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Abstract
Background  Amyloid PET/CT is essential for quantifying amyloid-beta (Aβ) deposition in Alzheimer’s disease (AD), 
with the Centiloid (CL) scale standardizing measurements across imaging centers. However, MRI-based CL pipelines 
face challenges: high cost, contraindications, and patient burden. To address these challenges, we developed a deep 
learning-based CT parcellation pipeline calibrated to the standard CL scale using CT images from PET/CT scans and 
evaluated its performance relative to standard pipelines.

Methods  A total of 306 participants (23 young controls [YCs] and 283 patients) underwent 18 F-florbetaben (FBB) 
PET/CT and MRI. Based on visual assessment, 207 patients were classified as Aβ-positive and 76 as Aβ-negative. PET 
images were processed using the CT parcellation pipeline and compared to FreeSurfer (FS) and standard pipelines. 
Agreement was assessed via regression analyses. Effect size, variance, and ROC analyses were used to compare 
pipelines and determine the optimal CL threshold relative to visual Aβ assessment.

Results  The CT parcellation showed high concordance with the FS and provided reliable CL quantification (R² = 0.99). 
Both pipelines demonstrated similar variance in YCs and effect sizes between YCs and ADCI. ROC analyses confirmed 
comparable accuracy and similar CL thresholds, supporting CT parcellation as a viable MRI-free alternative.

Conclusions  Our findings indicate that the CT parcellation pipeline achieves a level of accuracy similar to FS in CL 
quantification, demonstrating its reliability as an MRI-free alternative. In PET/CT, CT and PET are acquired sequentially 
within the same session on a shared bed and headrest, which helps maintain consistent positioning and adequate 
spatial alignment, reducing registration errors and supporting more reliable and precise quantification.
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Background
Amyloid positron emission tomography / computed 
tomography (PET/CT) imaging has emerged as a pivotal 
tool for quantifying amyloid-beta (Aβ) deposition in vivo, 
with significant implications for understanding Alzheim-
er’s disease (AD) pathology [1]. This quantification 
enables the early detection of Aβ plaques and facilitates 
tracking their progression over time, which is critical for 
diagnosis, prognosis, and monitoring treatment effects 
[2, 3]. The importance of accurately quantifying Aβ bur-
den has become even more pronounced with the emer-
gence of monoclonal antibodies such as lecanemab and 
donanemab, which target aggregated Aβ to reduce its 
accumulation in the brain [4, 5]. However, variability in 
tracers, imaging protocols, and analysis methods ham-
pers cross-center comparisons and meta-analyses. This 
variability also complicates the establishment of univer-
sal diagnostic thresholds, highlighting the critical need 
for standardized approaches to ensure consistency and 
broader applicability in clinical and research settings.

The Centiloid (CL) project was initiated to standardize 
the quantification of Aβ burden across PET/CT imag-
ing centers, addressing variability in tracers and analy-
sis methods [6]. By establishing a standardized pipeline 
for cortical standardized uptake value ratios (SUVRs) 
and enabling cross-calibration of different tracers, this 
approach integrates data onto a unified scale. This frame-
work facilitates comparisons across studies and enhances 
the utility of amyloid PET imaging in both clinical and 
research settings.

Traditional PET quantification has relied on magnetic 
resonance imaging (MRI) as an anatomical reference, but 
this requirement presents several challenges. MRI may be 
unavailable due to cost, patient burden, or contraindica-
tions such as claustrophobia or medical implants, poten-
tially excluding certain participants and introducing 
selection bias [7, 8]. To address these limitations, several 
studies have explored MRI-free quantification methods, 
utilizing PET-based or CT-based approaches by devel-
oping standardized templates and aligning PET images 
with these templates for quantification [9, 10]. Previous 
studies have noted that template-based methods may 
face limitations in patients with significant brain atrophy, 
including reduced spatial accuracy and increased suscep-
tibility to partial volume effects, particularly when spatial 
normalization fails to account for severe anatomical dis-
tortions [8, 11].

