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A B S T R A C T

Gastric and gastroesophageal junction cancer (G/GEJC) is a heterogeneous and complex disease characterized by 
histologic and molecular subtypes. Although a growing number of treatments have improved survival outcomes 
in the advanced setting, the greatest therapeutic benefits are observed among patient populations eligible for 
biomarker-directed therapies. Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) is an emerging 
biomarker under phase 3 clinical investigation for G/GEJC with the novel monoclonal antibody bemarituzumab. 
FGFR2b protein overexpression in gastric cancer, together with its function in various oncogenic signaling 
pathways, makes it an attractive target for precision medicine and thereby has gained clinical interest for its 
potential prognostic role in G/GEJC. Thus, to explore the potential role of FGFR2b, this narrative review sum
marizes the role and mechanism of FGFR2b in advanced G/GEJC, describes appropriate detection methodology 
for FGFR2b protein overexpression, and discusses future considerations for precision treatment in advanced 
G/GEJC with respect to FGFR2b protein overexpression and the emergence of other biomarkers.

Introduction

Gastric cancer is the fifth leading cause of cancer-related mortality 
worldwide, accounting for an estimated 660,000 deaths annually with 
disease prevalence two-fold higher in men than in women [1]. 
Geographical incidence varies considerably, with the highest rates 
observed in Eastern Asia and Eastern Europe relative to Western regions 
[1]. Disease development may be the result of cellular changes from 
chronic gastritis, with Helicobacter pylori and gastroesophageal reflux 
disease being implicated as key risk factors for gastric and gastro
esophageal junction tumors, respectively [2,3]. Although survival rates 
have improved over the past few decades owing to earlier diagnosis and 
treatment, the prognosis for patients with advanced disease remains 
poor, with 5-year relative survival for distant metastatic disease ranging 
from approximately 3% to 7% depending on geographic location [4–6].

Gastric cancer is predominately classified as adenocarcinoma (95%) 
by histopathology and possesses distinct histologic subtypes according 

to the Lauren (intestinal or diffuse) and World Health Organization 
classifications [2,7,8]. Four molecular subtypes of gastric 
cancers—chromosomal instability (CIN), Epstein-Barr virus (EBV) 
positive, genomically stable (GS), and microsatellite instability 
(MSI)—have been identified by The Cancer Genome Atlas (TCGA) 
Research Network, and the Asian Cancer Research Group offers a further 
classification with 4 subgroups, including MSI high (MSI-H), epithelial 
mesenchymal transition (EMT), epithelial/tumor protein 53 (TP53) 
active, and epithelial/TP53 inactive; however, with the exception of 
MSI, these groups have limited clinical use [9,10].

Until more recently, therapy advancements in advanced gastric and 
gastroesophageal junction cancer (G/GEJC) have been challenging 
owing to the inherent complex and heterogeneous nature of the disease 
[11]. Systemic chemotherapy remains the standard of care (SOC) for the 
first-line treatment of G/GEJC, with regional preferences in chemo
therapeutic choice [12–15]; however, clinical studies evaluating specific 
G/GEJC subpopulations have led to the inclusion of precision therapies 
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in SOC regimens (Supplemental Table 1) [16–21]. In general, G/GEJC 
treatment guidelines recommend fluoropyrimidine plus platinum-based 
chemotherapy backbones for most patients regardless of biomarker 
status; however, precision therapies may be added depending on the 
patient’s biomarker profile [13–15]. For patients with human epidermal 
growth factor receptor 2 (HER2)–positive disease, trastuzumab with 
pembrolizumab in combination with fluoropyrimidine- and oxaliplatin- 
based chemotherapy is recommended; whereas, for HER2-negative 
disease, nivolumab or pembrolizumab may be added to chemotherapy 
[13–15,17,19–21]. More recently, Claudin 18.2 (CLDN18.2) has 
emerged as a targetable biomarker with a variety of monoclonal anti
bodies, bispecific antibodies, antibody-drug conjugates (ADCs), and 
chimeric antigen receptor T-cell (CAR T) therapies being investigated in 
clinical trials [22–24]. Phase 3 evaluations of the monoclonal antibody 
zolbetuximab have demonstrated clinical benefit in combination with 
chemotherapy in patients with locally advanced unresectable or meta
static HER2-negative CLDN18.2-positive G/GEJC, leading to recent 
regulatory approvals [22,23,25,26].

