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SUMMARY

Oral squamous cell carcinoma (OSCC) is highly heterogeneous and metastatic, and the mechanisms driving
OSCC development, progression, and metastasis remain elusive. Here, we performed single-cell RNA
sequencing on 231,442 cells obtained from the tumor core (TC), tumor periphery (TP), adjacent surrounding
tissue (ST), and metastatic lymph node (mLN) samples of 10 patients with human papillomavirus (HPV)-nega-
tive OSCC. TP and TC showed no major immune cell phenotype differences. Interestingly, partial EMT
(p-EMT) cells showed significant activation of glycolysis and hypoxia signatures, serving as potential bio-
markers for clinical outcomes. Moreover, p-EMT scores of epithelial cells positively correlated with M2
scores of tumor-associated macrophages, while the proportion of p-EMT at TP was negatively associated
with that of GZMB™* exhausted CD8* T cells with cytotoxic potential and TNFRSF9* mast cells, conferring
an adverse prognosis. Our study provides insights into understanding the interplay between intratumoral

heterogeneity and the tumor microenvironment of advanced HPV-negative OSCC.

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth
most common human cancer and has generally been correlated
with smoking or alcohol consumption.’ Each year, approxi-
mately 600,000 new HNSCC cases are diagnosed, with an over-
all mortality rate of approximately 40%, accounting for 3.6% of
all cancer-related deaths.”? HNSCC develops from various pri-
mary sites, of which the oral cavity and lips are the most common
and account for 2% of all types of cancers.®

Field cancerization caused by smoking or drinking plays an
important role in the tumorigenesis of oral squamous cell
carcinoma (OSCC). Precancerous lesions accompanied by

™
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dysplastic change around the primary tumor are commonly de-
tected.” Moreover, lymph node metastasis plays an important
role in determining the treatment method and prognosis of pa-
tients with OSCC.° Despite multimodal treatment combining sur-
gery, radiotherapy, and chemotherapy, the survival rate of OSCC
has not improved considerably for the past several decades,
with the five-year overall survival (OS) being 50%. Therefore, it
is essential to study the tumor ecosystem, including the primary
tumor, surrounding tissues, and accompanying metastatic
lymph nodes (mLNs).

With the advent of single-cell RNA sequencing (scRNA-seq),
comprehensive investigations on heterogeneous cellular popu-
lations of tumors and their microenvironments have become
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Figure 1. Multiregional scRNA-seq profiling of advanced HPV-negative oral squamous cell carcinoma

(A) Schematic representation of the experimental design. The numbers (n) of patients and sampling sites are given in the figure.

(B) Uniform manifold approximation and projection (UMAP) visualization of sampling site (top) and patient (bottom) information. Each dot represents single cell,
colored by sampling site or patient information.

(C) UMAP visualization of major cell types.

(legend continued on next page)
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mainstream.® For the study of HNSCC, several studies have
identified immune landscape and subtype-specific signatures
associated with human papillomavirus (HPV)-positive and
HPV-negative HNSCCs.”™'" Some studies have analyzed cell
populations from multi-regions of HNSCCs, focusing on early-
stage OSCC,'? HPV-related features,'® or interactions between
malignant cells with fibroblasts and infiltrating T cells.'*'®
Especially, a previous study described that the malignant tu-
mor cells expressing the partial epithelial-to-mesenchymal tran-
sition (p-EMT) program localize to the edge of the primary tumors
with close proximity to cancer-associated fibroblasts (CAF) in
oral cavity cancer.'® The high expression of p-EMT-related
genes in HNSCC has been reported to be associated with unfa-
vorable clinical outcomes and adverse clinical features.'*'®
However, the molecular characteristics of p-EMT cells and their
association with other cellular populations in the tumor microen-
vironment (TME), leading to tumor aggressiveness, remain
incompletely understood. Our primary goal was to interrogate
the associations between spatially distinct intratumoral hetero-
geneity (ITH) and the TME in advanced HPV-negative OSCC us-
ing comprehensive multiregional scRNA-seq on the tumor core
(TC), tumor periphery (TP), adjacent surrounding tissue (ST),
and mLN samples. As a subgoal, we explored the mechanisms
by which p-EMT-related gene signatures contribute to the inter-
play between ITH and the TME and affect patient prognosis.

RESULTS

Multiregional single-cell RNA sequencing of human
papillomavirus-negative oral squamous cell carcinoma
We collected 36 samples from 10 patients with OSCC (P01-P10)
with lymph node metastases (Figure 1A and Table S1). The tis-
sues were collected via surgical resection and classified into
TC, TP, ST, and mLN based on their sampling sites with patho-
logic review (Figure S1). Cells were dissociated, and scRNA-seq
was performed using the droplet-based platform (10x Chro-
mium)'” (Figure 1A). Overall, more than 450 million reads were
sequenced for each sample, with an average of 1,593 median
genes and 4,986 median unique molecular identifiers (UMIs) for
each cell (Table S2). We also utilized scRNA-seq data from
normal lymph nodes (nLN, n = 10) of patients with lung cancer'®
for comparison with those from our mLN samples. After filtering
low-quality cells and removing ambient RNA contamination (the
details are in the “STAR Methods” section), 231,442 cells were
retained and visualized along with 32,355 cells from nLNs using
Uniform  Manifold Approximation and Projection (UMAP)
(Figure 1B). Unsupervised clustering analysis revealed six major
cell types consisting of B cells, endothelial cells, epithelial cells,
fibroblasts, T/NK cells, and myeloid cells; these findings were
also supported by the established marker gene expression and
SingleR annotation'® (Figures 1C, 1D, and S2A; Table S3). We
observed that B and T/NK cells were significantly enriched in
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the lymph nodes (mLNs and nLNs) compared to those in the
TCs and STs, whereas the proportion of stromal and myeloid
cells was substantially higher in the primary tumor tissues
compared to that in lymph nodes, indicating the heterogeneous
composition of the major cell types in different regions
(Figures 1E, S2B, and S2C).

