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Gastric and gastroesophageal junction cancer (G/GEJC) is a heterogeneous and complex disease characterized by
histologic and molecular subtypes. Although a growing number of treatments have improved survival outcomes
in the advanced setting, the greatest therapeutic benefits are observed among patient populations eligible for
biomarker-directed therapies. Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) is an emerging
biomarker under phase 3 clinical investigation for G/GEJC with the novel monoclonal antibody bemarituzumab.
FGFR2b protein overexpression in gastric cancer, together with its function in various oncogenic signaling
pathways, makes it an attractive target for precision medicine and thereby has gained clinical interest for its
potential prognostic role in G/GEJC. Thus, to explore the potential role of FGFR2b, this narrative review sum-
marizes the role and mechanism of FGFR2b in advanced G/GEJC, describes appropriate detection methodology
for FGFR2b protein overexpression, and discusses future considerations for precision treatment in advanced

G/GEJC with respect to FGFR2b protein overexpression and the emergence of other biomarkers.

Introduction

Gastric cancer is the fifth leading cause of cancer-related mortality
worldwide, accounting for an estimated 660,000 deaths annually with
disease prevalence two-fold higher in men than in women [1].
Geographical incidence varies considerably, with the highest rates
observed in Eastern Asia and Eastern Europe relative to Western regions
[1]. Disease development may be the result of cellular changes from
chronic gastritis, with Helicobacter pylori and gastroesophageal reflux
disease being implicated as key risk factors for gastric and gastro-
esophageal junction tumors, respectively [2,3]. Although survival rates
have improved over the past few decades owing to earlier diagnosis and
treatment, the prognosis for patients with advanced disease remains
poor, with 5-year relative survival for distant metastatic disease ranging
from approximately 3% to 7% depending on geographic location [4-6].

Gastric cancer is predominately classified as adenocarcinoma (95%)
by histopathology and possesses distinct histologic subtypes according
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to the Lauren (intestinal or diffuse) and World Health Organization
classifications [2,7,8]. Four molecular subtypes of gastric
cancers—chromosomal instability (CIN), Epstein-Barr virus (EBV)
positive, genomically stable (GS), and microsatellite instability
(MSI)—have been identified by The Cancer Genome Atlas (TCGA)
Research Network, and the Asian Cancer Research Group offers a further
classification with 4 subgroups, including MSI high (MSI-H), epithelial
mesenchymal transition (EMT), epithelial/tumor protein 53 (TP53)
active, and epithelial/TP53 inactive; however, with the exception of
MS]I, these groups have limited clinical use [9,10].

Until more recently, therapy advancements in advanced gastric and
gastroesophageal junction cancer (G/GEJC) have been challenging
owing to the inherent complex and heterogeneous nature of the disease
[11]. Systemic chemotherapy remains the standard of care (SOC) for the
first-line treatment of G/GEJC, with regional preferences in chemo-
therapeutic choice [12-15]; however, clinical studies evaluating specific
G/GEJC subpopulations have led to the inclusion of precision therapies
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in SOC regimens (Supplemental Table 1) [16-21]. In general, G/GEJC
treatment guidelines recommend fluoropyrimidine plus platinum-based
chemotherapy backbones for most patients regardless of biomarker
status; however, precision therapies may be added depending on the
patient’s biomarker profile [13-15]. For patients with human epidermal
growth factor receptor 2 (HER2)-positive disease, trastuzumab with
pembrolizumab in combination with fluoropyrimidine- and oxaliplatin-
based chemotherapy is recommended; whereas, for HER2-negative
disease, nivolumab or pembrolizumab may be added to chemotherapy
[13-15,17,19-21]. More recently, Claudin 18.2 (CLDN18.2) has
emerged as a targetable biomarker with a variety of monoclonal anti-
bodies, bispecific antibodies, antibody-drug conjugates (ADCs), and
chimeric antigen receptor T-cell (CAR T) therapies being investigated in
clinical trials [22-24]. Phase 3 evaluations of the monoclonal antibody
zolbetuximab have demonstrated clinical benefit in combination with
chemotherapy in patients with locally advanced unresectable or meta-
static HER2-negative CLDN18.2-positive G/GEJC, leading to recent
regulatory approvals [22,23,25,26].