To address these issues, several studies have attempted 
CT-based segmentation using deep learning models 
trained on SPM-derived tissue labels, direct application 
of SynthSeg to CT, or CT-to-MR translation followed by 
MR segmentation. However, these approaches either lack 
fine anatomical detail, are prone to segmentation fail-
ures, or require multi-step pipelines [12–14]. In contrast, 

a recently developed deep learning-based (DL-based) 
CT parcellation method provides a robust alternative to 
traditional MRI-based approaches by directly segment-
ing CT images according to Desikan-Killiany-Tourville 
(DKT) atlas, thereby overcoming the limitations of pre-
vious methods [15]. This DL-based approach, which 
employs three independent 2D UNet-based segmenta-
tion models to capture multi-view anatomical features, 
provides accurate definitions of cortical gyri and main-
tains reliable quantification even in severely deformed 
brains, such as those with atrophy or hydrocephalus. The 
acquisition of PET and CT in the same session using a 
shared scanner bed and headrest helps maintain spa-
tial alignment, thereby reducing errors and improving 
reliability. This approach overcomes the limitations of 
MRI-free methods while remaining accessible and cost-
effective, making amyloid PET quantification feasible 
even for individuals unable to undergo MRI. It may serve 
as a useful alternative when MR-based processing is not 
feasible and anatomical variation is a concern.

In this study, we implemented a DL-based CT parcel-
lation pipeline calibrated to the standard CL scale using 
CT images from PET/CT scans and determined a cut-
off value based on agreement with visual reads. We then 
evaluated its performance by comparing it with CL scales 
derived from previously established pipelines, assessing 
agreement with visual reads, and comparing effect sizes 
between AD and non-AD groups.

Methods
Participants
We recruited 23 young controls (YCs) and 283 patients 
who presented to our memory clinic with memory com-
plaints and underwent 18F-florbetaben (FBB) PET/CT 
and MRI between January 2017 and December 2022. 
YCs, defined as those younger than 45 years, had no his-
tory of neurologic or psychiatric disorders, confirmed 
normal cognitive function after a clinical evaluation, and 
were Aβ-negative on PET imaging. Of the 283 patients, 
207 were Aβ-positive and 76 were Aβ-negative based on 
visual assessment. In the Aβ-negative patients (n = 76), 
70 patients had amnestic mild cognitive impairment 
(aMCI), and 6 patients had dementia. Among Aβ-positive 
patients (n = 207), 55 patients had AD dementia, and 152 
patients had aMCI. Patients who were Aβ-positive and 
diagnosed with either dementia or aMCI were collec-
tively referred to as the AD-related cognitive impairment 
(ADCI) group. AD dementia was diagnosed based on the 
National Institute on Aging-Alzheimer’s Association cri-
teria for probable AD [16]. Participants with aMCI met 
the criteria proposed by Petersen et al. [17]: (1) subjective 
memory complaints, (2) relatively normal performance in 
other cognitive domains, (3) normal activities of daily liv-
ing (ADL), (4) objective memory impairment below − 1.5 
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SD on either verbal or visual memory tests, and (5) not 
demented. The following exclusion criteria were applied 
to the 283 patients: (1) presence of structural brain 
lesions – such as brain tumors, multiple lacunar infarcts, 
or cerebral infarctions on MRI – and (2) a time gap of 
over one year between the FBB PET/CT scans and MRI.

Image acquisition
FBB PET/CT scans were acquired using the Discovery 
600 system (GE Healthcare, Milwaukee, WI). A total of 
300 MBq of FBB was administered intravenously, and 
PET imaging was performed 90  min post-injection for 
20 min, followed by a CT scan for attenuation correction. 
The CT scan was performed in spiral mode with acquisi-
tion parameters of 0.8 s per rotation, 120 kVp, 200 mA, a 
slice thickness of 3.27 mm, a collimation of 10 mm, and 
a table feed of 9.375  mm per rotation. The PET images 
(matrix size: 256 × 256, voxel size: 0.98  mm × 0.98  mm 
× 3.27  mm) were reconstructed using the ordered sub-
set expectation maximization (OSEM) algorithm with 
4 iterations and 32 subsets, incorporating attenuation, 
scatter, and random corrections. A Gaussian smooth-
ing filter with a full-width at half-maximum (FWHM) 
of 4 mm was applied to the reconstructed images. Non-
contrast T1-weighted MRI scans were obtained on a 3-T 
MRI system (Ingenia CX or Achieva; Philips Healthcare, 
Best, Netherlands) with a matrix of 256 × 256, a field of 
view ranging from 230 to 240  mm, a slice thickness of 
1.2  mm, and a repetition time/echo time (TR/TE) of 
6.9/3.2 milliseconds.