To further validate our findings, we compared the cellular
composition of publicly available normal tissues (NL) and meta-
static tumors in the lymph nodes (LN) from patients with
HNSCC'* to that of our samples (Figure S2D). We observed a
notable difference in major cell type proportions between NL
and our primary tumor tissues (including ST, TC, and TP).

Specifically, myeloid cells exhibited a significant increase in
primary tissues (mean proportion: 14.9%) compared to NL
(mean proportion: 4.91%), representing an approximately
3-fold enrichment (t-test p = 1.146e-06). Conversely, fibroblasts
were significantly less abundant in primary tissues (mean
proportion: 17.2%) compared to NL (mean proportion: 47.5%),
showing an approximately 64% reduction (t-test p =
0.008737). This inverse relationship is consistent with the known
role of fibroblasts in wound healing, leading to their enrichment in
normal tissues, as supported by previous research.”%?’

Furthermore, the proportion of T cells in our metastatic lymph
nodes (MLN, mean: 57.3%, n = 10) was approximately 14.5%
lower compared to public normal lymph nodes from patients
with lung cancer (nLN, mean: 67.1%, n = 10) (t-test p = 0.031).
Similarly, public metastatic lymph nodes (LN, mean: 51.9%,
n = 4) also showed a reduced T cell proportion compared to
the public nLN dataset. While the difference between public
LNs and nLNs did not reach statistical significance (p = 0.25),
likely due to the limited number of public LN samples, these
data suggest a trend toward T cell reduction in metastatic lymph
nodes.

To understand the functional characteristics of diverse cell
populations across sampling sites and their clinical associations,
we performed re-clustering analysis of major cell types.

Tumor cores and peripheries showed distinct epithelial-
to-mesenchymal transition signatures

Unsupervised clustering of epithelial cells revealed 15 clusters
(Figure 2A). As previously reported in solid tumors,'®?>* most
epithelial cells showed patient-specific clustering due to the het-
erogeneous transcriptomic profile, indicating inter-tumoral het-
erogeneity. While patient-specific clustering was dominant, cells
from different sampling sites were often represented within each
cluster (Figures 2B, 2C, S3A, and S3B).

Next, we inferred large-scale copy number variations (CNVs)
using InferCNV?* for deciphering the intra-tumoral heterogeneity
across sampling sites. Interestingly, chromosomal aberrations
similar to those detected in the primary tumors were observed
at dysplastic ST in most patients, albeit to varying degrees
(Figure S3C). This observation is also reported in recent studies

(D) Heatmap of scaled normalized expression of marker genes in the major cell types. Each column represents a cell, and each row represents a marker gene of a

major cell type. The top 100 marker genes for each major cell type were used.

(E) Proportion distributions of major cell types across sampling sites.

Significance of differential proportion (p value) between sites was determined by two-sided t-test (box central lines, median; box limits, 25th and 75th percentiles;

whiskers, 1.5x the interquartile range; *p < 0.05, **p < 0.01, ***p < 0.001).
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Figure 2. Epithelial cells with EMT characteristics are enriched in tumor cores and peripheries
(A) UMAP of epithelial cells derived from all lesions, colored and labeled by cluster.

(B) Proportions of patients in each epithelial cell cluster, colored by patient.

(C) UMAP of epithelial cells derived from all lesions, colored, and labeled by sampling site.

(legend continued on next page)
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based on a limited number of samples.'®'* Epithelial cells from
mLN showed CNVs consistent with those from primary tissues.
For example, samples from P04 and P07 patients showed aber-
rant CNVs with substantial homogeneity at all sites, including ST.
This phenomenon was also observed in most other patients and
validated using whole-genome sequencing data (Figure S3C).

To characterize site-specific gene expression signatures, we
performed differential gene expression analysis and gene set
enrichment analysis (GSEA) across origins (Figures 2D and 2E,
the details are described in the supplemental information).
Importantly, genes associated with epithelial-to-mesenchymal
transition (EMT) were significantly enriched specifically in TC
and TP (Figures 2D, 2E, and S3D). To further explore site-specific
gene expression programs, we performed hierarchical clustering
of genes commonly upregulated in each site across at least three
patients. This analysis identified six distinct gene expression
programs. EMT-related genes in program1 were highly ex-
pressed in TC, as illustrated by TAGLN and MYL9 (Figures 2E
and S3D). In program3, the expression of CXCL1 and TPM2,
implicated in EMT, was upregulated in the TC and TP
(Figures 2E and S3D). We also validated the existence of cells ex-
pressing TPM2, TAGLN, and LGALS1 in the TC or TP using he-
matoxylin and eosin (H&E) and multiplex immunofluorescence
(mlF) staining (Figures 2F and S3E).