The addition of precision therapies to SOC chemotherapy regimens 
are based on positive biomarker detection of predictive markers, such as 
HER2, programmed cell death ligand 1 (PD-L1), CLDN18.2, and MSI-H/ 
mismatch repair deficient (MSI-H/dMMR) [12–15,22,23]. Although 
inclusion of these therapies into the SOC has improved survival out
comes in the advanced setting [16,17,20,21] therapeutic benefit is 
currently confined to limited patient populations that are positive for 
routinely tested predictive markers: HER2 (20%–22% prevalence), PD- 
L1 (30%–60%), MSI-H (6%–23%), and CLDN18.2 (33%–38%; Supple
mental Table 2) [9,10,12,13,22,23,27–33].

Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) is a tyro
sine kinase receptor that has emerged as a targetable biomarker of in
terest, observed in approximately 38% of patients with advanced G/ 
GEJC (Supplemental Table 2) [34]. Ligand-specific binding to FGFR2b 
can initiate downstream activation of oncogenic signaling pathways, 
leading to cellular proliferation and tumor growth, angiogenesis, and 
dissemination, including within G/GEJC tissue [35,36]. FGFR2b as a 
transmembrane protein is also a distinct target from FGFR2 aberrations 
(fusions, rearrangements, and mutations) which are established pre
dictive biomarkers for cholangiocarcinoma and urothelial cancer 
[35,37,38]. In G/GEJC, FGFR2 gene amplification is uncommon and is 
present in a subset of patients with FGFR2b protein overexpression; 
however, it is not always observed in the presence of FGFR2b protein 
overexpression [39]. Overexpression of an oncogene not associated with 
detectable gene amplification has been observed in other cancer types 
and may be due to overactivation of the paternally and or maternally 
derived alleles of the gene [40]. Together, these features have supported 
FGFR2b as a potential therapeutic target in G/GEJC.

Subsequently, the predictive capacity of FGFR2b protein over
expression using immunohistochemistry (IHC) is being investigated for 
targeted therapy with the humanized FGFR2b monoclonal antibody 
bemarituzumab. Evaluation of bemarituzumab in the FGFR2b 
biomarker-based phase 2 randomized, double-blind, placebo-controlled 
FIGHT trial [41] and ongoing phase 3 FORTITUDE studies 
(NCT05052801 and NCT05111626) looks to expand treatment options 
for patients with advanced G/GEJC. As clinical development progresses, 
there is a growing interest among clinicians and pathologists alike to 
further understand FGFR2b as an emerging biomarker. To this end, in 
this narrative review we summarize the role and mechanism of disease 
of FGFR2b in advanced G/GEJC, including the mechanistic pathway, 
prevalence, clinicopathologic characteristics, and prognostic under
standing. Appropriate detection methodology for FGFR2b protein 
overexpression is also described, as well as future considerations for 
precision treatment in the evolving G/GEJC landscape.

Structure and function of FGFR2b

The FGF/FGFR intracellular pathway plays an important role in 

controlling cell growth, proliferation, differentiation, angiogenesis, and 
survival [42]. During embryonic development, this pathway is associ
ated with morphogenesis; whereas, in adults, its role is focused on 
nervous system control, tissue repair, wound healing, and tumor 
angiogenesis [42]. Within the FGFR family, four distinct genes 
(FGFR1–4) give rise to tyrosine kinase receptors that are activated upon 
binding of one of 23 different ligands and stabilized by heparan sulfate 
proteoglycan [36,42,43]. Ligand-induced FGFR dimerization then leads 
to fibroblast growth factor receptor substrate 2 (FRS2) phosphorylation 
within the intracellular tyrosine kinase domain, resulting in downstream 
activation of the mitogen-activated protein kinase and the 
phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian 
target of rapamycin (mTOR) pathway (Fig. 1A) [36,42].