Visual assessment
Visual assessment of FBB PET/CT scans was performed 
by two expert nuclear medicine physicians (M. Yun and 
T.J. Jeon), both blinded to the amyloid PET quantifica-
tion results. The evaluation employed a standardized 
approach based on a regional cortical tracer uptake 
(RCTU) scoring system applied to four brain regions 
including lateral temporal cortex, frontal cortex, poste-
rior cingulate cortex/precuneus, and parietal cortex. The 
RCTU assessments were then integrated into the over-
all brain amyloid plaque load (BAPL) score, leading to a 
binary classification of the scans [18, 19]. A BAPL score 
of 1 (no Aβ load) is classified as an Aβ-negative PET scan, 
while BAPL scores of 2 (minor Aβ load) and 3 (significant 
Aβ load) are classified as Aβ-positive PET scans.

Data processing - Centiloid pipeline
All PET and MRI images were processed using an imple-
mentation adapted from the standard CL pipeline with 
SPM 12, based on procedures described in [5]. In brief, 
each subject’s MRI image was segmented and normalized 
to MNI space using SPM12, and the PET image was co-
registered to the corresponding MRI and subsequently 

normalized using the same transformation parameters. 
The standard cortical and whole cerebellum reference 
regions of interest (ROIs) were downloaded from the 
GAAIN website (www.gaain.org). Finally, we calculated 
the CL pipeline-derived SUVR (SUVRstandard) in MNI 
space using the standard cortical target region and the 
whole cerebellum as reference region.

Local pipeline validation procedures
As described in section 2.2.2 of Klunk [6], the first step of 
a Level 2 analysis begins with a replication of the Level-1 
analysis. To validate our local pipeline, we downloaded 
the reference 11C-Pittsburgh Compound-B (PiB) PET 
(50–70  min) dataset from GAAIN. Briefly, this dataset 
includes 34 young controls (YC) and 45 older adults with 
clinically diagnosed AD, which serve as the CL scale’s 
anchor points of 0 and 100 units, respectively. We pro-
cessed the downloaded dataset using our local pipeline, 
yielding local Level-1 outcomes. We then compared these 
local CL values against published CL values. All process-
ing was performed using SPM12 (version 12; ​h​t​t​p​​s​:​/​​/​w​w​
w​​.​f​​i​l​.​​i​o​n​​.​u​c​l​​.​a​​c​.​u​​k​/​s​​p​m​/​s​​o​f​​t​w​a​r​e​/​s​p​m​1​2​/).

Data processing - FreeSurfer pipeline
We analyzed MRIs using FreeSurfer (FS) v7.4 to gener-
ate a native-space FS atlas for each MRI (​h​t​t​p​​:​/​/​​s​u​r​f​​e​r​​.​n​m​​
r​.​m​​g​h​.​h​​a​r​​v​a​r​d​.​e​d​u). We subsequently co-registered FBB 
PET images to their corresponding MRIs with SPM12’s 
“Coregister: Estimate and Reslice” tool using default 
parameters. We then sampled the PET images to assess 
the mean tracer uptake in target cortical areas using a 
cortical mask made up of FS-defined frontal, cingulate, 
lateral parietal, and lateral temporal regions as previ-
ously described [20]. We then assessed the mean tracer 
uptake in four reference regions: the whole cerebellum 
(WC), cerebellar gray matter (CG), pons, and a compos-
ite reference region. The composite reference region was 
created by taking the unweighted average of FS-defined 
whole cerebellum, brainstem, and eroded subcortical 
white matter, following previously established methods 
[21, 22]. The eroded subcortical white matter mask was 
generated by first smoothing a binarized FS-defined sub-
cortical white matter image to the 8mm3 resolution of 
the FBB PET image, followed by thresholding at 0.70 to 
selectively erode white matter-defining voxels near gray 
matter. Using mean tracer uptake in the cortical target 
areas and these reference regions, we calculated FS pipe-
line-derived SUVRs (SUVRFS) for each FBB PET scan.

Data processing - CT parcellation pipeline
We performed CT-based FBB quantification using our 
previously developed DL-based CT parcellation method, 
utilizing commercially available software (NCM-brain 
v2.5, Newcure M, Seoul, Korea). Briefly, the pipeline 

http://www.gaain.org
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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employs three independent 2D U-Net segmentation 
networks—one each for axial, sagittal, and coronal CT 
slices—each configured with 256 feature channels per 
layer to accommodate CT’s lower soft-tissue contrast 
[15]. The outputs of these three models are ensembled 
to generate a complete 1 mm isotropic 3D brain parcel-
lation, which is then co-registered to PET space. PET 
images were sampled using the same cortical mask as 
in the FS pipeline to calculate mean tracer uptake in the 
target cortical areas. We used the same four reference 
regions employed in the FS pipeline – WC, CG, pons, and 
the composite reference region. Using the mean tracer 
uptake in the cortical target areas and these reference 
regions, we calculated CT parcellation pipeline-derived 
SUVRs (SUVRCT) for each FBB PET scan. The co-regis-
tration process was omitted as FBB and CT images were 
acquired with consistent positioning in a single PET/CT 
session, allowing adequate alignment.