Partial epithelial-to-mesenchymal transition is
associated with poor prognosis and glycolysis/hypoxia
signatures

Next, we explored three distinct epithelial subtypes based on the
established markers of Epithelial, p-EMT, and EMT (Figures 2G
and 2H). P01 epithelial cells primarily consisted of clusters repre-
senting the Epithelial subtype, whereas the epithelial cells from
P09 were primarily enriched in the EMT subtype (Figure 2I). Tra-
jectory analysis reflected the epithelial differentiation process,
from Epithelial subtype to p-EMT, p-EMT to EMT, consistent
with the recent review on the p-EMT in HNSCC (Figure 3A).%°
The p-EMT cells, with increased density toward the middle of
the pseudotime, showed the enrichment of glycolysis, hypoxia,
and EMT pathways (Table S4).

Intriguingly, the abundance of p-EMT cells at TP was nega-
tively correlated with overall survival in our data (Pearson’s
r=-0.726, p = 0.027, Figure 3B), which is consistent with previ-
ous studies reporting the association between p-EMT and worse
outcome.'*?” We further confirmed that the high proportion of
the p-EMT cells was associated with shorter overall survival
through a deconvolution analysis of The Cancer Genome Atlas
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(TCGA) HPV-negative HNSCC cohort (log rank p = 0.035,
Figure S4A and Table S5). Moreover, our deconvolution analysis
revealed a positive correlation between the proportion of epithe-
lial subtype cells and overall survival in the TCGA HNSCC cohort
(log rank p = 0.035, Figure S4B). Notably, patients with a higher
p-EMT/Epithelial cell ratio exhibited a significantly worse overall
survival compared to those with a lower ratio (log rank p = 0.011,
Figure S4B), further emphasizing the prognostic significance of
p-EMT.

To elucidate the central mechanism underlying the unfavor-
able prognosis associated with p-EMT cells, we examined the
differential functional states of p-EMT compared to other sub-
types. We identified significant upregulation of genes linked
to glycolysis and hypoxia within p-EMT cells (Figures 3C,
S4C, and S4D). Importantly, we confirmed the positive correla-
tion between the p-EMT scores and the glycolysis and hypoxia
scores at the single-cell level in our data (Figures 3D and 3E).
We also validated this finding in three publicly available
scRNA-seq datasets of HNSCC (Figures S4E and S4F) and in
the TCGA HPV-negative HNSCC cohort (Figures S4G and
S4H). Therefore, we hypothesized that the enhanced glycolysis
and hypoxia signatures within p-EMT cells might serve as a
biomarker to predict the unfavorable survival outcomes.
Indeed, patients with high glycolysis and hypoxia signatures
exhibited significantly shorter overall survival in the TCGA
HPV-negative HNSCC cohort (Figure 3F; Table S6). Addition-
ally, our transcription factor activity analysis using SCENIC re-
vealed that the partial EMT subtype is characterized by signifi-
cantly increased activity of ENO1, a key regulator of glycolysis,
and RUNX1, a transcription factor previously implicated in
EMT?® (Figures 3G, S4l, and S4J). Consistently, the p-EMT sub-
type exhibited the highest expression of ENO1 among all sub-
types (Figures 3H and S4K). Furthermore, comparative analysis
of malignant and non-malignant epithelial cells, stratified by
copy number variation, revealed significant upregulation of
EMT, hypoxia, and glycolysis-related genes in malignant cells
(Figures S4L and S4M), further supporting the role of these
pathways in tumor progression and metastasis. These findings
collectively demonstrate that p-EMT cells exhibit a distinct
metabolic profile and transcriptional landscape, which may
contribute to their aggressive behavior and poor prognosis.

Effector-like Tex cells are depleted as partial epithelial-
to-mesenchymal transition cells become abundant
Re-clustering of T and NK cells gave rise to 22 clusters consist-
ing of CD4* T, CD8"* T, regulatory T (Treg), and NK cells with

(D) Heatmap of scaled normalized expression of differentially expressed genes (DEGs) across sampling sites. Red color indicates the EMT-associated genes

which were used for multiplex immunofluorescence (mIF) staining.

(E) Bar plots showing top five significantly enriched pathways in epithelial cells from tumor cores and peripheries (Program-1 and -3).

(F) Histological sections of HPV-negative OSCC tumor (patient P06). Left and bottom panels: H&E staining showing the overall tumor morphology (Scale bars:
4 mm and 100 pm). Black arrowheads indicate the sub-site of tumor; ST, TP, and TC. Middle panel: Immunofluorescence staining of EMT markers TPM2 (red),
TAGLN (green), LGALS1 (yellow), and nuclear marker DAPI (blue). Co-localization of both TPM2 (red), TAGLN (green) and LGALS1 is observed primarily in the TC
region (Scale bar represents 100 um). Right panel: Boxplot showing the mean expression intensity of TPM2 in different tumor regions. Statistical significance was

determined by two-sided t-test (*p < 0.05, **p < 0.01, **p < 0.001).

(G) Heatmap of scaled normalized expression of epithelial, p-EMT, and EMT-associated genes within epithelial cells.
(H) UMAP of epithelial cells derived from all lesions, colored and labeled by epithelial subtype.
(I) Proportions of three epithelial subpopulations in patients with advanced OSCC, colored by cell type.
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Figure 3. p-EMT cells are linked to poor prognosis through enhanced Glycolysis and hypoxia signatures
(A) Transcriptional trajectory analysis of epithelial cells (Top) and the heatmap showing DEGs (Bottom) along the pseudotime trajectory.

