NRI = net reclassification index, CI = confidence interval

Table 4. Disagreement rate analysis

Disagreement 
rate (%)

95% CI P

By reader A PD   4.2 0.006–0.079 0.766
NC   5.0 0.016–0.084

B PD   4.2 0.006–0.079 0.463
NC   6.3 0.025–0.100

C PD 11.9 0.060–0.177 0.004
NC   3.1 0.004–0.058

D PD   4.2 0.006–0.079 0.956
NC   4.4 0.012–0.075

By group A & B PD   4.2 0.017–0.068 0.460
NC   5.6 0.031–0.082

C & D PD   8.1 0.046–0.115 0.029
NC   3.8 0.017–0.058

By total A–D PD   6.0 0.039–0.082 0.319
NC   4.7 0.031–0.063

Disagreement rates between reader interpretations and artificial 
intelligence results, shown separately for PD and NC. 95% CIs 
and P-values were obtained using the chi-square test. Readers 
A and B are experienced neuroradiologists with 14 and 10 years 
of experience, respectively; readers C and D are less experienced 
radiology residents with 4 and 3 years of experience, respectively. 
PD = Parkinson’s disease, NC = normal control, CI = confidence 
interval
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performance with no statistically significant improvement 
in any metric, indicating that experienced neuroradiologists 
may benefit less from AI or may already operate near ceiling 
performance levels. In addition, the time required to review 
AI-generated outputs may present a potential disadvantage. 
Nonetheless, AI is expected to benefit radiologists across 
all levels of experience in real-world settings. Unlike in 
this study, in which readers focused solely on the N1 
region, real-world practice requires interpreting the entire 
brain across multiple sequences, making it challenging 
to maintain the same level of attention in specific areas. 
In such settings, AI-assistance can enhance diagnostic 
performance. Further evaluations should include large-
scale studies conducted in broader diagnostic environments 
including whole-brain interpretations. 

Analysis of the NRI demonstrated that AI-assistance 
improved diagnostic performance in most readers, with a 
particularly notable effect in the less-experienced group. 
Readers D and C showed the highest NRI values (15.3% 
and 10.3%, respectively), and their combined performance 
yielded a statistically significant improvement (NRI = 
12.8%, 95% CI: 0.067–0.190). In contrast, the experienced 

neuroradiologist group (A and B) showed a minimal NRI 
gain (0.8%, 95% CI: -0.037–0.051), suggesting that AI 
had a more substantial effect on less experienced readers. 
Notably, in the less-experienced group, the disagreement 
rates in the PD cases were significantly higher than those in 
the NC cases (Reader C: 11.9% vs. 3.1%, P = 0.004; Group 
C and D: 8.1% vs. 3.8%, P = 0.029). This likely reflects the 
inherent difficulty in interpreting PD and greater variability 
in judgment among less experienced readers. The higher 
disagreement, along with the improved NRI, suggests that 
AI-assistance may have supported less experienced readers 
in making more accurate decisions in challenging cases, 
thereby contributing to the overall diagnostic improvement.

Discrepancies between AI-generated assessments and the 
reference standard offer insights into the limitations of AI 
software and SMwI. Although the AI results were concordant 
with clinical diagnoses in most cases, a small number of 
discrepancies (5%) were reviewed in detail. Among these, six 
were considered concordant with the SMwI findings of expert 
review, suggesting that the discrepancies may have stemmed 
from AI interpretation.   Owing to the nature of DL-based 
AI, the rationale behind its assessment is often difficult to 

A

B

Fig. 4. Representative cases showing incorrect interpretations by the AI software. A: In the SMwI image of a 41-year-old male with no 
neurological symptoms, the AI software classified the right side as abnormal and the left side as normal. However, the SMwI clearly shows 
a well-defined hyperintense structure corresponding to nigrosome 1 on both sides (arrowheads). The reason for the AI’s misclassification 
of the right side remains unclear. B: In the SMwI image of an 82-year-old female diagnosed with Parkinson’s disease, the AI software 
classified the right side as normal and the left side as abnormal. A focal hyperintensity was observed in the right substantia nigra 
(arrowheads), which the AI likely interpreted as a normal nigrosome 1. However, it is considered a false-negative finding as it is located 
lateral rather than anterior to the red nucleus and lacks a clearly distinguishable three-layer structure. AI = artificial intelligence, SMwI = 
susceptibility map-weighted imaging 
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understand. The source of the discrepancy was unclear in 
most discordant cases (Fig. 4A). In one case in the PD group 
(Fig. 4B), the AI software classified the right side as normal. 
SMwI revealed a hyperintense region in the right substantia 

nigra. However, this region appears before the red nucleus 
disappears, is located laterally rather than anteriorly, and 
lacks a clearly distinguishable three-layer structure, which 
may account for the observed discordance. The training and 

