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Abstract

Background Amyloid PET/CT is essential for quantifying amyloid-beta (AB) deposition in Alzheimer’s disease (AD),
with the Centiloid (CL) scale standardizing measurements across imaging centers. However, MRI-based CL pipelines
face challenges: high cost, contraindications, and patient burden. To address these challenges, we developed a deep
learning-based CT parcellation pipeline calibrated to the standard CL scale using CT images from PET/CT scans and
evaluated its performance relative to standard pipelines.

Methods A total of 306 participants (23 young controls [YCs] and 283 patients) underwent 18 F-florbetaben (FBB)
PET/CT and MRI. Based on visual assessment, 207 patients were classified as AB-positive and 76 as AR-negative. PET
images were processed using the CT parcellation pipeline and compared to FreeSurfer (FS) and standard pipelines.
Agreement was assessed via regression analyses. Effect size, variance, and ROC analyses were used to compare
pipelines and determine the optimal CL threshold relative to visual AR assessment.

Results The CT parcellation showed high concordance with the FS and provided reliable CL quantification (R* = 0.99).
Both pipelines demonstrated similar variance in YCs and effect sizes between YCs and ADCl. ROC analyses confirmed
comparable accuracy and similar CL thresholds, supporting CT parcellation as a viable MRI-free alternative.

Conclusions Our findings indicate that the CT parcellation pipeline achieves a level of accuracy similar to FS in CL
quantification, demonstrating its reliability as an MRI-free alternative. In PET/CT, CT and PET are acquired sequentially
within the same session on a shared bed and headrest, which helps maintain consistent positioning and adequate
spatial alignment, reducing registration errors and supporting more reliable and precise quantification.
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Background

Amyloid positron emission tomography / computed
tomography (PET/CT) imaging has emerged as a pivotal
tool for quantifying amyloid-beta (AP) deposition in vivo,
with significant implications for understanding Alzheim-
er's disease (AD) pathology [1]. This quantification
enables the early detection of AP plaques and facilitates
tracking their progression over time, which is critical for
diagnosis, prognosis, and monitoring treatment effects
[2, 3]. The importance of accurately quantifying AP bur-
den has become even more pronounced with the emer-
gence of monoclonal antibodies such as lecanemab and
donanemab, which target aggregated AP to reduce its
accumulation in the brain [4, 5]. However, variability in
tracers, imaging protocols, and analysis methods ham-
pers cross-center comparisons and meta-analyses. This
variability also complicates the establishment of univer-
sal diagnostic thresholds, highlighting the critical need
for standardized approaches to ensure consistency and
broader applicability in clinical and research settings.

The Centiloid (CL) project was initiated to standardize
the quantification of AP burden across PET/CT imag-
ing centers, addressing variability in tracers and analy-
sis methods [6]. By establishing a standardized pipeline
for cortical standardized uptake value ratios (SUVRs)
and enabling cross-calibration of different tracers, this
approach integrates data onto a unified scale. This frame-
work facilitates comparisons across studies and enhances
the utility of amyloid PET imaging in both clinical and
research settings.

Traditional PET quantification has relied on magnetic
resonance imaging (MRI) as an anatomical reference, but
this requirement presents several challenges. MRI may be
unavailable due to cost, patient burden, or contraindica-
tions such as claustrophobia or medical implants, poten-
tially excluding certain participants and introducing
selection bias [7, 8]. To address these limitations, several
studies have explored MRI-free quantification methods,
utilizing PET-based or CT-based approaches by devel-
oping standardized templates and aligning PET images
with these templates for quantification [9, 10]. Previous
studies have noted that template-based methods may
face limitations in patients with significant brain atrophy,
including reduced spatial accuracy and increased suscep-
tibility to partial volume effects, particularly when spatial
normalization fails to account for severe anatomical dis-
tortions [8, 11].