The addition of precision therapies to SOC chemotherapy regimens
are based on positive biomarker detection of predictive markers, such as
HER2, programmed cell death ligand 1 (PD-L1), CLDN18.2, and MSI-H/
mismatch repair deficient (MSI-H/dMMR) [12-15,22,23]. Although
inclusion of these therapies into the SOC has improved survival out-
comes in the advanced setting [16,17,20,21] therapeutic benefit is
currently confined to limited patient populations that are positive for
routinely tested predictive markers: HER2 (20%-22% prevalence), PD-
L1 (30%-60%), MSI-H (6%-23%), and CLDN18.2 (33%-38%; Supple-
mental Table 2) [9,10,12,13,22,23,27-33].

Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) is a tyro-
sine kinase receptor that has emerged as a targetable biomarker of in-
terest, observed in approximately 38% of patients with advanced G/
GEJC (Supplemental Table 2) [34]. Ligand-specific binding to FGFR2b
can initiate downstream activation of oncogenic signaling pathways,
leading to cellular proliferation and tumor growth, angiogenesis, and
dissemination, including within G/GEJC tissue [35,36]. FGFR2b as a
transmembrane protein is also a distinct target from FGFR2 aberrations
(fusions, rearrangements, and mutations) which are established pre-
dictive biomarkers for cholangiocarcinoma and urothelial cancer
[35,37,38]. In G/GEJC, FGFR2 gene amplification is uncommon and is
present in a subset of patients with FGFR2b protein overexpression;
however, it is not always observed in the presence of FGFR2b protein
overexpression [39]. Overexpression of an oncogene not associated with
detectable gene amplification has been observed in other cancer types
and may be due to overactivation of the paternally and or maternally
derived alleles of the gene [40]. Together, these features have supported
FGFR2b as a potential therapeutic target in G/GEJC.

Subsequently, the predictive capacity of FGFR2b protein over-
expression using immunohistochemistry (IHC) is being investigated for
targeted therapy with the humanized FGFR2b monoclonal antibody
bemarituzumab. Evaluation of bemarituzumab in the FGFR2b
biomarker-based phase 2 randomized, double-blind, placebo-controlled
FIGHT trial [41] and ongoing phase 3 FORTITUDE studies
(NCT05052801 and NCT05111626) looks to expand treatment options
for patients with advanced G/GEJC. As clinical development progresses,
there is a growing interest among clinicians and pathologists alike to
further understand FGFR2b as an emerging biomarker. To this end, in
this narrative review we summarize the role and mechanism of disease
of FGFR2b in advanced G/GEJC, including the mechanistic pathway,
prevalence, clinicopathologic characteristics, and prognostic under-
standing. Appropriate detection methodology for FGFR2b protein
overexpression is also described, as well as future considerations for
precision treatment in the evolving G/GEJC landscape.

Structure and function of FGFR2b

The FGF/FGFR intracellular pathway plays an important role in
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controlling cell growth, proliferation, differentiation, angiogenesis, and
survival [42]. During embryonic development, this pathway is associ-
ated with morphogenesis; whereas, in adults, its role is focused on
nervous system control, tissue repair, wound healing, and tumor
angiogenesis [42]. Within the FGFR family, four distinct genes
(FGFR1-4) give rise to tyrosine kinase receptors that are activated upon
binding of one of 23 different ligands and stabilized by heparan sulfate
proteoglycan [36,42,43]. Ligand-induced FGFR dimerization then leads
to fibroblast growth factor receptor substrate 2 (FRS2) phosphorylation
within the intracellular tyrosine kinase domain, resulting in downstream
activation of the mitogen-activated protein kinase and the
phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian
target of rapamycin (mTOR) pathway (Fig. 1A) [36,42].

FGFRs comprise a cytoplasmic domain, a single transmembrane
domain, and an extracellular ligand-binding domain, which is composed
of three immunoglobulin-like domains (D1-D3). FGFR isoforms are
generated by alternative splicing of exons 8 and 9 on D3 of the FGFR2
gene. Encoding of the C-terminal of D3 by exon 8 gives rise to the IIIb
isoform (FGFR2b), whereas encoding by exon 9 gives rise to the Illc
isoform (FGFR2c) (Fig. 1B) [35,42]. FGFR isoforms exhibit various
binding specificities for different FGF ligands. While other FGFRs and
their isoforms bind to an array of FGF ligands, FGFR2b binds to a
uniquely restricted subset of keratinocyte growth factor (KGF) ligands
(FGFs 3, 7, 10, 22; Fig. 1C) [35,36,42,44-46].