Centiloid conversion
We performed a regression on the corresponding 
SUVRFS and SUVRCT values. From these equations, we 
determined the intercept (b) and slope (m), which were 
then used to convert SUVRCT into SUVRFS. The conver-
sion equations for SUVRFS to CL, specifically for WC and 
composite reference region, have already been published 
[20]. Using these equations, the “calculated” SUVRFS 
were subsequently converted into CL units.

For the standard CL pipeline, the FBB tracer is a well-
established surrogate tracer for PiB, and the conversion 
equation from the CL pipeline-derived FBB-SUVR to 
PiB-SUVR has been validated in previous studies [23]. 
Thus, the FBB-SUVRstandard values were subsequently 
converted into “calculated” PiB-SUVRstandard values. 
Using Eq. 2.2.3 from Klunk et al. [6] and substituting our 
Level-1 YC-0 and AD-100 CL values, these “calculated” 
PiB-SUVRstandard values were converted into CL units.

	
CL = 100 × (PiB − SUVRstandard − 1.012) /
(2.077 − 1.012)

The standard CL pipeline uses WC as the reference 
region and generates a single CL value per patient, abbre-
viated as CLstandard. In contrast, the FS and CT parcella-
tion pipelines, each of which uses four reference regions, 
produce CL values abbreviated as CLFS and CLCT, respec-
tively. Specifically, the FS pipeline produces the following 
values: CLFS−WC (WC), CLFS−CG (CG), CLFS−pons (pons), 
and CLFS−comp (composite reference region); and for the 
CT parcellation pipeline: CLCT−WC (WC), CLCT−CG (CG), 
CLCT−pons (pons), and CLCT−comp (composite reference 
region).

Statistical analysis
Demographic characteristics, including both continu-
ous variables and ordinal variables, were compared using 
the Kruskal-Wallis test, with post-hoc comparisons con-
ducted using Dunn’s test with Bonferroni correction. For 
two-group comparisons, the Wilcoxon rank-sum test 
was used. To compare values against zero, the Wilcoxon 
signed-rank test was performed. Correlations between 
SUVR values were assessed using linear regression analy-
sis. The effect size between the ADCI and YC groups was 
calculated with the following equation:

	

Effect Size = (µ p − µ n) /√(
Npσ 2

p + Nnσ 2
n

)
/ (Np + Nn − 2)

where µ p, µ n are the average SUVR in the ADCI and 
YC groups. σ 2

p , σ 2
n are the variance of the ADCI and YC 

groups. Np and Nn are the number of participants in the 
ADCI and YC groups. Effect sizes are computed sepa-
rately for each reference region within the same pipeline, 
and their 95% confidence intervals (CIs) were estimated 
using non-parametric bootstrapping with 10,000 resa-
mples. Differences in effect sizes were considered statis-
tically significant when the corresponding CIs did not 
overlap.

Within the YC group, we evaluated the variance of 
each imaging pipeline and reference. First, Levene’s test 
was performed to assess homogeneity of variance among 
CL values obtained using WC – CLstandard, CLCT−WC, and 
CLFS−WC. When significant differences were detected, 
post-hoc pairwise F-tests were conducted. Next, pair-
wise F-tests were performed to compare the variances 
between the two reference regions within each pipe-
line (CLCT−WC versus CLCT−comp and CLFS−WC versus 
CLFS−comp). P-values for all pairwise comparisons were 
adjusted using the Bonferroni correction for multiple 
comparisons.

Receiver operating characteristic (ROC) curve analysis 
was performed to determine the CL cutoff that showed 
the highest agreement with the visual read. Youden’s J 
index was calculated as the sum of sensitivity and speci-
ficity minus one, and the threshold maximizing this index 
was selected as the optimal cutoff. Classification perfor-
mance was further evaluated using accuracy, sensitivity, 
specificity, and the area under the ROC curve (AUC). All 
statistical analyses were performed using the R software 
(version 4.0, http://www.r-project.org).