To address these issues, several studies have attempted
CT-based segmentation using deep learning models
trained on SPM-derived tissue labels, direct application
of SynthSeg to CT, or CT-to-MR translation followed by
MR segmentation. However, these approaches either lack
fine anatomical detail, are prone to segmentation fail-
ures, or require multi-step pipelines [12—14]. In contrast,
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a recently developed deep learning-based (DL-based)
CT parcellation method provides a robust alternative to
traditional MRI-based approaches by directly segment-
ing CT images according to Desikan-Killiany-Tourville
(DKT) atlas, thereby overcoming the limitations of pre-
vious methods [15]. This DL-based approach, which
employs three independent 2D UNet-based segmenta-
tion models to capture multi-view anatomical features,
provides accurate definitions of cortical gyri and main-
tains reliable quantification even in severely deformed
brains, such as those with atrophy or hydrocephalus. The
acquisition of PET and CT in the same session using a
shared scanner bed and headrest helps maintain spa-
tial alignment, thereby reducing errors and improving
reliability. This approach overcomes the limitations of
MRI-free methods while remaining accessible and cost-
effective, making amyloid PET quantification feasible
even for individuals unable to undergo MRI. It may serve
as a useful alternative when MR-based processing is not
feasible and anatomical variation is a concern.

In this study, we implemented a DL-based CT parcel-
lation pipeline calibrated to the standard CL scale using
CT images from PET/CT scans and determined a cut-
off value based on agreement with visual reads. We then
evaluated its performance by comparing it with CL scales
derived from previously established pipelines, assessing
agreement with visual reads, and comparing effect sizes
between AD and non-AD groups.

Methods

Participants

We recruited 23 young controls (YCs) and 283 patients
who presented to our memory clinic with memory com-
plaints and underwent 'F-florbetaben (FBB) PET/CT
and MRI between January 2017 and December 2022.
YCs, defined as those younger than 45 years, had no his-
tory of neurologic or psychiatric disorders, confirmed
normal cognitive function after a clinical evaluation, and
were AP-negative on PET imaging. Of the 283 patients,
207 were AB-positive and 76 were AB-negative based on
visual assessment. In the AP-negative patients (n="76),
70 patients had amnestic mild cognitive impairment
(aMCI), and 6 patients had dementia. Among AP-positive
patients (n=207), 55 patients had AD dementia, and 152
patients had aMCI. Patients who were AB-positive and
diagnosed with either dementia or aMCI were collec-
tively referred to as the AD-related cognitive impairment
(ADCI) group. AD dementia was diagnosed based on the
National Institute on Aging-Alzheimer’s Association cri-
teria for probable AD [16]. Participants with aMCI met
the criteria proposed by Petersen et al. [17]: (1) subjective
memory complaints, (2) relatively normal performance in
other cognitive domains, (3) normal activities of daily liv-
ing (ADL), (4) objective memory impairment below - 1.5
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SD on either verbal or visual memory tests, and (5) not
demented. The following exclusion criteria were applied
to the 283 patients: (1) presence of structural brain
lesions — such as brain tumors, multiple lacunar infarcts,
or cerebral infarctions on MRI — and (2) a time gap of
over one year between the FBB PET/CT scans and MRL

Image acquisition

FBB PET/CT scans were acquired using the Discovery
600 system (GE Healthcare, Milwaukee, WI). A total of
300 MBq of FBB was administered intravenously, and
PET imaging was performed 90 min post-injection for
20 min, followed by a CT scan for attenuation correction.
The CT scan was performed in spiral mode with acquisi-
tion parameters of 0.8 s per rotation, 120 kVp, 200 mA, a
slice thickness of 3.27 mm, a collimation of 10 mm, and
a table feed of 9.375 mm per rotation. The PET images
(matrix size: 256 x 256, voxel size: 0.98 mm x 0.98 mm
x 3.27 mm) were reconstructed using the ordered sub-
set expectation maximization (OSEM) algorithm with
4 iterations and 32 subsets, incorporating attenuation,
scatter, and random corrections. A Gaussian smooth-
ing filter with a full-width at half-maximum (FWHM)
of 4 mm was applied to the reconstructed images. Non-
contrast T1-weighted MRI scans were obtained on a 3-T
MRI system (Ingenia CX or Achieva; Philips Healthcare,
Best, Netherlands) with a matrix of 256 x 256, a field of
view ranging from 230 to 240 mm, a slice thickness of
1.2 mm, and a repetition time/echo time (TR/TE) of
6.9/3.2 milliseconds.