A

B

C

D

Fig. 5. Representative cases showing ambiguous SMwI findings for nigrosome 1. A, B: In the SMwI image of an 80-year-old male 
diagnosed with PD, the AI software classified both sides as normal. In the patient’s SMwI (A) and the magnified images (B), the 
bilateral substantia nigra shows relatively heterogeneous intensity, making interpretation challenging (arrows). Notably, an indistinct 
linear hyperintensity band is observed in the right substantia nigra (arrowheads). Three out of four radiologists initially identified an 
abnormality on the right side without AI but later interpreted it as normal with AI assistance. C, D: In the SMwI image of an 88-year-
old female diagnosed with PD, the AI software classified both sides as normal. In the patient’s SMwI (C) and the magnified image (D), 
an indistinct band-like hyperintensity is observed in the right substantia nigra (arrowheads), suggesting an ambiguous finding, while 
a partially heterogeneous portion is seen in the left substantia nigra (arrow). Two out of four radiologists interpreted the findings 
as bilateral abnormalities without AI but as bilateral normal with AI assistance. SMwI = susceptibility map-weighted imaging, PD = 
Parkinson’s disease, AI = artificial intelligence 
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refinement of AI software with a large volume of additional 
data can help reduce such misinterpretations. However, since 
atypical-looking N1 cases [30] have been reported without 
the characteristic “swallowtail sign,” which is defined by two 
hypointense tails with a hyperintense middle, radiologists’ 
final judgment remains essential even when AI software 
achieves greater accuracy. 

Six other cases were considered difficult to interpret 
because of the ambiguous SMwI findings. Figure 5 illustrates 
examples in which the indistinct and heterogeneous signal 
intensity of the N1 makes it challenging to determine its 
abnormality. These cases also showed high inconsistencies 
between the readers’ interpretations with and without AI. 
This is likely due to the limitations of the SMwI images. 
Addressing this issue could involve improving image quality 
through adjustments to MR parameters or the use of an 
image-quality-enhancing AI software [31]. Two cases 
involved bilateral N1 evaluation of a single patient with PD 
(Fig. 6), showing a discrepancy between the SMwI and DaT 
PET findings. Similar cases of PD with either normal SMwI 
[32] or DaT PET [33] have been reported. These findings 
underscore the need to integrate clinical symptoms with 
multiple diagnostic modalities and ensure sufficient follow-
up for an accurate PD diagnosis.

This study has several limitations. First, the NC group did 
not undergo DaT PET for ethical reasons, which could have 
affected the accuracy of group classification. Additionally, 
other disease groups with negative DaT PET results, such 
as those with essential tremors, were not included, limiting 
the generalizability of the findings to real-world clinical 
settings. Including disease controls and normal controls 
with confirmed negative DaT PET findings could provide 
a more clinically relevant comparison in future studies. 
Second, there was an unbalanced age distribution between 

the patient and healthy subject groups, which may have 
introduced bias and affected the generalizability of the 
findings. However, to date, no studies have reported 
that the diagnostic results of SMwI are influenced by the 
patient’s age or sex. Third, the number of study participants 
was relatively small (n = 139), limiting the statistical power 
of the analysis; the study was conducted at a single center, 
which may not fully represent broader clinical populations. 
These limitations highlight the need for further large-scale, 
multicenter, prospective studies to validate these findings 
and improve their generalizability across diverse settings. 

In conclusion, this study demonstrates that DL-based 
AI software improves the diagnostic performance of 
radiologists in evaluating N1 abnormalities in SMwI, 
particularly benefiting less experienced readers. Despite 
some limitations, these findings highlight the potential of 
AI in enhancing diagnostic accuracy and reducing variability 
in the assessment of PD. Further large-scale studies are 
needed to validate these results and explore broader clinical 
applications.  

Supplement

The Supplement is available with this article at  
https://doi.org/10.3348/kjr.2025.0208.

Availability of Data and Material
The datasets generated or analyzed during the study are not 
publicly available due to ethical restrictions and patient 
privacy concerns but are available from the corresponding 
author on reasonable request.

Conflicts of Interest
The authors have no potential conflicts of interest to 

Fig. 6. Representative case showing a discrepancy between SMwI and DaT PET findings. A 80-year-old female clinically diagnosed with 
Parkinson’s disease was interpreted by the AI software as having bilateral normal findings in the nigrosome 1 region (arrowheads). All four 
radiologists also assessed the findings as normal, both with and without AI. SMwI = susceptibility map-weighted imaging, DaT = dopamine 
transporter, AI = artificial intelligence
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