FGFRs comprise a cytoplasmic domain, a single transmembrane 
domain, and an extracellular ligand-binding domain, which is composed 
of three immunoglobulin-like domains (D1–D3). FGFR isoforms are 
generated by alternative splicing of exons 8 and 9 on D3 of the FGFR2 
gene. Encoding of the C-terminal of D3 by exon 8 gives rise to the IIIb 
isoform (FGFR2b), whereas encoding by exon 9 gives rise to the IIIc 
isoform (FGFR2c) (Fig. 1B) [35,42]. FGFR isoforms exhibit various 
binding specificities for different FGF ligands. While other FGFRs and 
their isoforms bind to an array of FGF ligands, FGFR2b binds to a 
uniquely restricted subset of keratinocyte growth factor (KGF) ligands 
(FGFs 3, 7, 10, 22; Fig. 1C) [35,36,42,44–46].

Activation of FGF7 results in FGFR2b degradation and cell prolifer
ation, whereas that of FGF10 promotes cell migration and receptor 
recycling [47]. FGF10–induced intracellular phosphorylation of tyro
sine (Y) 734 on FGFR2b leads to PI3K and SH3 domain-binding protein 4 
(SH3BP4) recruitment, a complex important for FGFR2b recycling and 
response. Thus, aberrations in FGFR2b signaling and endocytosis may be 
associated with cancer migration and invasion in response to FGF10 
ligand binding [47].

FGFR2b and role in disease

Dysregulated FGF/FGFR signaling is involved in the development 
and progression of many cancer types, driven by genomic alterations in 
FGFRs, including gene amplification, mutation, chromosomal trans
location/fusion, and receptor protein overexpression [45,48,49]. FGFR2 
signaling specifically has been shown to promote cell proliferation, in
vasion, migration, and disease progression through the down regulation 
of thrombospondin4 via the PI3K/AKT/mTOR pathway [50]. Receptor 
gene amplification can lead to supraphysiologic receptor protein over
expression, and FGFR2 overexpression is associated with altered C-ter
minal splicing, which may promote receptor accumulation [45].

Selective disruption of the FGFR2b isoform leads to lethal effects in 
the lung, limbs, and other organs during embryo development [42] and 
to disruptions in the maintenance of alveolar epithelial type 2 cells in the 
lung during homeostasis and delays lacrimal gland regeneration in 
adults. [51,52]. Deregulation of FGFR2b is also associated with skeletal 
disorders during development and with ligand-induced FGFR2b 
signaling in tumor cells [47]. Selectively targeting the FGFR2b protein 
presents an opportunity to interrupt cancer cell proliferation while 
minimizing potential adverse effects, such as phosphate imbalances, 
fatigue, diarrhea, and various ocular or dermatologic toxicities associ
ated with the disruption of signaling via other members of the FGFR 
family [43,53]. FGFR2b is primarily expressed in epithelial cells within 
normal gastric mucosa at low levels, whereas overexpression is observed 
in approximately 38% of G/GEJCs [34,35,42,54]. The FGFR2c isoform 
is primarily expressed in mesenchymal cells [35,42,54]. Activation of 
EMT is associated with loss of FGFR2b expression in FGFR-resistant 
SNU-16 gastric cell lines in which the FGFR2b isoform dominates 
[55]. It has been suggested that loss of FGFR2b expression is associated 
with the activation of FGFR2c expression in prostate and bladder cancer 
and potentially metastatic disease [35,56,57]. It also has been suggested 
that the switch from FGFR2b to FGFR2c owing to EMT increases the risk 
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of resistance to anti-FGFR2b antibody [58]; however, further research is 
needed to elucidate the potential mechanism.

Clinical characteristics and prognostic utility of FGFR2b in 
gastric cancer

Limited evidence suggests that FGFR2b protein expression is a 
marker of poor prognosis and clinicopathologic features (Supplemental 
Table 3) [59–63]. In other cases, protein overexpression was not a sig
nificant independent prognostic factor for disease-specific survival in 
gastric cancer despite observed associations with less favorable clini
copathologic features, such as diffuse gastric cancer subtype [60,64]. 
Further studies found no association with poor outcomes and in one 
instance, observed an association with positive outcomes [61,62,65,66].