Visual assessment

Visual assessment of FBB PET/CT scans was performed
by two expert nuclear medicine physicians (M. Yun and
T.J. Jeon), both blinded to the amyloid PET quantifica-
tion results. The evaluation employed a standardized
approach based on a regional cortical tracer uptake
(RCTU) scoring system applied to four brain regions
including lateral temporal cortex, frontal cortex, poste-
rior cingulate cortex/precuneus, and parietal cortex. The
RCTU assessments were then integrated into the over-
all brain amyloid plaque load (BAPL) score, leading to a
binary classification of the scans [18, 19]. A BAPL score
of 1 (no AP load) is classified as an AB-negative PET scan,
while BAPL scores of 2 (minor Af load) and 3 (significant
ApB load) are classified as AB-positive PET scans.

Data processing - Centiloid pipeline

All PET and MRI images were processed using an imple-
mentation adapted from the standard CL pipeline with
SPM 12, based on procedures described in [5]. In brief,
each subject’s MRI image was segmented and normalized
to MNI space using SPM12, and the PET image was co-
registered to the corresponding MRI and subsequently
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normalized using the same transformation parameters.
The standard cortical and whole cerebellum reference
regions of interest (ROIs) were downloaded from the
GAAIN website (www.gaain.org). Finally, we calculated
the CL pipeline-derived SUVR (SUVR, 4.rq) in MNI
space using the standard cortical target region and the
whole cerebellum as reference region.

Local pipeline validation procedures

As described in section 2.2.2 of Klunk [6], the first step of
a Level 2 analysis begins with a replication of the Level-1
analysis. To validate our local pipeline, we downloaded
the reference 'C-Pittsburgh Compound-B (PiB) PET
(50-70 min) dataset from GAAIN. Briefly, this dataset
includes 34 young controls (YC) and 45 older adults with
clinically diagnosed AD, which serve as the CL scale’s
anchor points of 0 and 100 units, respectively. We pro-
cessed the downloaded dataset using our local pipeline,
yielding local Level-1 outcomes. We then compared these
local CL values against published CL values. All process-
ing was performed using SPM12 (version 12; https://ww
w.filion.ucl.ac.uk/spm/software/spm12/).

Data processing - FreeSurfer pipeline

We analyzed MRIs using FreeSurfer (ES) v7.4 to gener-
ate a native-space FS atlas for each MRI (http://surfer.nm
rmgh.harvard.edu). We subsequently co-registered FBB
PET images to their corresponding MRIs with SPM12’s
“Coregister: Estimate and Reslice” tool using default
parameters. We then sampled the PET images to assess
the mean tracer uptake in target cortical areas using a
cortical mask made up of FS-defined frontal, cingulate,
lateral parietal, and lateral temporal regions as previ-
ously described [20]. We then assessed the mean tracer
uptake in four reference regions: the whole cerebellum
(WCQC), cerebellar gray matter (CG), pons, and a compos-
ite reference region. The composite reference region was
created by taking the unweighted average of FS-defined
whole cerebellum, brainstem, and eroded subcortical
white matter, following previously established methods
[21, 22]. The eroded subcortical white matter mask was
generated by first smoothing a binarized FS-defined sub-
cortical white matter image to the 8mm? resolution of
the FBB PET image, followed by thresholding at 0.70 to
selectively erode white matter-defining voxels near gray
matter. Using mean tracer uptake in the cortical target
areas and these reference regions, we calculated FS pipe-
line-derived SUVRs (SUVR) for each FBB PET scan.

Data processing - CT parcellation pipeline

We performed CT-based FBB quantification using our
previously developed DL-based CT parcellation method,
utilizing commercially available software (NCM-brain
v2.5, Newcure M, Seoul, Korea). Briefly, the pipeline
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employs three independent 2D U-Net segmentation
networks—one each for axial, sagittal, and coronal CT
slices—each configured with 256 feature channels per
layer to accommodate CT’s lower soft-tissue contrast
[15]. The outputs of these three models are ensembled
to generate a complete 1 mm isotropic 3D brain parcel-
lation, which is then co-registered to PET space. PET
images were sampled using the same cortical mask as
in the FS pipeline to calculate mean tracer uptake in the
target cortical areas. We used the same four reference
regions employed in the FS pipeline — WC, CG, pons, and
the composite reference region. Using the mean tracer
uptake in the cortical target areas and these reference
regions, we calculated CT parcellation pipeline-derived
SUVRs (SUVR(7) for each FBB PET scan. The co-regis-
tration process was omitted as FBB and CT images were
acquired with consistent positioning in a single PET/CT
session, allowing adequate alignment.