(B) Scatterplot of OSCC TP samples, showing the negative correlation between the proportions of p-EMT cells and overall survival. Pearson’s correlation (r) and
associated p value are reported inside the scatterplot.
(C) Bar plot of enriched pathways in the p-EMT cells compared to other subtypes of epithelial cells. The top 10 significantly enriched pathways (adjusted p < 0.05)
in the p-EMT cells and the top 7 most highly expressed genes for each term were displayed. Pathways associated with poor prognosis were colored in red.
(D and E) Scatterplots of all epithelial cells in our cohort, showing correlation between the expression of p-EMT-related genes with glycolysis-related genes (D),
and with hypoxia-related genes (E) at the single-cell level. Pearson’s correlation (r) and associated p value are reported inside the scatterplot.

(F) Kaplan-Meier plots showing that the patients with high expression of glycolysis markers (left) or hypoxia markers (right) have a worse prognosis in the TCGA
HPV-negative HNSCC cohort. The high and low groups are divided by the half value of the mean expression of the signature gene sets.

(G) Boxplot showing the mean ENO1 regulon activity score in different epithelial subtypes within the tumor core (TC). Each dot represents the mean ENO1 regulon
activity score of cells belonging to a specific subtype in each sample. Statistical significance between subtypes was determined using t-tests (o < 0.05,

**p < 0.01, **p < 0.001).

(H) Violin plots showing the distribution of ENO7 expression levels in individual cells of each epithelial subtype. Significance of differential expression (p value)
among subtypes was determined by Kruskal-Wallis test.

distinct marker gene expression (Figures 4A and 4B). T and NK
cells were broadly distributed regardless of patients and sam-
pling sites (Figures S5A and S5B). We hypothesized that immu-
nosuppressive T cell subsets were prevalent in the primary
tumors and metastatic lymph nodes. We found that CD4*
naive-CD55, CD4* naive-DDIT4 T cells (CD4" naive T cells,
CD4" naive), and CD8" naive-CD55 T cells (CD8" naive T cells,
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pressing

T cell immunity,*®

CD8* naive) were enriched in the mLN compared to those in
other sites (Figures 4C and S5C). CD55, known for its role in sup-
was highly expressed in CD4* naive-
CD55 and CD8* naive-CD55 T cells (Figure S5E). The expression
of DDIT4, known to inhibit Th17 cell differentiation,® therefore
preventing host defense to infection, was upregulated in CD4*
naive-DDIT4 T cells (Figure S5D).
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In contrast, the proportions of CD8" eff-GNLY (CD8" effector
T cells, CD8" eff), and Tex-GZMB T cells (exhausted CD8*
T cells, Tex) were significantly increased in the TC and TP
compared to those in the lymph nodes (mLN and nLN)
(Figure 4C). The lineage structure of CD8" T cells showed that
CD8* T cells differentiated from CD8" naive to CD8" eff and
from CD8" eff to Tex (Figure 4D). Consistently, velocity analysis
further confirmed the differentiation trajectory of CD8" T cells
from a naive to effector and subsequently to exhausted pheno-
type (Figure S5E). Based on the public gene signatures,®'—®
we identified CD8* naive-CD55 T cells with the highest naive-
ness and Tex-GZMB T cells with the highest cytotoxicity and ter-
minal exhaustion (Figures 4E and 4F). This result indicated that
Tex-GZMB T cells displayed enhanced effector function.

Treg clusters showed a heterogeneous distribution among
sites. Cells from Treg-IL2RA and Treg-IFIT3 primarily existed in
TC and TP, whereas cells from Treg-CXCL13 were slightly en-
riched in mLN (Figure S5F). Trajectory analysis of Tregs revealed
that inhibitory and co-stimulatory characteristics were gradually
activated along the pseudotime (Figures S5G-S5I). Especially,
Treg-IL2RA, which was mainly distributed at the end of pseudo-
time, had the highest inhibitory, co-stimulatory, and IL2R scores,
associated with the inhibition of effector T cells (Figures S5G-
S5J). These findings were further supported by analysis using
public gene signatures associated with T cell naiveness/central
memory, cytotoxicity, and Treg, which revealed consistent re-
sults (Figure S5K). Treg-CXCL13, located at the beginning of
pseudotime, showed high expression of CXCL13, encoding a
known B cell chemoattractant to lymphoid follicles (Figure
S5D).%*% These findings support that the activated and highly
differentiated Tregs were significantly enriched in TC and TP,
leading to the immunosuppressive TME of OSCC.

Next, we explored whether there were any associations be-
tween T cell subtypes and p-EMT in tumor cells, promoting
the immunosuppressive environment. We divided the samples
into p-EMTM9" and p-EMT'" groups based on the median
value of the p-EMT proportion of all samples. Notably, in
TP, patients with low p-EMT proportion had a higher propor-
tion of Tex-GZMB T cells compared to those with high
p-EMT proportion (Figure 4G). The proportion of Tex-GZMB
T cells in TP was positively correlated with overall survival in
our data (Pearson’s r = 0.689, p = 0.04, Figure 4H). Further-
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more, the expression of Tex-GZMB signature genes was
associated with better prognosis in the TCGA HPV-negative
HNSCC cohort (log rank p = 0.0064, Figure 4l). Signature
genes from Tex-GZMB are known to be involved in T cell
cytotoxicity (GZMA, GZMB, GNLY, PRF1),°? immunity to viral
infection (CCL5, KLRC1),°® tissue residency (CXCL13),°” and
T cell exhaustion (SOX4, ENTPD1)*® (Figure S5L). Additionally,
mlF staining revealed a potential association of CD8" GZMB*
T cells with the p-EMT-low group (Figures 4J and S5M). While
not statistically significant (p = 0.11 for CD8 and p = 0.18 for
GZMB), these findings suggest possible transient immune
activation in this group.