Interpretation of study findings has been complicated by the absence 
of standardized IHC detection methodology (eg, use of various anti
bodies possessing different specificities) and variability in IHC scoring 
approaches (eg, membranous versus cytoplasmic staining) and protein 
expression cutoffs [39,59,60,62,67,68]. Additionally, due to tissue 
sample quality (eg, age of tissue, number of tissue samples per patient 
case) and scoring methodology, the frequency of FGFR2b in the studied 
patient populations can vary widely (range, 3%–38%), and the total 
number of FGFR2b overexpressors available for analysis in historical 
studies has been low [34,54,59,60]. Progress to address this gap was 
published in the largest global assessment to date evaluating the prev
alence of FGFR2b protein overexpression in gastric cancers, wherein 
3782 fresh or recently obtained (<180 days) tumor samples collected 
from patients across 37 countries were centrally tested using a validated 
assay [34]. In this study, global prevalence of FGFR2b protein over
expression (any 2+/3+ tumor cell staining) was observed in approxi
mately 38% of patients; with a cutoff of ≥10% 2+/3+ tumor cell 
staining, prevalence was approximately 16%. Prevalence remained 
consistent across geographic regions and key patient and sample char
acteristics [34].

Previous studies indicate that the correlation of high FGFR2 protein 
expression with poor survival was specific in only diffuse gastric cancer 
and was associated with peritoneal metastasis [61,64,69]. In a meta- 
analysis of 10 studies of Asian patients with advanced gastric cancer, 
FGFR2 protein overexpression (detected by either FGFR2b-specific or 
pan-FGFR2 antibodies) correlated with tumor invasion (odds ratio 
[OR]=2.63, P<0.0001), higher rates of lymph node metastasis 
(OR=1.87, P<0.0001), advanced stage (OR=1.78, P<0.03), worse sur
vival outcomes (hazard ratio=1.40, P<0.00001), and poor prognoses 
[70]. Similarly, data from Ahn et al found FGFR2b overexpression to be 
significantly more frequent with the diffuse type (77%, P=0.01) and 
advanced-stage disease (37%, P=0.006) [59]. Conversely, in a study of 
patients with G/GEJC from central Europe, FGFR2 protein over
expression did not correlate with patient survival except in the diffuse 
type [71]. In this study, intestinal type gastric cancer (62%) was more 
prevalent than the diffuse type (25%). In summary, limited evidence 
suggests FGFR2b protein overexpression as a prognostic biomarker in 
advanced gastric cancer and warrants further investigation across in
ternational cohorts.

Clinical utility of FGFR2b biomarker detection

Bemarituzumab is a first-in-class, humanized, afucosylated IgG1 
monoclonal antibody that blocks FGFR2b signaling via competitive 
binding inhibition of FGF ligands and evokes increased antibody- 
dependent cell-mediated cytotoxicity against FGFR2b-overexpressing 
gastric tumor cells [41,72]. The potential clinical benefit of bemar
ituzumab in patients with FGFR2b-selected G/GEJC has been demon
strated in phase 1 and 2 studies [39,41,53], and confirmatory phase 3 
studies are currently underway (NCT05052801, NCT05111626).

Bemarituzumab with modified infusional 5-fluorouracil, leucovorin, 
and oxaliplatin (mFOLFOX6) was evaluated in FIGHT, a phase 2 ran
domized, placebo-controlled trial in patients with advanced HER2- 
negative G/GEJC [39,41]. In this study, patients were screened and 
prospectively enrolled based on positive FGFR2b protein overexpression 
as assessed by IHC (defined as membranous staining of 2+ to 3+ in >0% 
of tumor cells) or FGFR2 amplification via next-generation sequencing of 
plasma circulating tumor DNA (ctDNA). At baseline, 96% of patients had 
overexpression of FGFR2b; however, only 26 (17%) exhibited FGFR2 
gene amplification [39]. Moreover, in a post hoc analysis of the phase 2 
trial, patients with FGFR2b protein overexpression, irrespective of 
FGFR2 gene amplification, benefited from bemarituzumab [39]. 
Together, these phase 2 learnings informed the phase 3 trial decision to 
base biomarker selection of patients on FGFR2b protein overexpression 
only [39,41].