Centiloid conversion

We performed a regression on the corresponding
SUVRg and SUVR.y values. From these equations, we
determined the intercept (b) and slope (m), which were
then used to convert SUVRp into SUVR. The conver-
sion equations for SUVR to CL, specifically for WC and
composite reference region, have already been published
[20]. Using these equations, the “calculated” SUVRpg
were subsequently converted into CL units.

For the standard CL pipeline, the FBB tracer is a well-
established surrogate tracer for PiB, and the conversion
equation from the CL pipeline-derived FBB-SUVR to
PiB-SUVR has been validated in previous studies [23].
Thus, the FBB-SUVR,n4arq Values were subsequently
converted into “calculated” PiB-SUVRy, 4..q Values.
Using Eq. 2.2.3 from Klunk et al. [6] and substituting our
Level-1 YC-0 and AD-100 CL values, these “calculated”
PiB-SUVR,1darq Values were converted into CL units.

CL =100 x (PIB - SUVRstandaT‘d -
(2.077 — 1.012)

1.012) /

The standard CL pipeline uses WC as the reference
region and generates a single CL value per patient, abbre-
viated as CLg, 4arq- In contrast, the FS and CT parcella-
tion pipelines, each of which uses four reference regions,
produce CL values abbreviated as CLyg and CL, respec-
tively. Specifically, the FS pipeline produces the following
values: CLgs v (WC), Clgs_cg (CG), CLgg_pons (PONS),
and CLgg o, (composite reference region); and for the
CT parcellation pipeline: CLp_yc (WC), CLer_cg (CGQ),
CLcr_pons (pons), and CLcr_com, (composite reference
region).
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Statistical analysis

Demographic characteristics, including both continu-
ous variables and ordinal variables, were compared using
the Kruskal-Wallis test, with post-hoc comparisons con-
ducted using Dunn’s test with Bonferroni correction. For
two-group comparisons, the Wilcoxon rank-sum test
was used. To compare values against zero, the Wilcoxon
signed-rank test was performed. Correlations between
SUVR values were assessed using linear regression analy-
sis. The effect size between the ADCI and YC groups was
calculated with the following equation:

Effect Size = (pp — ) /
V(o + N0 2) /(N4 Ny = 2)

where ,, p,, are the average SUVR in the ADCI and
YC groups. o 123 , 0 fl are the variance of the ADCI and YC
groups. N, and N, are the number of participants in the
ADCI and YC groups. Effect sizes are computed sepa-
rately for each reference region within the same pipeline,
and their 95% confidence intervals (CIs) were estimated
using non-parametric bootstrapping with 10,000 resa-
mples. Differences in effect sizes were considered statis-
tically significant when the corresponding Cls did not
overlap.

Within the YC group, we evaluated the variance of
each imaging pipeline and reference. First, Levene’s test
was performed to assess homogeneity of variance among
CL values obtained using WC — CLg,4ara» CLeT_wer and
CLps_we- When significant differences were detected,
post-hoc pairwise F-tests were conducted. Next, pair-
wise F-tests were performed to compare the variances
between the two reference regions within each pipe-
line (CLcr_we versus CLcr_comp and CLgg yc versus
CLEs_comp)- P-values for all pairwise comparisons were
adjusted using the Bonferroni correction for multiple
comparisons.

Receiver operating characteristic (ROC) curve analysis
was performed to determine the CL cutoff that showed
the highest agreement with the visual read. Youden’s |
index was calculated as the sum of sensitivity and speci-
ficity minus one, and the threshold maximizing this index
was selected as the optimal cutoff. Classification perfor-
mance was further evaluated using accuracy, sensitivity,
specificity, and the area under the ROC curve (AUC). All
statistical analyses were performed using the R software
(version 4.0, http://www.r-project.org).