Results
Demographics
The baseline demographics and clinical character-
istics of the participants are summarized in Table  1. 
There was a significant difference in age between the 

http://www.r-project.org
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YC group and both the Aβ-negative and ADCI groups. 
The Korean version of the Mini-Mental State Examina-
tion (K-MMSE) scores were highest in the order YC, Aβ-
negative, and ADCI, with significant differences among 
all three groups. In contrast, Clinical Dementia Rating 
(CDR) global scores were highest in ADCI, followed by 
Aβ-negative and then YC, with significant differences 
observed across the three groups.

Local pipeline validation
Linear regression of the local standard CL level 1 out-
comes against published CL outcomes yielded a fit 
equation with slope = 0.998, intercept = 0.140, and cor-
relation coefficient (R2) = 0.996 (Fig. 1). The fit exceeded 
the minimum specified acceptance criteria (i.e., R2 > 0.98, 
slope between 0.98 and 1.02, and intercept between 
− 2 and + 2), confirming that the local results derived 
from SPM12 were comparable with published CL from 
GAAIN.

FreeSurfer versus CT parcellation pipeline
MRI and CT images were segmented using the FS 
and CT parcellation pipelines. Both pipelines demon-
strated accurate anatomical segmentation, allowing reli-
able ROI-based quantification (Fig.  2). However, in one 
case, a susceptibility artifact on MRI resulted in inac-
curate segmentation by FS; in another case, inaccurate 
co-registration between MRI and PET led to unreliable 
PET quantification; both cases were removed from fur-
ther analysis (Fig. 3). Following segmentation, the corti-
cal mask of the target regions was applied, and SUVRCT, 
SUVRFS were calculated for each reference region. After 
plotting SUVRFS and SUVRCT, we performed a regres-
sion analysis. Regression analysis between the FS pipe-
line and the CT parcellation pipeline demonstrated high 
concordance across all reference regions. Results for WC 
and composite reference regions are shown in Fig. 4, and 
results for CG and pons are provided in Supplementary 
Fig. 1.

Conversion equations
SUVRFS and SUVRCT were plotted and regressed against 
each other for WC and the composite reference region. 
The slope and intercept values derived from the regres-
sion equations were used to convert SUVRCT into “cal-
culated” SUVRFS. Using the previously known equation 
described in previous work, SUVRFS values were then 
converted into CL [20].

For the standard CL pipeline, FBB-SUVRstandard values 
were converted into “calculated” PiB-SUVRstandard values 
[23]:

	
PiB − SUVRstandard = (FBB − SUVRstandard

− 0.39)/0.61

PiB-SUVRstandard were finally converted into CL units. 
The final conversion equations are as summarized in 
Table 2.

Effect size, variability, and distribution of CL values
The variance in YC reflects the noise inherent in the 
quantification method and has been used to evalu-
ate both pipelines and reference regions [6, 24]. In our 

Table 1  Demographics and clinical characteristics of the 
participants

YC Aβ-negative ADCI p-value
N 23 76 207 N/A
Age, years a, b 30.3 ± 7.98 71.8 ± 7.70 72.0 ± 8.18 < 0.001
Females, n (%) 14 (61%) 61 (80.3%) 138 (66.7%) 0.054
K-MMSE a, b, c 29.8 ± 0.491 23.8 ± 4.19 21.9 ± 4.39 < 0.001
CDR global 
score a, b, c

< 0.001

  0 23 0 0
  0.5 0 70 151
  1 0 5 45
  ≥ 2 0 1 11
Note: Values are presented as number (%) for categorical variables, mean ± SD 
for continuous variables, and median (IQR) for ordinal variables (CDR score)

Abbreviations: YC, young control; Aβ, amyloid beta; ADCI, Alzheimer’s disease-
related cognitive impairment; K-MMSE, Korean version of the Mini-Mental State 
Examination; CDR, Clinical Dementia Rating
a Significant differences between YC and Aβ-negative
b Significant differences between YC and ADCI
c Significant differences between Aβ-negative and ADCI

Fig. 1  Plot of CL outcomes derived from Level-1 analysis of the standard 
34 YC-0 and 45 AD-100 scans vs. published CL values. Dashed unity lines 
have been added to facilitate visual comparison between the axes. The 
equation and R2 indicate that the local Centiloid pipeline was applied cor-
rectly. Abbreviation: CL, Centiloid; VOI: volume of interest
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study, when using WC as the reference region, both 
CLFS and CLCT consistently showed the lowest variance 
among YC groups (Table  3). When comparing differ-
ent pipelines using WC as the reference region, no sig-
nificant difference was observed between CLFS−WC and 
CLCT−WC (p = 0.73); however, both CLFS−WC (p = 0.038) 
and CLCT−WC (p = 0.017) exhibited significantly lower 
variance than CLstandard.