Partial epithelial-to-mesenchymal transition is
associated with immunosuppressive characteristics of
myeloid populations

Myeloid cells were categorized into 23 clusters and annotated
based on the well-defined markers, including APOE, CD163,
and LYZ (Figures 5A and 5B). The distribution of cell clusters ap-
peared to be largely concordant among samples after perform-
ing batch correction (Figures S6A and S6B). We identified seven
dendritic cell (DC) clusters, seven monocyte (Mono) clusters, five
macrophage (Mac) clusters, one neutrophil cluster, one NK cell
precursor (pNK) cluster, and two mast cell (Mast) clusters. The
DC clusters were further classified as activated dendritic cell
(aDC), type 1 classical DC (cDC1), type 2 classical DC (cDC2),
and plasmacytoid dendritic cell (pDC).

We first focused on the myeloid cell populations that were
distinctly enriched in the primary tissues or mLN. Mac-CXCLT,
Mono-CCL3, Mast-TNFRSF9, cDC2-CCL22, and pDC-COTL1
showed significantly higher proportions in TC and TP than those
in lymph nodes (Figure 5C). Several genes involved in tumor
development, progression, and metastasis, including cxcL1,%°
IL1,*" CCL3,*? cCL4,*® CCL20,** and PTGS2,*® were found to
be upregulated in Mac-CXCL1 and Mono-CCL3 (Figure S6C).
Moreover, GSEA revealed that the inflammatory response was
significantly activated in Mac-CXCL7 and Mono-CCL3
(Figures S6D and S6E). cDC2-CCL22 showed high expression
of CCL22, known to promote interaction with Treg™®
(Figure S6C). pDC-COTL1 showed expression of CD5 and
CD81, similar to the CD5" CD81" pDCs known to induce Treg
formation®’ (Figure S6C).

Figure 4. Immunosuppressive characteristics of T/NK cell subsets in advanced HPV-negative OSCC
(A) UMAP of T/NK cells derived from all lesions, colored and labeled by cluster number, cell type and marker gene.

(B) Heatmap of scaled normalized expression of T/NK cell marker genes.
(C) Proportion distributions of CD8* T cell clusters across sampling sites.

(D) Developmental trajectories of CD8" T cells by Monocle2 analysis. Individual dots represent single cells, while different colors denote distinct CD8" T cell
clusters. The arrows indicate differentiation pathways. The inlet plot showed cells colored by their corresponding pseudotime.

(E and F) Violin plots showing T cell naiveness, cytotoxicity, and terminal exhaustion scores for each CD8* T cell cluster (E), along with score changes across
pseudotime (F).

(G) Proportion distributions of Tex-GZMB in p-EMT"9" and p-EMT"°" populations across sampling sites. The high and low groups are divided by the half value of
the proportion of p-EMT cells. Significance of differential proportion (p value) between p-EMT groups was determined by two-sided t-test (box central lines,
median; box limits, 25™ and 75™ percentiles; whiskers, 1.5x the interquartile range; *p < 0.05, **p < 0.01, **p < 0.001).

(H) Scatterplot of OSCC TP samples, showing the positive correlation between the proportions of Tex-GZMB cells and overall survival. Pearson’s correlation (r)
and associated p value are reported inside the scatterplot.

() Kaplan-Meier plot showing that patients with HPV-negative HNSCC in the TCGA dataset with high expression of Tex-GZMB markers have better prognosis.
The high and low groups are divided by the half value of the mean expression of the Tex-GZMB markers.

(J) Representative immunofluorescence staining for the Tex-GZMB markers CD8 (red), GZMB (green) and GZMA (yellow). Scale bar, 100 pm.
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Conversely, cDC2-TIMP1 and Mono-VCAN were highly en-
riched in the mLN (Figure 5C). cDC2-TIMP1 and Mono-VCAN
showed upregulated gene expression associated with hypoxia
and angiogenesis, such as TIMP1® and VCAN*® (Figures S6C,
S6E, and S6F). pDC-JCHAIN was highly enriched in both mLN
and nLN, suggesting its role in antiviral immune response at
lymph nodes®° (Figure S6G).

The trajectory analysis of monocytes and macrophages iden-
tified the differentiation from monocytes to macrophages
(Figure 5D). The presence of Mac-CXCL1 in the upper-right
corner with site information suggests that the cells from Mac-
CXCL1 are highly differentiated and enriched in TC and TP.
The tumor-associated macrophage (TAM) signature score”’
was also high in the upper right, indicating that Mac-CXCL1 is
associated with TAMs (Figure 5E).