The discrepancies in FGFR2b protein overexpression compared with 
ctDNA-based FGFR2 amplification levels observed in FIGHT have also 
been highlighted by other studies using tissue-based in situ hybridiza
tion (ISH)/fluorescence in situ hybridization (FISH) methodology for 
FGFR2 amplification analyses [54,59,60,73–75]. Yashiro et al reported a 
greater number of cases positive for FGFR2b overexpression using IHC 
(2+ or 3+ staining) compared with FGFR2 gene amplification using 
FISH [54]. Several other studies compared FGFR2 amplification using 
FISH versus IHC and concluded FISH should not be substituted for IHC 
detection because of the high probability of false negatives due to 
intratumoral heterogeneity and low Pearson correlation coefficients 
[73,74]. Among evaluable G/GEJC cases in a study examining the 
relationship between FGFR2 amplification and expression, 61% of 176 
cases were positive for FGFR2 overexpression via IHC, whereas only 
15% of 140 cases were positive for FGFR2 amplification via FISH [75]. 
Similarly, Ahn et al observed greater detection of FGFR2b protein 
overexpression compared with FGFR2 amplification, although increased 
IHC staining intensity appeared to correlate with greater levels of 
amplification via FISH [59]. The evidence therefore demonstrates the 
evaluation of protein overexpression as an appropriate method to 
identify patients for FGFR2b-targeted therapy.

An evaluation of a biomarker-enriched subgroup has the potential to 
further identify select patients with G/GEJC for whom anti-FGFR2b 
therapy may be of benefit [41]. The phase 2 FIGHT trial also explored 
trial outcomes for a prespecified subgroup of patients with FGFR2b 
overexpression in at least 10% of tumor cells [39,41]. In FIGHT, 59.7% 
of patients treated with bemarituzumab-mFOLFOX6 (n=77) and 66.7% 
of patients in the placebo arm (n=78) had overexpression of FGFR2b in 

Fig. 1. FGFR2b signaling pathway, isoforms, and specificity. (A) Ligand binding and homodimerization activate downstream signaling cascades, including the PI3K/ 
AKT/mTOR, RAS/MAPK, and Wnt/β-catenin pathways that function in cell proliferation, migration, and angiogenesis [36,42,44]. (B) Alternative splicing of the 
C-terminal of the Ig domain III of FGFR2 determines the specific ligands for each FGFR2 variant.[35] The two major isoforms include the FGFR2 IIIb and IIIc isoforms 
[42]. (Reproduced from Ishiwata T. Role of fibroblast growth factor receptor-2 splicing in normal and cancer cells. Front Biosci 2018;23:626–639. Copyright 
(1997–2018) IMR Press.) (C) FGF ligands bind select FGFRs with strong activation. FGFR2b is selectively bound by the KGF subfamily with strong activation [35,46]. 
AKT, protein kinase B; CBL, Casitas B lineage lymphoma; D, domain; ERK, extracellular signal-regulated kinase; ESRP1, epithelial splicing regulatory protein 1; FGF, 
fibroblast growth factor; FGFR2, FGF receptor 2; FGFR2b, FGFR2 isoform IIIb; FRS2α, FGFR substrate 2α; GAB1, growth factor receptor bound protein-2 − asso
ciated-binding protein 1; GRB2, growth factor receptor bound protein-2; Ig, immunoglobulin; ISE/ISS-3, intronic splicing enhancer/intronic splicing silencer-3; KGF, 
keratinocyte growth factor; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase; MKP1, mitogen-activated protein kinase phosphatase 1; 
MKP3, mitogen-activated protein kinase phosphatase 3; mTOR, mammalian target of rapamycin; P, phosphate; PI3K, phosphoinositide 3-kinase; RaF, rapidly 
accelerated fibrosarcoma proto-oncogene, serine/threonine kinase; RaS, rat sarcoma; RTK, receptor tyrosine kinase; SEFB, SAM-dependent methyltransferase; SoS, 
son of sevenless; SPRY, sprouty protein; TM, transmembrane; Wnt, wingless-related integration site.
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≥10% of tumor cells [41]. After a minimum follow-up of 2 years, 
bemarituzumab-mFOLFOX6 showed a clinically meaningful benefit 
compared with placebo-mFOLFOX6, with improvements in progression- 
free survival and overall survival more pronounced in the FGFR2b 
≥10% subgroup (Fig. 2). Among the FGFR2b ≥10% subgroup, overall 
survival for the bemarituzumab-mFOLFOX6 arm (24.7 months) was 
more than double that of the placebo-mFOLFOX6 arm (11.1 months) 
[41]. Overall, clinical findings to date support FGFR2b protein over
expression as an important biomarker in predicting response to anti- 
FGFR2b therapy with bemarituzumab in patients with HER2-negative 
G/GEJC [41].