Activation of FGF7 results in FGFR2b degradation and cell prolifer-
ation, whereas that of FGF10 promotes cell migration and receptor
recycling [47]. FGF10-induced intracellular phosphorylation of tyro-
sine (Y) 734 on FGFR2b leads to PI3K and SH3 domain-binding protein 4
(SH3BP4) recruitment, a complex important for FGFR2b recycling and
response. Thus, aberrations in FGFR2b signaling and endocytosis may be
associated with cancer migration and invasion in response to FGF10
ligand binding [47].

FGFR2b and role in disease

Dysregulated FGF/FGFR signaling is involved in the development
and progression of many cancer types, driven by genomic alterations in
FGFRs, including gene amplification, mutation, chromosomal trans-
location/fusion, and receptor protein overexpression [45,48,49]. FGFR2
signaling specifically has been shown to promote cell proliferation, in-
vasion, migration, and disease progression through the down regulation
of thrombospondin4 via the PI3K/AKT/mTOR pathway [50]. Receptor
gene amplification can lead to supraphysiologic receptor protein over-
expression, and FGFR2 overexpression is associated with altered C-ter-
minal splicing, which may promote receptor accumulation [45].

Selective disruption of the FGFR2b isoform leads to lethal effects in
the lung, limbs, and other organs during embryo development [42] and
to disruptions in the maintenance of alveolar epithelial type 2 cells in the
lung during homeostasis and delays lacrimal gland regeneration in
adults. [51,52]. Deregulation of FGFR2b is also associated with skeletal
disorders during development and with ligand-induced FGFR2b
signaling in tumor cells [47]. Selectively targeting the FGFR2b protein
presents an opportunity to interrupt cancer cell proliferation while
minimizing potential adverse effects, such as phosphate imbalances,
fatigue, diarrhea, and various ocular or dermatologic toxicities associ-
ated with the disruption of signaling via other members of the FGFR
family [43,53]. FGFR2Db is primarily expressed in epithelial cells within
normal gastric mucosa at low levels, whereas overexpression is observed
in approximately 38% of G/GEJCs [34,35,42,54]. The FGFR2c isoform
is primarily expressed in mesenchymal cells [35,42,54]. Activation of
EMT is associated with loss of FGFR2b expression in FGFR-resistant
SNU-16 gastric cell lines in which the FGFR2b isoform dominates
[55]. It has been suggested that loss of FGFR2b expression is associated
with the activation of FGFR2c expression in prostate and bladder cancer
and potentially metastatic disease [35,56,57]. It also has been suggested
that the switch from FGFR2b to FGFR2c owing to EMT increases the risk
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Fig. 1. FGFR2b signaling pathway, isoforms, and specificity. (A) Ligand binding and homodimerization activate downstream signaling cascades, including the PI3K/
AKT/mTOR, RAS/MAPK, and Wnt/p-catenin pathways that function in cell proliferation, migration, and angiogenesis [36,42,44]. (B) Alternative splicing of the
C-terminal of the Ig domain III of FGFR2 determines the specific ligands for each FGFR2 variant.[35] The two major isoforms include the FGFR2 IIIb and IIIc isoforms
[42]. (Reproduced from Ishiwata T. Role of fibroblast growth factor receptor-2 splicing in normal and cancer cells. Front Biosci 2018;23:626-639. Copyright
(1997-2018) IMR Press.) (C) FGF ligands bind select FGFRs with strong activation. FGFR2b is selectively bound by the KGF subfamily with strong activation [35,46].
AKT, protein kinase B; CBL, Casitas B lineage lymphoma; D, domain; ERK, extracellular signal-regulated kinase; ESRP1, epithelial splicing regulatory protein 1; FGF,
fibroblast growth factor; FGFR2, FGF receptor 2; FGFR2b, FGFR2 isoform IIIb; FRS2«a, FGFR substrate 2a; GAB1, growth factor receptor bound protein-2 — asso-
ciated-binding protein 1; GRB2, growth factor receptor bound protein-2; Ig, immunoglobulin; ISE/ISS-3, intronic splicing enhancer/intronic splicing silencer-3; KGF,
keratinocyte growth factor; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase; MKP1, mitogen-activated protein kinase phosphatase 1;
MKP3, mitogen-activated protein kinase phosphatase 3; mTOR, mammalian target of rapamycin; P, phosphate; PI3K, phosphoinositide 3-kinase; RaF, rapidly
accelerated fibrosarcoma proto-oncogene, serine/threonine kinase; RaS, rat sarcoma; RTK, receptor tyrosine kinase; SEFB, SAM-dependent methyltransferase; SoS,
son of sevenless; SPRY, sprouty protein; TM, transmembrane; Wnt, wingless-related integration site.

of resistance to anti-FGFR2b antibody [58]; however, further research is
needed to elucidate the potential mechanism.