Next, we hypothesized that immunosuppressive myeloid-cell
subsets might be linked to p-EMT cells, given the correlation of
p-EMT with unfavorable prognosis. Therefore, we calculated
the average M2 macrophage signature score for each sample’s
macrophages and measured the average p-EMT signature score
for the corresponding sample’s epithelial cells. Strikingly, p-EMT
score was positively correlated with M2 score in our data (Pear-
son’s r = 0.44, p = 0.019, Figure 5F). This result was further vali-
dated using publicly available scRNA-seq datasets of HNSCC
(Figure S6H) and the TCGA HPV-negative HNSCC cohort
(Figure S6l). We also confirmed that regions with high p-EMT
score were adjacent to regions with high M2 score in the pub-
lished OSCC spatial transcriptomics data (Figures 5G and
S6J). To further support this notion, we analyzed publicly avail-
able spatial transcriptomics data from OSCC®? and found a pos-
itive correlation between p-EMT and M2 macrophage signatures
in the leading edge and transitory regions (Figure S6K). In
contrast, mast cells (consisting of Mast-TNFRSF9 and Mast-
TPSABT1) were significantly reduced in the TP of patients with a
high p-EMT proportion compared to those with a low p-EMT pro-
portion (Figure 5H). The abundance of the mast cells in patients
with a low p-EMT proportion was confirmed by the co-expres-
sion of TNFRSF9 and TPSAB1 using mlF staining (Figure 5I).
The proportion of mast cells in TP showed trends toward corre-

iScience

lation with overall survival in our data (Pearson’s r = 0.626,
p = 0.071, Figure S6L). Deconvolution analysis of the TCGA
HPV-negative HNSCC cohort also showed that the proportion
of mast cells is positively correlated with OS (log rank
p =0.012, Figure 5J).

Enrichment of highly differentiated plasma and mucosa-
associated lymphoid tissue-derived B cells in the
primary tumor tissues

We identified 35,523 B and plasma cells consisting of 11 clusters
based on the canonical markers such as CD19 and CD79A
(Figures S7A and S7B). There were neither patient-specific nor
site-specific clusters (Figures S7C and S7D). The 11 clusters
were composed of six subtypes, including naive B cell (naive),
memory B cell (memory), activated B cell (aBC), germinal center
B cell (GC), plasma cell (plasma), and mucosa-associated
lymphoid tissue-derived B cell (MALT). naive-YBX3, naive-
IGLC3, and GC-RGS13 were significantly enriched in lymph no-
des than in TC and TP (Figure S7E). On the contrary, plasma and
MALT clusters showed substantial enrichment in TC and TP
(Figure S7E).

Trajectory analysis showed that B cells differentiated from
naive into memory, aBC, GC, plasma, and MALT (Figure S7F).
Site distribution showed that most cells from mLN were ordered
earlier in pseudotime with naive features. In contrast, highly
differentiated cells such as plasma and MALT were prevalent
in primary tissues later in pseudotime (Figures S7F and S7G).
Taken together, these results reveal that the differentiated
plasma and MALT B cells were mainly present in the tumor
tissues.

Site-specific enrichment of stromal cells related to
inflammation, metastasis, and angiogenesis

Re-clustering of fibroblasts detected five subtypes: CAF, anti-
gen-presenting CAF (apCAF), inflammatory CAF (iICAF), myofi-
broblast (MF), and smooth muscle cell (SMC; Figures S8A and
S8B). Each cluster was composed of multiple patients and sites
(Figures S8C and S8D). Recently, iCAF was known to produce
inflammatory cytokines®® to promote T cell inhibition and

Figure 5. Heterogeneity of myeloid cell subsets in advanced HPV-negative OSCC
(A) UMAP of myeloid cells derived from all lesions, colored and labeled by cluster number, cell type, and marker gene.

(B) Heatmap of scaled normalized expression of myeloid cell marker genes.

(C) Proportion distributions of seven representative myeloid cell clusters with significant proportion differences across sampling sites.

(D) Developmental trajectories of monocytes and macrophages. Each dot corresponds to a single cell, colored by cluster label or pseudotime (left), and site (right).
(E) Score distributions of tumor-associated macrophage (TAM) signature within each macrophage cluster (left) and along the pseudotime trajectory (right).
Significance of differential signature enrichment (p value) among clusters was determined by Kruskal-Wallis test.

(F) Scatterplot of p-EMT score versus M2 macrophage score across all samples (n = 28). Only samples with > 25 macrophage cells and > 25 epithelial cells were
included.

(G) Histologic section and spatially mapped p-EMT and M2 macrophage scores of one representative stage IV OSCC patient obtained from the publicly available
Visium samples.*®

(H) Proportion distributions of mast cells in p-EMT"9" and p-EMT'"®" populations across sampling sites. The high and low groups are divided by the half value of
the proportion of p-EMT cells.

(I) Left panel: Representative immunofluorescence staining of mast cells in tumor tissues. TNFRSF9 (red) and TPSAB1 (green) were used as markers. White
arrowheads indicate the cells expressing TNFRSF9 and TPSAB1. Scale bar, 100 pm/20 pm. Right panel: Boxplots showing the mean expression intensity of
TPSAB1 and TNFRSF9 in p-EMT"" and p-EMT™" groups. Statistical significance was determined by two-sided t-test (*p < 0.05, **p < 0.01, **p < 0.001).

(J) Kaplan-Meier plot of the TCGA HPV-negative HNSCC cohort showing the group with a high proportion of mast cells associated with better prognosis. The high
and low groups are divided by the half value of the proportion of mast cells.