Results

Demographics

The baseline demographics and clinical character-
istics of the participants are summarized in Table 1.
There was a significant difference in age between the
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Table 1 Demographics and clinical characteristics of the
participants

YC AB-negative ADCI p-value

N 23 76 207 N/A
Age, years ab 3034798 71.8+7.70 720+£8.18 <0.001
Females, n (%) 14 (61%) 61 (80.3%) 138 (66.7%) 0.054
K-MMSE ¢ 29.8+0491 238+4.19 219+439 <0.001
CDR global <0.001
score ¥P:¢

0 23 0 0

0.5 0 70 151

1 0 5 45

>2 0 1 1

Note: Values are presented as number (%) for categorical variables, mean + SD
for continuous variables, and median (IQR) for ordinal variables (CDR score)

Abbreviations: YC, young control; AB, amyloid beta; ADCI, Alzheimer’s disease-
related cognitive impairment; K-MMSE, Korean version of the Mini-Mental State
Examination; CDR, Clinical Dementia Rating

2 Significant differences between YC and AB-negative
b Significant differences between YC and ADCI

¢ Significant differences between AB-negative and ADCI

150
y = 0.998x + 0.14 o
J —
09
v >
2z
L g
o<
50
m N
I o g I \ I
-50 50 100 150
’ Local CL

-50-

Fig. 1 Plot of CL outcomes derived from Level-1 analysis of the standard
34 YC-0 and 45 AD-100 scans vs. published CL values. Dashed unity lines
have been added to facilitate visual comparison between the axes. The
equation and R? indicate that the local Centiloid pipeline was applied cor-
rectly. Abbreviation: CL, Centiloid; VOI: volume of interest

YC group and both the ApB-negative and ADCI groups.
The Korean version of the Mini-Mental State Examina-
tion (K-MMSE) scores were highest in the order YC, AB-
negative, and ADCI, with significant differences among
all three groups. In contrast, Clinical Dementia Rating
(CDR) global scores were highest in ADCI, followed by
AB-negative and then YC, with significant differences
observed across the three groups.
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Local pipeline validation

Linear regression of the local standard CL level 1 out-
comes against published CL outcomes yielded a fit
equation with slope=0.998, intercept=0.140, and cor-
relation coefficient (R%)=0.996 (Fig. 1). The fit exceeded
the minimum specified acceptance criteria (i.e., R*>0.98,
slope between 0.98 and 1.02, and intercept between
-2 and +2), confirming that the local results derived
from SPM12 were comparable with published CL from
GAAIN.

FreeSurfer versus CT parcellation pipeline

MRI and CT images were segmented using the FS
and CT parcellation pipelines. Both pipelines demon-
strated accurate anatomical segmentation, allowing reli-
able ROI-based quantification (Fig. 2). However, in one
case, a susceptibility artifact on MRI resulted in inac-
curate segmentation by FS; in another case, inaccurate
co-registration between MRI and PET led to unreliable
PET quantification; both cases were removed from fur-
ther analysis (Fig. 3). Following segmentation, the corti-
cal mask of the target regions was applied, and SUVR.,
SUVR¢ were calculated for each reference region. After
plotting SUVRg and SUVR.y, we performed a regres-
sion analysis. Regression analysis between the FS pipe-
line and the CT parcellation pipeline demonstrated high
concordance across all reference regions. Results for WC
and composite reference regions are shown in Fig. 4, and
results for CG and pons are provided in Supplementary
Fig. 1.

Conversion equations
SUVRg and SUVR were plotted and regressed against
each other for WC and the composite reference region.
The slope and intercept values derived from the regres-
sion equations were used to convert SUVR. into “cal-
culated” SUVR. Using the previously known equation
described in previous work, SUVR¢ values were then
converted into CL [20].

For the standard CL pipeline, FBB-SUVR, . 4..q Values
were converted into “calculated” PiB-SUVR q values
[23]:

standar

PiB — SUVRstandard = (FBB - SUVRSt“nd‘"d
~0.39)/0.61

PiB-SUVR,4.rq Were finally converted into CL units.
The final conversion equations are as summarized in
Table 2.

Effect size, variability, and distribution of CL values

The variance in YC reflects the noise inherent in the
quantification method and has been used to evalu-
ate both pipelines and reference regions [6, 24]. In our
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Fig. 2 Cortical mask overlaid on original MRl and CT images. (A) Representative images of MRI after segmentation using the FS pipeline. Left: original MRI
scan; Right: same scan with the cortical mask overlaid, delineating the frontal, cingulate, lateral parietal, and lateral temporal regions. (B) Representative
CT images following segmentation using the CT parcellation pipeline. Left: original CT scan; Right: same scan with the cortical mask overlaid, delineating
the corresponding target regions. Abbreviation: FS, FreeSurfer