Clinical characteristics and prognostic utility of FGFR2b in
gastric cancer

Limited evidence suggests that FGFR2b protein expression is a
marker of poor prognosis and clinicopathologic features (Supplemental
Table 3) [59-63]. In other cases, protein overexpression was not a sig-
nificant independent prognostic factor for disease-specific survival in
gastric cancer despite observed associations with less favorable clini-
copathologic features, such as diffuse gastric cancer subtype [60,64].
Further studies found no association with poor outcomes and in one
instance, observed an association with positive outcomes [61,62,65,66].

Interpretation of study findings has been complicated by the absence
of standardized IHC detection methodology (eg, use of various anti-
bodies possessing different specificities) and variability in IHC scoring
approaches (eg, membranous versus cytoplasmic staining) and protein
expression cutoffs [39,59,60,62,67,68]. Additionally, due to tissue
sample quality (eg, age of tissue, number of tissue samples per patient
case) and scoring methodology, the frequency of FGFR2b in the studied
patient populations can vary widely (range, 3%-38%), and the total
number of FGFR2b overexpressors available for analysis in historical
studies has been low [34,54,59,60]. Progress to address this gap was
published in the largest global assessment to date evaluating the prev-
alence of FGFR2b protein overexpression in gastric cancers, wherein
3782 fresh or recently obtained (<180 days) tumor samples collected
from patients across 37 countries were centrally tested using a validated
assay [34]. In this study, global prevalence of FGFR2b protein over-
expression (any 2+4/3+ tumor cell staining) was observed in approxi-
mately 38% of patients; with a cutoff of >10% 2+/3+ tumor cell
staining, prevalence was approximately 16%. Prevalence remained
consistent across geographic regions and key patient and sample char-
acteristics [34].

Previous studies indicate that the correlation of high FGFR2 protein
expression with poor survival was specific in only diffuse gastric cancer
and was associated with peritoneal metastasis [61,64,69]. In a meta-
analysis of 10 studies of Asian patients with advanced gastric cancer,
FGFR2 protein overexpression (detected by either FGFR2b-specific or
pan-FGFR2 antibodies) correlated with tumor invasion (odds ratio
[OR]=2.63, P<0.0001), higher rates of lymph node metastasis
(OR=1.87, P<0.0001), advanced stage (OR=1.78, P<0.03), worse sur-
vival outcomes (hazard ratio=1.40, P<0.00001), and poor prognoses
[70]. Similarly, data from Ahn et al found FGFR2b overexpression to be
significantly more frequent with the diffuse type (77%, P=0.01) and
advanced-stage disease (37%, P=0.006) [59]. Conversely, in a study of
patients with G/GEJC from central Europe, FGFR2 protein over-
expression did not correlate with patient survival except in the diffuse
type [71]. In this study, intestinal type gastric cancer (62%) was more
prevalent than the diffuse type (25%). In summary, limited evidence
suggests FGFR2b protein overexpression as a prognostic biomarker in
advanced gastric cancer and warrants further investigation across in-
ternational cohorts.

Clinical utility of FGFR2b biomarker detection

Bemarituzumab is a first-in-class, humanized, afucosylated IgG1
monoclonal antibody that blocks FGFR2b signaling via competitive
binding inhibition of FGF ligands and evokes increased antibody-
dependent cell-mediated cytotoxicity against FGFR2b-overexpressing
gastric tumor cells [41,72]. The potential clinical benefit of bemar-
ituzumab in patients with FGFR2b-selected G/GEJC has been demon-
strated in phase 1 and 2 studies [39,41,53], and confirmatory phase 3
studies are currently underway (NCT05052801, NCT05111626).