FGFR2b IHC detection methodology

In the FIGHT and ongoing FORTITUDE clinical studies in G/GEJC, 
the FGFR2b selection of patients has been based on IHC via the VEN
TANA FGFR2b (FPR2-D) RxDx Assay (for investigational use only, 
Roche Diagnostics Solutions, Tucson, AZ, USA). This assay uses a mouse 
monoclonal antibody (FPR2-D clone) to detect the FGFR2b protein by 
binding within the extracellular domain. The IHC assay is performed on 
formalin-fixed, paraffin-embedded G/GEJC tumoral tissue and exhibits 
a partial or complete membrane staining pattern. The FPR2-D antibody 
has demonstrated high sensitivity and specificity in detecting the 
expression of FGFR2b rather than other isoforms, with the level of 
FGFR2b expression ranging from 0 to 3+, as classified by staining in
tensity (Fig. 3) [34,68]. Evaluation of the investigational VENTANA 
FGFR2b (FPR2-D) RxDx Assay and the highly specific antibody FPR2-D, 

paired with an established staining protocol, may offer a standardized 
approach in patient selection for bemarituzumab therapy [34,68].

Future considerations

As the number of clinically relevant biomarkers in G/GEJC continues 
to grow, comprehensive biomarker profiling provides valuable insight in 
assessing treatment options and supports the opportunity for further 
research into the overlap of FGFR2b with other biomarkers in gastric 
cancer. In a study of 176 Japanese patients with gastric cancer, 
including 16 with GEJC, no association was observed between FGFR2 
and HER2 overexpression status, with approximately one-third of HER2- 
positive cases also being positive for FGFR2 and vice versa [67]. How
ever, this study used antibodies targeting both FGFR2 IIIb and IIIc iso
forms with IHC staining and scoring methodology that differ from the 
one used in other phase 2 and 3 clinical trials [39,67]. In an IHC analysis, 
overlap was observed in gastric tumor samples with positive FGFR2b 
(staining intensity ≥2) and PD-L1 (>1%) expression, such that 60% of 
patients who were FGFR2b positive were also PD-L1 positive [76]. A 
Japanese study using the validated Ventana FGFR2b (FPR2-D clone) 
assay reported FGFR2b protein expression (any 2+/3+ staining) in 
advanced or metastatic G/GEJC HER2-negative tumor samples to 
overlap by 16% for PD-L1 combined positive score ≥5 and 36% for 
CLDN18.2 expressed in ≥75% of tumor cells [77]. In this same study, 
approximately 40% of FGFR2b-positive tumors did not express other 
currently actionable biomarkers. Further investigations are required to 
evaluate the overlap of FGFR2b protein overexpression with other 
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Fig. 2. Survival outcomes in patients with locally advanced/metastatic G/GEJC treated with bemarituzumab-mFOLFOX6 versus placebo-mFOLFOX6. (A) KM curve 
of PFS in the ITT population.a (B) KM curve of PFS in the FGFR2b ≥10% subgroup. (C) KM curve of OS in the ITT population.a (D) KM curve of OS in the FGFR2b 
≥10% subgroup [41]. FGFR2b, fibroblast growth factor receptor 2 IIIb isoform; G/GEJC, gastric and gastroesophageal junction cancer; HR, hazard ratio; ITT, 
intention-to-treat; KM, Kaplan-Meier; mFOLFOX6, modified infusional 5-fluorouracil, leucovorin, and oxaliplatin; OS, overall survival; PFS, progression-free survival. 
aThe ITT population included all patients who underwent randomization. The Cox proportional hazards model, with adjustment for randomization stratification 
factors, was used to calculate HRs and 95% CIs. Vertical bars show censoring. (Reproduced from Wainberg ZE, et al. Bemarituzumab as first-line treatment for locally 
advanced or metastatic gastric/gastroesophageal junction adenocarcinoma: final analysis of the randomized phase 2 FIGHT trial. Gastric Cancer 2024;27:558–570. 
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actionable biomarkers in larger sample sizes.
Although intratumoral heterogeneity is commonly observed for 