In addition, the effect size between the ADCI and YC 
groups was highest with WC in the FS (3.15, 95% CI: 
2.62–3.66) and CT parcellation (3.17, 95% CI: 2.65–3.69) 
pipelines. When comparing the pipelines using WC as 
the reference region, the effect sizes of CLstandard (3.10, 
95% CI: 2.58–3.61), CLFS−WC (3.15, 95% CI: 2.62–3.66) 
and CLCT−WC (3.17, 95% CI: 2.65–3.69) did not differ sig-
nificantly. Overall, WC was determined to be the optimal 
reference region in the CT parcellation pipeline, which 

Fig. 2  Cortical mask overlaid on original MRI and CT images. (A) Representative images of MRI after segmentation using the FS pipeline. Left: original MRI 
scan; Right: same scan with the cortical mask overlaid, delineating the frontal, cingulate, lateral parietal, and lateral temporal regions. (B) Representative 
CT images following segmentation using the CT parcellation pipeline. Left: original CT scan; Right: same scan with the cortical mask overlaid, delineating 
the corresponding target regions. Abbreviation: FS, FreeSurfer
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Fig. 4  Linear regression of SUVRFS against SUVRCT for the whole cerebellum (WC) and the composite reference region. The scatter plots display the re-
lationship between SUVRFS and SUVRCT for each reference region. Dashed unity lines have been added to facilitate visual comparison between the axes. 
An outlier with inaccurate co-registration (as shown in Fig. 3A and C) is indicated by an orange triangle and black arrow in the scatter plot. Abbreviation: 
FS, FreeSurfer; SUVRFS, FS pipeline-derived standardized uptake value ratio; SUVRCT, CT parcellation pipeline-derived standardized uptake value ratio; WC, 
whole cerebellum; Composite, composite reference region

 

Fig. 3  Representative cases that were excluded from regression analysis. (A) The outlier case from the FS pipeline, showing suboptimal co-registration 
between MRI and PET/CT. Left: original MRI with the FS-derived cortical mask; Right: co-registered PET/CT image in which the mask does not align prop-
erly. (B) Case with a pronounced susceptibility artifact on MRI. Left: original MRI displaying the artifact; Right: same MRI with the FS-based cortical mask 
applied. (C) Corresponding CT images for the outlier in (A). Left: original CT scan; Right: CT parcellation-derived cortical mask overlaid on the co-registered 
PET/CT image. (D) Corresponding CT image for the artifact case in (B). Left: original CT scan; Right: CT parcellation-derived cortical mask overlaid on the 
PET/CT image. Both cases illustrated in (A) and (B) were excluded from the regression analysis. Abbreviation: FS, FreeSurfer
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demonstrated performance that was similar to either FS 
or the standard CL pipeline.

ROC analysis results
Both the FS and CT parcellation pipelines showed com-
parable performance in the ROC analysis. ROC curves 
were generated based on visual read outcomes. The AUC 
was 0.994 versus 0.995 for the FS and CT parcellation 
pipelines, respectively, with the optimal thresholds iden-
tified via Youden’s J index were 29.9 and 29.7. At these 
thresholds, FS and CT parcellation exhibited comparable 
performance: accuracy – 0.964 versus 0.967; sensitivity – 
0.957 versus 0.957; and specificity – 0.980 versus 0.990, 
respectively. These results suggest that both pipelines 
provide equally robust classification performance for 
identifying Aβ-positive scans, with minimal differences 
in AUC, accuracy, sensitivity, and specificity.

Discussion
In this study, we calculated the CL conversion equation 
for our recently developed DL-based CT parcellation 
method. Using the derived equation, CT parcellation 
pipeline-derived CL scales showed high agreement with 
the CL scales generated by both FS and the CL pipeline. 
Notably, when using WC as the reference region, CLFS 
and CLCT demonstrated high concordance, with an R² 
of 0.99. Furthermore, the optimal thresholds for the two 
pipelines were similar (29.9 for CLFS and 29.7 for CLCT), 
falling within the previously reported range of 17 to 40 
CL, with most studies citing values between 25 and 35 
CL [9, 25–29]. This consistency reinforces the validity of 
our approach, and its alignment with established visual 

cutoffs supports the clinical potential of the CT parcella-
tion pipeline as a viable alternative to the FS pipeline.