Significance of differential proportion (p value) between sites or p-EMT groups was determined by two-sided t-test (box central lines, median; box limits, 25" and
75™ percentiles; whiskers, 1.5x the interquartile range; *p < 0.05, **p < 0.01, **p < 0.001).
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metastasis.®* In our data, two distinct iCAF clusters were identi-
fied (Figure S8B). iCAF-MFAPS5, enriched in mLN, displayed high
expression of MFAP5, known to promote tumor growth and inva-
sion potential in solid tumors®® (Figures SSE-S8G). In contrast,
iCAF-CRABP1 was abundant in ST and TP (Figure S8E). In the
iCAF-CRABP1 cluster, CRABP1, an essential factor for lymph
node metastasis in pancreatic neuroendocrine cancer,”® and
IGFBP2, known as a CAF-mediated anoikis inhibitory factor in
breast cancer,®” were highly expressed (Figures S8F and S8G).
We also identified that inflammatory genes, including CCL2,
CXCL1, and PTGS2, were highly expressed in iCAF clusters,
similar to the metastasis-promoting fibroblast population in
lung metastasis of breast cancer®® (Figure S8F). In general,
CAF and apCAF clusters were enriched in TC or TP
(Figure S8E). CAF-APOE, which is abundant in primary tissues,
exhibited increased expression of APOE, known to promote im-
mune suppression in pancreatic cancer”® (Figures S8E and S8F).
Conversely, apCAF-CD74 revealed high expression of the genes
engaged in immune response, such as CD74 and HLA-DRA
(Figure S8F).

Endothelial cells (ECs) consisted of eight clusters and four
subtypes: activated postcapillary vein ECs (aPCV), lymphatic
ECs (Lymphatic), tip ECs (Tip), and arterial ECs (Arterial;
Figures S9A and S9B). Most clusters were made of several pa-
tients and sampling sites (Figures S9C and S9D). Tip-VWAT
and Tip-ESM1 were enriched in TC than in ST (Figure S9E).
These clusters showed the upregulation of genes involved in
EMT (COL4A1, COL4A2), and angiogenesis (VWAT), reflecting
the endothelial subtypes highly enriched in other malig-
nancies'®®° (Figures S9F and S9G). Contrarily, aPCV-HLA-
DRA with high expression of genes involved in MHC-II-mediated
antigen presentation (HLA-DPB1, HLA-DQA1, HLA-DRA), was
depleted in TC, indicating that antigen presentation was downre-
gulated in TC (Figures S9E-S9G). aPCV-VCAM1 and Tip-
POSTN, which express genes associated with inflammation
(VCAMT) and angiogenesis (POSTN), respectively, were more
prevalent in TP than ST (Figures S9E and S9F).

Inhibitory cell-cell interactions between partial
epithelial-to-mesenchymal transition cells and immune
cells

Given that p-EMT cells were enriched in patients with poor prog-
nosis, we hypothesized that p-EMT cells could have stronger
inhibitory interactions with immune cells than other epithelial
subtypes. We used CellPhoneDB to examine the intercellular
communications between epithelial subtypes and Treg/Tex/
Mono/Mac. We observed immunomodulatory interactions
involving SORL1-LGALS9, TNFRSF1B-TNF, HLA-DPB1-NRG1,
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and ICOS-TNF exclusively between p-EMT and Treg/Tex
(Figure 6A). Notably, PVR-CD96 and PVR-TIGIT interactions
associated with T cell inhibition®" were observed between the
p-EMT and Treg/Tex at TC, TP, and mLN (Figure 6A). Using
mlF staining of OSCC patient samples, we identified the CD4*
immune cells expressing a higher level of TIGIT juxtaposed to
PVR-expressing cancer cells in patients with a high p-EMT pro-
portion compared with those with a low p-EMT proportion
(Figure 6B).

We also confirmed the CD44-FGFR2 interaction between
Mono/Mac and p-EMT at TC, TP, and mLN, consistent with its
known role in promoting gastric cancer growth®® (Figure 6C).
Similarly, at these sites, we exclusively observed the CSF1R-
CSF1 interaction associated with M2-like polarization®® between
Mono/Mac and p-EMT, along with other interactions, such as
angiogenesis (VEGFA-EPHB2) and inhibitory interaction
(LGALS9-SORL1).

We termed receptors and ligands (RL) most frequently ex-
pressed in p-EMT cells as “RL enriched in p-EMT.” The expres-
sion of “RL enriched in p-EMT” was positively correlated with p-
EMT expression at both the single-cell and TCGA HPV-negative
HNSCC bulk RNA-seq levels (Figures S10A-S10C). The p-EMT
and the RL enriched in p-EMT markers were associated with
poor prognosis (log rank p = 0.048, Figure S10D). Collectively,
these results represent the presence of an immunosuppressive
TME in OSCC, specifically in p-EMT cells.

DISCUSSION

In this study, we performed single-cell transcriptomic analysis on
samples from multiple regions of patients with advanced HPV-
negative OSCC to understand the cellular landscape and identify
prognostic factors. Overall, we depict a comprehensive land-
scape of the TME in advanced HPV-negative OSCC, alongside
the well-known epithelial subtypes in OSCC. We performed the
phenotypic characterization of both epithelial and immune/stro-
mal cells, including the intercellular associations and communi-
cations between p-EMT cells and immune cells. Our analysis
did not reveal statistically significant differences in the overall
proportions of major immune cell populations between TC
and TP.

As shown in Figure S3C, our CNV analysis revealed aberrant
copy number profiles in STs comparable to those found in pri-
mary tumors, suggesting the process of field cancerization in
OSCC. This finding is consistent with recent studies reporting
somatic copy number alterations in the precancerous le-
sions'?4%* and the benign tissues'®° of solid tumors. Choi
et al. identified CNVs from carcinoma in situ cells, mostly from

Figure 6. Immunosuppressive interactions between p-EMT cells and immune cells in advanced HPV-negative OSCC

(A) Dot plot showing the inferred receptor-ligand interactions between epithelial subtypes and Treg/Tex clusters. The size of each circle represents the signif-
icance of interaction (permutation test by CellPhoneDB) and circle color indicates the average receptor and ligand expression level for each pair.