study, when using WC as the reference region, both
CLgs and CLr consistently showed the lowest variance
among YC groups (Table 3). When comparing differ-
ent pipelines using WC as the reference region, no sig-
nificant difference was observed between CLpg ¢ and
CLcr_we (@=0.73); however, both CLpg wc (p=0.038)
and CLcp_we (@=0.017) exhibited significantly lower

variance than CLg,, 4ord-

In addition, the effect size between the ADCI and YC
groups was highest with WC in the FS (3.15, 95% CI:
2.62-3.66) and CT parcellation (3.17, 95% CI: 2.65-3.69)
pipelines. When comparing the pipelines using WC as
the reference region, the effect sizes of CLg, 4arq (3.10,
95% CI: 2.58-3.61), CLpg_ywc (3.15, 95% CI: 2.62-3.66)
and CL¢p_yc (3.17, 95% CI: 2.65-3.69) did not differ sig-
nificantly. Overall, WC was determined to be the optimal
reference region in the CT parcellation pipeline, which
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Fig. 3 Representative cases that were excluded from regression analysis. (A) The outlier case from the FS pipeline, showing suboptimal co-registration
between MRIand PET/CT. Left: original MRI with the FS-derived cortical mask; Right: co-registered PET/CT image in which the mask does not align prop-
erly. (B) Case with a pronounced susceptibility artifact on MRI. Left: original MRI displaying the artifact; Right: same MRI with the FS-based cortical mask
applied. (C) Corresponding CT images for the outlier in (A). Left: original CT scan; Right: CT parcellation-derived cortical mask overlaid on the co-registered
PET/CT image. (D) Corresponding CT image for the artifact case in (B). Left: original CT scan; Right: CT parcellation-derived cortical mask overlaid on the
PET/CT image. Both cases illustrated in (A) and (B) were excluded from the regression analysis. Abbreviation: FS, FreeSurfer

WC Composite
Y =1.03X-0.03 Y = 1.01X
R2=0.99 R%=0.99
1.5+
2_
= =
4 4
> S 1.0
2 2
wn wn
1 —
0.5+
T T T T T
1 2 0.5 1.0 1.5
SUVRrs SUVRgs

Fig. 4 Linear regression of SUVR: against SUVR for the whole cerebellum (WC) and the composite reference region. The scatter plots display the re-
lationship between SUVR:s and SUVR; for each reference region. Dashed unity lines have been added to facilitate visual comparison between the axes.
An outlier with inaccurate co-registration (as shown in Fig. 3A and C) is indicated by an orange triangle and black arrow in the scatter plot. Abbreviation:
FS, FreeSurfer; SUVR, FS pipeline-derived standardized uptake value ratio; SUVR, CT parcellation pipeline-derived standardized uptake value ratio; WC,
whole cerebellum; Composite, composite reference region
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Table 2 CL conversion equations with FS and CT-based pipelines for each reference region

Reference region FS pipeline

CT parcellation pipeline Standard CL pipeline

WC CL=157.15x SUVR - 151.87

Composite CL=244.20 x SUVR - 170.80

CL=153.05x SUVR - 143.63 CL=154.0 x SUVR - 155.1
CL=234.01 x SUVR-168.12 N/A

Abbreviations: CL, Centiloid; FS, FreeSurfer; SUVR, standardized uptake value ratio; SUVR, standardized uptake value ratio; WC, whole cerebellum; Composite,

composite reference region

Table 3 CL values across reference regions and groups

Reference region  Clgg Cler Cltandard
wcC Comp WC Comp WC

ADCI

Mean 8527 7853 85.15 7228 83.81

SD 2812 2867 2791 2793 30.70

YC

Mean 0.91 -3.78 0.99 -7.73 -6.66

SD 3.85° 561 3.57° 525 6.83

Effect size 3.15 301 3.17 3.01 3.10

Abbreviations: CL, Centiloid; FS, FreeSurfer; Clgs, FS pipeline-derived CL
value; Clcy, CT parcellation pipeline-derived CL value; ClL,,q.q Centiloid
pipeline-derived CL value; ADCI, patients with AD dementia and mild cognitive
impairment; YC, young control; WC, whole cerebellum; Comp, composite
reference region

2 Significant difference from CL,ngard

demonstrated performance that was similar to either FS
or the standard CL pipeline.