Early brain PET quantification relied on template-
based methods, aligning PET images to a standardized 
framework for ROI-based analysis. MRI-free approaches 
using CT or PET templates have been explored but strug-
gle with accurately defining intricate cortical structures 
and are prone to distortions in cases with severe atrophy 
or hydrocephalus [8, 11]. Parcellation-based methods, 
like FS, improve accuracy by extracting precise ROIs 
from MRI. Our CT parcellation method retains these 
advantages while eliminating the need for MRI, enhanc-
ing accessibility and robustness [15]. First, the CT par-
cellation pipeline enables rapid and cost-effective CL 
quantification for a broader patient population. Unlike 
MRI, which requires long scan times and may be inac-
cessible due to cost or contraindications [7, 8], CT scans 
are acquired simultaneously during PET/CT scans, 
significantly reducing acquisition time and improving 
accessibility. This is particularly beneficial following the 
introduction of monoclonal antibody therapies, as regu-
lar Aβ imaging is essential for tracking Aβ accumulation. 
By enabling Aβ quantification without high-resolution 
MRI, this approach may facilitate more frequent treat-
ment monitoring, ultimately improving AD manage-
ment. Second, in PET/CT scans, CT and PET images 
are acquired sequentially within the same session using 
a shared bed and headrest, which helps maintain con-
sistent positioning and facilitates spatial alignment. This 
typically results in improved co-registration, supporting 
more precise quantification. In contrast, MRI and PET 
are susceptible to co-registration failures due to factors 
such as noise, limited spatial resolution, and time gaps 
between acquisitions. For instance, we observed a case 
where accurate co-registration between MRI and PET 
failed and resulted in inaccurate quantification (Fig.  3). 
Although SPM12, used in the FS pipeline, has been 
reported to outperform other tools such as NiftyReg and 
Vinci in MRI-PET co-registration accuracy, the FS pipe-
line is still not entirely free from co-registration issues 
[30].

As previously mentioned, YC variance and the effect 
size between ADCI and YC are key variables used in 
cross-sectional studies for comparing reference regions 
and pipelines. Klunk et al. previously investigated these 
two variables to identify the optimal reference region 
for the standard CL pipeline [6]. In this study, the YC 

Table 2  CL conversion equations with FS and CT-based pipelines for each reference region
Reference region FS pipeline CT parcellation pipeline Standard CL pipeline
WC CL = 157.15 × SUVR – 151.87 CL = 153.05 × SUVR – 143.63 CL = 154.0 × SUVR – 155.1
Composite CL = 244.20 × SUVR – 170.80 CL = 234.01 × SUVR – 168.12 N/A
Abbreviations: CL, Centiloid; FS, FreeSurfer; SUVR, standardized uptake value ratio; SUVR, standardized uptake value ratio; WC, whole cerebellum; Composite, 
composite reference region

Table 3  CL values across reference regions and groups
Reference region CLFS CLCT CLstandard

WC Comp WC Comp WC
ADCI
Mean 85.27 78.53 85.15 72.28 83.81
SD 28.12 28.67 27.91 27.93 30.70
YC
Mean 0.91 -3.78 0.99 -7.73 -6.66
SD 3.85a 5.61 3.57a 5.25 6.83
Effect size 3.15 3.01 3.17 3.01 3.10
Abbreviations: CL, Centiloid; FS, FreeSurfer; CLFS, FS pipeline-derived CL 
value; CLCT, CT parcellation pipeline-derived CL value; CLstandard, Centiloid 
pipeline-derived CL value; ADCI, patients with AD dementia and mild cognitive 
impairment; YC, young control; WC, whole cerebellum; Comp, composite 
reference region
a Significant difference from CLstandard
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variance of the standard CL pipeline was significantly 
higher than that of both the FreeSurfer and CT parcel-
lation pipelines. Since YC variance reflects the noise 
inherent in a quantification method, the template-based 
method may be more susceptible to noise—possibly 
due to its inability to perform quantification along accu-
rate cortical gyri—compared to the parcellation-based 
method. This increased variance might also result from 
the fact that the cortical ROI in the standard CL pipe-
line was derived from PiB PET data, which may not fully 
apply to FBB PET. Further studies are needed to deter-
mine the superiority between template-based and parcel-
lation-based methods.