G/GEJC biomarkers, the body of data for FGFR2b heterogeneity has 
been limited to date [69,78]. One study found FGFR2b overexpression 
was significantly greater in paired metastatic lesions than in primary 
tumor (75% vs 47%) [59]. Another study found intratumoral hetero
geneity in 56% of cases when evaluating multiple areas of the primary 
tumor [60]. A biopsy specimen obtained from a small tumor region may 
not be representative of the whole heterogeneous tumor, thus collection 
of multiple samples obtained from different regions is likely to be more 
representative of a patient’s FGFR2b protein overexpression status [78]. 
In clinical practice, evaluation of approximately 6 to 8 tumor biopsies is 
recommended for G/GEJC tumors and affords the advantage of more 
accurately characterizing biomarker expression across the whole tumor, 
potentially reducing the rate of false-negative selection [78,79]. Previ
ous IHC studies with HER2, PD-L1, and CLDN18 biomarkers demon
strated a need to evaluate multiple biopsies for accurate assessment 
[79–81]. It will be important to understand FGFR2b heterogeneity and 
the appropriate tissue quantity to assess during analysis of protein 
overexpression by IHC.

Overall, current evidence supports FGFR2b protein overexpression 
as a clinically relevant biomarker for the anti-FGFR2b antibody 
bemarituzumab [41,59]. Indeed, study results indicate that a biomarker- 
enriched subgroup of patients with ≥10% FGFR2b protein over
expression may derive greater clinical benefit compared with the full 
population [41]. These findings are similar to those observed in the 
ToGA trial for a subgroup of patients with higher HER2 overexpression 
who received enhanced benefit from a trastuzumab with chemotherapy 
combination [16]. Clinical benefit associated with biomarker enrich
ment for PD-L1 (combined positive score, ≥5) or CLDN18.2 (≥75% of 
tumor cells) expression in G/GEJC cancer has also been reported in 
studies evaluating the programmed death receptor-1 inhibitor 

nivolumab and the CLDN18.2-targeting antibody zolbetuximab in 
combination with chemotherapy [19,22,23]. Together, these studies 
reinforce the concept that increased protein expression of an IHC 
biomarker has the potential to predict greater efficacy. Ongoing FGFR2b 
biomarker-selected clinical studies include the phase 3 FORTITUDE-101 
trial of mFOLFOX6 plus bemarituzumab or placebo and the phase 1b/3 
FORTITUDE-102 trial of mFOLFOX6 plus bemarituzumab with or 
without the anti–programmed death-1 antibody nivolumab, both in 
previously untreated advanced G/GEJC (NCT05052801 and 
NCT05111626, respectively).

Although bemarituzumab is currently the only FGFR2b-targeting 
investigational therapeutic to have attained late-stage clinical develop
ment, first-in-human studies of FGFR2b-targeting ADCs have recently 
been initiated, including BG-C137 (NCT06625593) and ALK201 
(NCT06656390). Research interest in targeting FGFR2b beyond the 
first-line setting is growing with neoadjuvant and later-line settings 
being investigated for monoclonal antibodies (eg, late-line bemar
ituzumab in the BEMARA study, NCT06680622) as well as alternative 
therapeutic modalities (eg, BG-C137 and ALK201).

Identification of novel biomarkers in G/GEJC has the potential to 
improve diagnostic assessment, leading to effective stratification of pa
tient populations and better precision-based treatment strategies. Future 
diagnostic evaluation might consider upfront reflex testing of important 
G/GEJC biomarkers to allow timely treatment decisions and ultimately 
improve patient outcomes. Within clinical practice, reducing the turn
around time required to access biomarker test results and thereby 
commencing treatment is critical. Although turnaround times for IHC 
tests can be relatively short, integrating reflex panel testing of all 
emerging biomarkers at diagnosis into existing workflows may help 
further expedite identification of patients who might clinically benefit 
from a targeted therapy for first-line treatment [16,41]. Multidisci
plinary tumor boards and other formal venues can help aid in the 
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education of biomarker detection strategies as new targeted treatments 
are approved and guidelines continue to evolve [12,82].

Conclusion

FGFR2b intersects with multiple cellular pathways involved in tumor 
cell proliferation, and the limited body of evidence to date suggests 
FGFR2b protein overexpression as detected by IHC may have a prog
nostic role in G/GEJC. As FGFR2b is overexpressed in a sizeable pro
portion of patients with advanced G/GEJC, further understanding the 
clinicopathologic characteristics associated with FGFR2b protein over
expression and the potential predictive and prognostic implications of 
this emerging biomarker in G/GEJC are areas of ongoing research and 
clinical interest.
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