ROC analysis results

Both the FS and CT parcellation pipelines showed com-
parable performance in the ROC analysis. ROC curves
were generated based on visual read outcomes. The AUC
was 0.994 versus 0.995 for the FS and CT parcellation
pipelines, respectively, with the optimal thresholds iden-
tified via Youden’s | index were 29.9 and 29.7. At these
thresholds, FS and CT parcellation exhibited comparable
performance: accuracy — 0.964 versus 0.967; sensitivity —
0.957 versus 0.957; and specificity — 0.980 versus 0.990,
respectively. These results suggest that both pipelines
provide equally robust classification performance for
identifying AP-positive scans, with minimal differences
in AUC, accuracy, sensitivity, and specificity.

Discussion

In this study, we calculated the CL conversion equation
for our recently developed DL-based CT parcellation
method. Using the derived equation, CT parcellation
pipeline-derived CL scales showed high agreement with
the CL scales generated by both FS and the CL pipeline.
Notably, when using WC as the reference region, CLpg
and CLcp demonstrated high concordance, with an R
of 0.99. Furthermore, the optimal thresholds for the two
pipelines were similar (29.9 for CLgg and 29.7 for CL.y),
falling within the previously reported range of 17 to 40
CL, with most studies citing values between 25 and 35
CL [9, 25-29]. This consistency reinforces the validity of
our approach, and its alignment with established visual

cutoffs supports the clinical potential of the CT parcella-
tion pipeline as a viable alternative to the FS pipeline.

Early brain PET quantification relied on template-
based methods, aligning PET images to a standardized
framework for ROI-based analysis. MRI-free approaches
using CT or PET templates have been explored but strug-
gle with accurately defining intricate cortical structures
and are prone to distortions in cases with severe atrophy
or hydrocephalus [8, 11]. Parcellation-based methods,
like FS, improve accuracy by extracting precise ROIs
from MRI. Our CT parcellation method retains these
advantages while eliminating the need for MRI, enhanc-
ing accessibility and robustness [15]. First, the CT par-
cellation pipeline enables rapid and cost-effective CL
quantification for a broader patient population. Unlike
MRI, which requires long scan times and may be inac-
cessible due to cost or contraindications [7, 8], CT scans
are acquired simultaneously during PET/CT scans,
significantly reducing acquisition time and improving
accessibility. This is particularly beneficial following the
introduction of monoclonal antibody therapies, as regu-
lar AB imaging is essential for tracking Ap accumulation.
By enabling AP quantification without high-resolution
MRYI, this approach may facilitate more frequent treat-
ment monitoring, ultimately improving AD manage-
ment. Second, in PET/CT scans, CT and PET images
are acquired sequentially within the same session using
a shared bed and headrest, which helps maintain con-
sistent positioning and facilitates spatial alignment. This
typically results in improved co-registration, supporting
more precise quantification. In contrast, MRI and PET
are susceptible to co-registration failures due to factors
such as noise, limited spatial resolution, and time gaps
between acquisitions. For instance, we observed a case
where accurate co-registration between MRI and PET
failed and resulted in inaccurate quantification (Fig. 3).
Although SPM12, used in the FS pipeline, has been
reported to outperform other tools such as NiftyReg and
Vinci in MRI-PET co-registration accuracy, the FS pipe-
line is still not entirely free from co-registration issues
[30].

As previously mentioned, YC variance and the effect
size between ADCI and YC are key variables used in
cross-sectional studies for comparing reference regions
and pipelines. Klunk et al. previously investigated these
two variables to identify the optimal reference region
for the standard CL pipeline [6]. In this study, the YC
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variance of the standard CL pipeline was significantly
higher than that of both the FreeSurfer and CT parcel-
lation pipelines. Since YC variance reflects the noise
inherent in a quantification method, the template-based
method may be more susceptible to noise—possibly
due to its inability to perform quantification along accu-
rate cortical gyri—compared to the parcellation-based
method. This increased variance might also result from
the fact that the cortical ROI in the standard CL pipe-
line was derived from PiB PET data, which may not fully
apply to FBB PET. Further studies are needed to deter-
mine the superiority between template-based and parcel-
lation-based methods.