Biologically, the cerebellum is favorable because it is 
free of Aβ deposition and exhibits nondisplaceable activ-
ity similar to the target cortical area [31, 32]. Previous 
cross-sectional and longitudinal studies have further sup-
ported WC as the most reliable reference region for FBB 
[24, 33]. In parallel, recent studies on longitudinal Aβ 
quantification using PiB and 18F-Florbetapir have indi-
cated that a composite reference region, which combines 
WC, brainstem, and eroded subcortical white matter, 
may offer improved longitudinal stability [20, 21, 34]. In 
this study, we compared WC and the composite refer-
ence region; although the difference was not statistically 
significant, WC consistently yielded better performance 
in terms of YC variance. This may reflect the fact that 
subcortical white matter is more susceptible to atrophy, 
vascular lesions, and signal spillover [21]. However, our 
data were acquired in a single-center dataset with uni-
form acquisition settings. In multi-center studies where 
scanner types and participant positioning vary, the com-
posite reference region may offer better longitudinal 
consistency.

Regarding the use of CT in neurodegenerative disease 
screening, CT-based assessments have shown significant 
potential, with recent advancements in DL techniques 
further enhancing their capabilities. CT quantification 
has demonstrated performance comparable to MRI in 
measuring brain atrophy and white matter lesions [35]. 
Additionally, CT-based volumetric measures can differ-
entiate patients with neurodegenerative diseases from 
healthy controls and are strongly associated with cogni-
tive, biochemical, and neuroimaging markers [36]. Our 
CT parcellation-based CL approach further extends this 
potential by enabling quantitative amyloid PET analy-
sis without the need for MRI, making amyloid burden 
assessment more accessible and cost-effective. Moreover, 
emerging technologies such as photon-counting CT offer 
high-resolution imaging with lower radiation exposure 
[37]. As CT resolution and soft tissue contrast continue 
to improve, its utility in screening not only for AD but 
also for other neurodegenerative diseases may increase 
further. Additionally, extracting more information from 

the CT performed simultaneously with PET could enable 
a more comprehensive assessment in a single scan, pro-
viding significant benefits for patients.

This study has several limitations. First, we increased 
the tube current to 200 mAs for high-quality parcella-
tion, resulting in an effective dose of 0.39 mSv from CT. 
However, this additional dose is minimal compared to 
the total PET/CT effective dose, which exceeds 4 mSv 
[19]. Several recent studies have investigated CT image 
denoising techniques aimed at enabling reliable anatomi-
cal analysis from low-dose CT scans [38, 39]. Applying 
such denoising methods prior to parcellation may allow 
our current pipeline to be extended to dose-reduced CT 
images. In addition, recent studies have demonstrated 
that PET tracer doses can be substantially reduced to as 
low as 12.5% of the original dose without compromis-
ing quantitative accuracy in CL scaling [40]. Together, 
these complementary strategies may help minimize 
overall radiation exposure in PET/CT protocols and 
improve the feasibility of the proposed method in diverse 
research and clinical settings. Second, as this is a single-
center study, validation in different centers, with various 
PET tracers and scanner modes, is required to establish 
broader applicability. Incorporating a more diverse train-
ing dataset – encompassing scans with structural abnor-
malities and those from multiple scanners and tracers 
– could improve robustness and broaden clinical appli-
cability. Leveraging publicly available imaging datasets 
that include PET/CT and MR scans could enable external 
validation and help assess generalizability across diverse 
populations and acquisition protocols. Furthermore, our 
pipeline is designed specifically for PET/CT data and is 
not currently applicable to PET/MRI. Given the increas-
ing adoption of PET/MRI scanners, extending compati-
bility to this modality is an important direction for future 
development. Third, although CT and PET are acquired 
sequentially using the same headrest and positioning 
setup, our pipeline is not entirely free from co-registra-
tion error due to potential patient movement. In addition, 
while the CL standard pipeline is based on SPM8, our 
analysis employed SPM12. Despite strong agreement in 
Level 1 validation, segmentation differences between ver-
sions may introduce methodological variability. Fourth, 
we did not directly compare our CT-based pipeline to 
PET-only template methods (e.g., rPOP). Although our 
high concordance with MRI-guided FreeSurfer supports 
the accuracy of CT parcellation, a head-to-head evalua-
tion against PET-only approaches would help determine 
which method enables more accurate quantification. 
Finally, longitudinal validation of the CL scale is neces-
sary to establish its robustness in tracking Aβ changes 
over time. While the CT parcellation pipeline has dem-
onstrated strong performance in cross-sectional studies, 
its stability and its comparability to other pipelines for 
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monitoring disease progression remain unclear. Further 
studies are required to assess whether CLCT remains sta-
ble in Aβ-negative individuals and whether it can detect 
subtle but clinically meaningful changes in Aβ-positive 
individuals over time.
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