Bemarituzumab with modified infusional 5-fluorouracil, leucovorin,
and oxaliplatin (mFOLFOX6) was evaluated in FIGHT, a phase 2 ran-
domized, placebo-controlled trial in patients with advanced HER2-
negative G/GEJC [39,41]. In this study, patients were screened and
prospectively enrolled based on positive FGFR2b protein overexpression
as assessed by IHC (defined as membranous staining of 2+ to 3+ in >0%
of tumor cells) or FGFR2 amplification via next-generation sequencing of
plasma circulating tumor DNA (ctDNA). At baseline, 96% of patients had
overexpression of FGFR2b; however, only 26 (17%) exhibited FGFR2
gene amplification [39]. Moreover, in a post hoc analysis of the phase 2
trial, patients with FGFR2b protein overexpression, irrespective of
FGFR2 gene amplification, benefited from bemarituzumab [39].
Together, these phase 2 learnings informed the phase 3 trial decision to
base biomarker selection of patients on FGFR2b protein overexpression
only [39,41].

The discrepancies in FGFR2b protein overexpression compared with
ctDNA-based FGFR2 amplification levels observed in FIGHT have also
been highlighted by other studies using tissue-based in situ hybridiza-
tion (ISH)/fluorescence in situ hybridization (FISH) methodology for
FGFR2 amplification analyses [54,59,60,73-75]. Yashiro et al reported a
greater number of cases positive for FGFR2b overexpression using IHC
(2+ or 3+ staining) compared with FGFR2 gene amplification using
FISH [54]. Several other studies compared FGFR2 amplification using
FISH versus IHC and concluded FISH should not be substituted for IHC
detection because of the high probability of false negatives due to
intratumoral heterogeneity and low Pearson correlation coefficients
[73,74]. Among evaluable G/GEJC cases in a study examining the
relationship between FGFR2 amplification and expression, 61% of 176
cases were positive for FGFR2 overexpression via IHC, whereas only
15% of 140 cases were positive for FGFR2 amplification via FISH [75].
Similarly, Ahn et al observed greater detection of FGFR2b protein
overexpression compared with FGFR2 amplification, although increased
IHC staining intensity appeared to correlate with greater levels of
amplification via FISH [59]. The evidence therefore demonstrates the
evaluation of protein overexpression as an appropriate method to
identify patients for FGFR2b-targeted therapy.

An evaluation of a biomarker-enriched subgroup has the potential to
further identify select patients with G/GEJC for whom anti-FGFR2b
therapy may be of benefit [41]. The phase 2 FIGHT trial also explored
trial outcomes for a prespecified subgroup of patients with FGFR2b
overexpression in at least 10% of tumor cells [39,41]. In FIGHT, 59.7%
of patients treated with bemarituzumab-mFOLFOX6 (n=77) and 66.7%
of patients in the placebo arm (n=78) had overexpression of FGFR2b in
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>10% of tumor cells [41]. After a minimum follow-up of 2 years,
bemarituzumab-mFOLFOX6 showed a clinically meaningful benefit
compared with placebo-mFOLFOX6, with improvements in progression-
free survival and overall survival more pronounced in the FGFR2b
>10% subgroup (Fig. 2). Among the FGFR2b >10% subgroup, overall
survival for the bemarituzumab-mFOLFOX6 arm (24.7 months) was
more than double that of the placebo-mFOLFOX6 arm (11.1 months)
[41]. Overall, clinical findings to date support FGFR2b protein over-
expression as an important biomarker in predicting response to anti-
FGFR2b therapy with bemarituzumab in patients with HER2-negative
G/GEJC [41].

FGFR2b IHC detection methodology

In the FIGHT and ongoing FORTITUDE clinical studies in G/GEJC,
the FGFR2b selection of patients has been based on IHC via the VEN-
TANA FGFR2b (FPR2-D) RxDx Assay (for investigational use only,
Roche Diagnostics Solutions, Tucson, AZ, USA). This assay uses a mouse
monoclonal antibody (FPR2-D clone) to detect the FGFR2b protein by
binding within the extracellular domain. The IHC assay is performed on
formalin-fixed, paraffin-embedded G/GEJC tumoral tissue and exhibits
a partial or complete membrane staining pattern. The FPR2-D antibody
has demonstrated high sensitivity and specificity in detecting the
expression of FGFR2b rather than other isoforms, with the level of
FGFR2b expression ranging from 0 to 3+, as classified by staining in-
tensity (Fig. 3) [34,68]. Evaluation of the investigational VENTANA
FGFR2b (FPR2-D) RxDx Assay and the highly specific antibody FPR2-D,
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paired with an established staining protocol, may offer a standardized
approach in patient selection for bemarituzumab therapy [34,68].