Biologically, the cerebellum is favorable because it is
free of AP deposition and exhibits nondisplaceable activ-
ity similar to the target cortical area [31, 32]. Previous
cross-sectional and longitudinal studies have further sup-
ported WC as the most reliable reference region for FBB
[24, 33]. In parallel, recent studies on longitudinal AP
quantification using PiB and '8F-Florbetapir have indi-
cated that a composite reference region, which combines
WC, brainstem, and eroded subcortical white matter,
may offer improved longitudinal stability [20, 21, 34]. In
this study, we compared WC and the composite refer-
ence region; although the difference was not statistically
significant, WC consistently yielded better performance
in terms of YC variance. This may reflect the fact that
subcortical white matter is more susceptible to atrophy,
vascular lesions, and signal spillover [21]. However, our
data were acquired in a single-center dataset with uni-
form acquisition settings. In multi-center studies where
scanner types and participant positioning vary, the com-
posite reference region may offer better longitudinal
consistency.

Regarding the use of CT in neurodegenerative disease
screening, CT-based assessments have shown significant
potential, with recent advancements in DL techniques
further enhancing their capabilities. CT quantification
has demonstrated performance comparable to MRI in
measuring brain atrophy and white matter lesions [35].
Additionally, CT-based volumetric measures can differ-
entiate patients with neurodegenerative diseases from
healthy controls and are strongly associated with cogni-
tive, biochemical, and neuroimaging markers [36]. Our
CT parcellation-based CL approach further extends this
potential by enabling quantitative amyloid PET analy-
sis without the need for MRI, making amyloid burden
assessment more accessible and cost-effective. Moreover,
emerging technologies such as photon-counting CT offer
high-resolution imaging with lower radiation exposure
[37]. As CT resolution and soft tissue contrast continue
to improve, its utility in screening not only for AD but
also for other neurodegenerative diseases may increase
further. Additionally, extracting more information from
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the CT performed simultaneously with PET could enable
a more comprehensive assessment in a single scan, pro-
viding significant benefits for patients.

This study has several limitations. First, we increased
the tube current to 200 mAs for high-quality parcella-
tion, resulting in an effective dose of 0.39 mSv from CT.
However, this additional dose is minimal compared to
the total PET/CT effective dose, which exceeds 4 mSv
[19]. Several recent studies have investigated CT image
denoising techniques aimed at enabling reliable anatomi-
cal analysis from low-dose CT scans [38, 39]. Applying
such denoising methods prior to parcellation may allow
our current pipeline to be extended to dose-reduced CT
images. In addition, recent studies have demonstrated
that PET tracer doses can be substantially reduced to as
low as 12.5% of the original dose without compromis-
ing quantitative accuracy in CL scaling [40]. Together,
these complementary strategies may help minimize
overall radiation exposure in PET/CT protocols and
improve the feasibility of the proposed method in diverse
research and clinical settings. Second, as this is a single-
center study, validation in different centers, with various
PET tracers and scanner modes, is required to establish
broader applicability. Incorporating a more diverse train-
ing dataset — encompassing scans with structural abnor-
malities and those from multiple scanners and tracers
— could improve robustness and broaden clinical appli-
cability. Leveraging publicly available imaging datasets
that include PET/CT and MR scans could enable external
validation and help assess generalizability across diverse
populations and acquisition protocols. Furthermore, our
pipeline is designed specifically for PET/CT data and is
not currently applicable to PET/MRI. Given the increas-
ing adoption of PET/MRI scanners, extending compati-
bility to this modality is an important direction for future
development. Third, although CT and PET are acquired
sequentially using the same headrest and positioning
setup, our pipeline is not entirely free from co-registra-
tion error due to potential patient movement. In addition,
while the CL standard pipeline is based on SPMS, our
analysis employed SPM12. Despite strong agreement in
Level 1 validation, segmentation differences between ver-
sions may introduce methodological variability. Fourth,
we did not directly compare our CT-based pipeline to
PET-only template methods (e.g., rPOP). Although our
high concordance with MRI-guided FreeSurfer supports
the accuracy of CT parcellation, a head-to-head evalua-
tion against PET-only approaches would help determine
which method enables more accurate quantification.
Finally, longitudinal validation of the CL scale is neces-
sary to establish its robustness in tracking A changes
over time. While the CT parcellation pipeline has dem-
onstrated strong performance in cross-sectional studies,
its stability and its comparability to other pipelines for
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monitoring disease progression remain unclear. Further
studies are required to assess whether CL remains sta-
ble in AB-negative individuals and whether it can detect
subtle but clinically meaningful changes in AB-positive
individuals over time.
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