Future considerations

As the number of clinically relevant biomarkers in G/GEJC continues
to grow, comprehensive biomarker profiling provides valuable insight in
assessing treatment options and supports the opportunity for further
research into the overlap of FGFR2b with other biomarkers in gastric
cancer. In a study of 176 Japanese patients with gastric cancer,
including 16 with GEJC, no association was observed between FGFR2
and HER2 overexpression status, with approximately one-third of HER2-
positive cases also being positive for FGFR2 and vice versa [67]. How-
ever, this study used antibodies targeting both FGFR2 IIIb and IlIc iso-
forms with IHC staining and scoring methodology that differ from the
one used in other phase 2 and 3 clinical trials [39,67]. In an IHC analysis,
overlap was observed in gastric tumor samples with positive FGFR2b
(staining intensity >2) and PD-L1 (>1%) expression, such that 60% of
patients who were FGFR2b positive were also PD-L1 positive [76]. A
Japanese study using the validated Ventana FGFR2b (FPR2-D clone)
assay reported FGFR2b protein expression (any 2-+/3+ staining) in
advanced or metastatic G/GEJC HER2-negative tumor samples to
overlap by 16% for PD-L1 combined positive score >5 and 36% for
CLDN18.2 expressed in >75% of tumor cells [77]. In this same study,
approximately 40% of FGFR2b-positive tumors did not express other
currently actionable biomarkers. Further investigations are required to
evaluate the overlap of FGFR2b protein overexpression with other
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Fig. 2. Survival outcomes in patients with locally advanced/metastatic G/GEJC treated with bemarituzumab-mFOLFOX6 versus placebo-mFOLFOX6. (A) KM curve
of PFS in the ITT population.? (B) KM curve of PFS in the FGFR2b >10% subgroup. (C) KM curve of OS in the ITT population.? (D) KM curve of OS in the FGFR2b
>10% subgroup [41]. FGFR2b, fibroblast growth factor receptor 2 IIIb isoform; G/GEJC, gastric and gastroesophageal junction cancer; HR, hazard ratio; ITT,
intention-to-treat; KM, Kaplan-Meier; mFOLFOX6, modified infusional 5-fluorouracil, leucovorin, and oxaliplatin; OS, overall survival; PFS, progression-free survival.
2The ITT population included all patients who underwent randomization. The Cox proportional hazards model, with adjustment for randomization stratification
factors, was used to calculate HRs and 95% CIs. Vertical bars show censoring. (Reproduced from Wainberg ZE, et al. Bemarituzumab as first-line treatment for locally
advanced or metastatic gastric/gastroesophageal junction adenocarcinoma: final analysis of the randomized phase 2 FIGHT trial. Gastric Cancer 2024;27:558-570.
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Fig. 3. Gastric adenocarcinomas. A, C, E, and G: H&E staining. B, D, F, and H: FGFR2b IHC staining. (A) Gastric adenocarcinoma, surgical resection from primary
lesion. (B) Tumor cells are negative for FGFR2b. (C) Gastric adenocarcinoma, biopsy from stomach. (D) Cancer cells show partial membrane staining with weak (1+)
intensity (arrow). (E) Gastric adenocarcinoma, biopsy from stomach. (F) Tumor cells have complete or partial membrane staining with weak (1+) to moderate (2+;
arrow) intensity. (G) Gastric adenocarcinoma, surgical resection from primary lesion. (H) Tumor cells show strong (3+) membrane (arrows) staining with FGFR2b
[34]. FGFR2b, fibroblast growth factor receptor 2 IIIb isoform; H&E, hematoxylin and eosin; IHC, immunohistochemistry. (Reproduced from Rha SY, et al. Prev-
alence of FGFR2b protein overexpression in advanced gastric cancers during prescreening for the phase III FORTITUDE-101 trial. JCO Precis Oncol 2025;9:e2400710.

Journal link to article).

actionable biomarkers in larger sample sizes.

Although intratumoral heterogeneity is commonly observed for
G/GEJC biomarkers, the body of data for FGFR2b heterogeneity has
been limited to date [69,78]. One study found FGFR2b overexpression
was significantly greater in paired metastatic lesions than in primary
tumor (75% vs 47%) [59]. Another study found intratumoral hetero-
geneity in 56% of cases when evaluating multiple areas of the primary
tumor [60]. A biopsy specimen obtained from a small tumor region may
not be representative of the whole heterogeneous tumor, thus collection
of multiple samples obtained from different regions is likely to be more
representative of a patient’s FGFR2b protein overexpression status [78].
In clinical practice, evaluation of approximately 6 to 8 tumor biopsies is
recommended for G/GEJC tumors and affords the advantage of more
accurately characterizing biomarker expression across the whole tumor,
potentially reducing the rate of false-negative selection [78,79]. Previ-
ous IHC studies with HER2, PD-L1, and CLDN18 biomarkers demon-
strated a need to evaluate multiple biopsies for accurate assessment
[79-81]. It will be important to understand FGFR2b heterogeneity and
the appropriate tissue quantity to assess during analysis of protein
overexpression by IHC.

Overall, current evidence supports FGFR2b protein overexpression
as a clinically relevant biomarker for the anti-FGFR2b antibody
bemarituzumab [41,59]. Indeed, study results indicate that a biomarker-
enriched subgroup of patients with >10% FGFR2b protein over-
expression may derive greater clinical benefit compared with the full
population [41]. These findings are similar to those observed in the
ToGA trial for a subgroup of patients with higher HER2 overexpression
who received enhanced benefit from a trastuzumab with chemotherapy
combination [16]. Clinical benefit associated with biomarker enrich-
ment for PD-L1 (combined positive score, >5) or CLDN18.2 (>75% of
tumor cells) expression in G/GEJC cancer has also been reported in
studies evaluating the programmed death receptor-1 inhibitor

nivolumab and the CLDN18.2-targeting antibody zolbetuximab in
combination with chemotherapy [19,22,23]. Together, these studies
reinforce the concept that increased protein expression of an IHC
biomarker has the potential to predict greater efficacy. Ongoing FGFR2b
biomarker-selected clinical studies include the phase 3 FORTITUDE-101
trial of mFOLFOX6 plus bemarituzumab or placebo and the phase 1b/3
FORTITUDE-102 trial of mFOLFOX6 plus bemarituzumab with or
without the anti-programmed death-1 antibody nivolumab, both in
previously untreated advanced G/GEJC (NCT05052801 and
NCT05111626, respectively).

Although bemarituzumab is currently the only FGFR2b-targeting
investigational therapeutic to have attained late-stage clinical develop-
ment, first-in-human studies of FGFR2b-targeting ADCs have recently
been initiated, including BG-C137 (NCT06625593) and ALK201
(NCT06656390). Research interest in targeting FGFR2b beyond the
first-line setting is growing with neoadjuvant and later-line settings
being investigated for monoclonal antibodies (eg, late-line bemar-
ituzumab in the BEMARA study, NCT06680622) as well as alternative
therapeutic modalities (eg, BG-C137 and ALK201).

Identification of novel biomarkers in G/GEJC has the potential to
improve diagnostic assessment, leading to effective stratification of pa-
tient populations and better precision-based treatment strategies. Future
diagnostic evaluation might consider upfront reflex testing of important
G/GEJC biomarkers to allow timely treatment decisions and ultimately
improve patient outcomes. Within clinical practice, reducing the turn-
around time required to access biomarker test results and thereby
commencing treatment is critical. Although turnaround times for IHC
tests can be relatively short, integrating reflex panel testing of all
emerging biomarkers at diagnosis into existing workflows may help
further expedite identification of patients who might clinically benefit
from a targeted therapy for first-line treatment [16,41]. Multidisci-
plinary tumor boards and other formal venues can help aid in the
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education of biomarker detection strategies as new targeted treatments
are approved and guidelines continue to evolve [12,82].

Conclusion

FGFR2b intersects with multiple cellular pathways involved in tumor
cell proliferation, and the limited body of evidence to date suggests
FGFR2b protein overexpression as detected by IHC may have a prog-
nostic role in G/GEJC. As FGFR2b is overexpressed in a sizeable pro-
portion of patients with advanced G/GEJC, further understanding the
clinicopathologic characteristics associated with FGFR2b protein over-
expression and the potential predictive and prognostic implications of
this emerging biomarker in G/GEJC are areas of ongoing research and
clinical interest.
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