(B) Top panel: Representative images of multiplex immunofluorescence staining of TIGIT (red) as a ligand and CD4 (yellow) as a receptor expressing from Treg,
and PVR (green) as a cancer cell receptor in OSCC tissue. In patients with a high p-EMT proportion at the TP, TIGIT-expressing Treg cells (in red and yellow) are
more frequently juxtaposed with PVR-expressing cells (in green) compared to those with a low p-EMT proportion at TP. Blue shows DAPI staining of nuclei. Scale
bar, 100 um/20 pm. Bottom right panel: Boxplots showing the mean expression intensity of CD4 and TIGIT in p-EMT™" and p-EMT" groups. Statistical sig-
nificance was determined by two-sided t-test (*p < 0.05, *p < 0.01, **p < 0.001).

(C) Dot plot showing the inferred receptor-ligand interactions between epithelial subtypes and Mono/Mac clusters.
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one early-stage HPV-negative patient, showing similar CNVs to
those of the malignant cells in the primary tissue of oral cavity
cancer."* Puram et al. detected invasive malignant cells in path-
ologically normal tissue of one early-stage HPV-positive oropha-
ryngeal squamous cell carcinoma.’® Sun et al. reported that
CNVs were gradually enriched in epithelial cells in oral leukopla-
kia and cancer regions of early-stage OSCC.'? Building on these
findings, we uncovered that CNVs similar to those of primary tu-
mors are frequently detected in STs in advanced HPV-nega-
tive OSCC.

We observed the upregulation of distinct EMT-related genes in
TCs and TPs of malignant epithelial cells. Recent studies have
reported the localization of p-EMT program at the leading edge
of OSCC with increased invasiveness.'®°? In our study, the p-
EMT proportion at TP showed a negative correlation with overall
survival. Remarkably, we identified a positive correlation be-
tween the expression of p-EMT-associated genes with glycol-
ysis-related and hypoxia-related genes, both at the single-cell
level and in bulk RNA-seq data. We further confirmed the asso-
ciation of glycolysis and hypoxia with p-EMT using publicly avail-
able single-cell RNA-seq datasets of HNSCC. In addition, we
found that the expression of glycolysis and hypoxia-related
genes is associated with worse prognosis in the TCGA HPV-
negative HNSCC cohort. Arecent report linked enhanced glycol-
ysis to increased tumor aggressiveness in cutaneous squamous
cell carcinoma.®® Another article mentioned that hypoxia acti-
vates Twist, a key transcription factor for EMT, in pancreatic
cancer.®’

Tex-GZMB, showing the highest cytotoxicity and terminal
exhaustion scores, was enriched in patients with a low p-EMT
proportion at TP. The proportion of this effector-like Tex at TP
showed a positive correlation with OS in our data. The expres-
sion of markers in Tex-GZMB correlates with favorable prog-
nosis in the TCGA HPV-negative HNSCC cohort, indicating
that enhanced cytotoxic activity is associated with better out-
comes for patients with HPV-negative HNSCC. This could reflect
the previously described T cell subtypes expressing immune
checkpoints and effector proteins associated with improved
prognosis in solid cancers.®”®*% Luoma et al.®” reported that
CD8 T cells having high activity scores of cytotoxicity and inhib-
itory signatures from pre-treatment samples correlated with neo-
adjuvant immune checkpoint blockade response and overall
survival in patients with oral cavity cancer and metastatic urothe-
lial cancer. Our finding suggests that the activation of Tex with
high cytotoxicity may provide a therapeutic strategy for patients
with advanced HPV-negative OSCC.

We also confirmed the presence of heterogeneous Treg pop-
ulations across the sampling sites of patients with OSCC. The
inhibitory score is the highest in Treg-IL2RA, enriched in the
STs and primary tumors, suggesting the potential of Treg-
IL2RA as a therapeutic target of advanced HPV-negative
OSCC."° This activated Treg subtype was recently reported to
be significantly enriched in the tumor tissue of HNSCC
compared to the non-malignant inflamed oral mucosa,”" indi-
cating field cancerization in ST. Additionally, mIF staining exper-
imentally supported the potential immunomodulatory interaction
between cancer cells and CD4" T cells. Therapeutic options to
prevent the inhibitory interactions between p-EMT and Treg/
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Tex/Mono/Mac, including T cell inhibition by PVR expressed
by p-EMT cells, could be considered for future work.5""2

The heterogeneous myeloid populations were differentially
distributed between primary tissues and lymph nodes. Specif-
ically, inflammatory TAMs (Mac-CXCL7) and monocytes
(Mono-CCL3) were abundant in TCs and TPs than in lymph no-
des. Recently, IL1B-expressing tissue-resident macrophages
have been reported to be co-localized with tumor cells highly ex-
pressing EMT markers in renal cell carcinoma, potentially pro-
moting tumor growth.”® Consistent with this, we found that
many inflammatory cytokines, including IL71B, were highly ex-
pressed in Mac-CXCL1 and Mono-CCLa3. Intriguingly, we identi-
fied that the M2 macrophage score is positively correlated with
p-EMT score at the single-cell level in our data and publicly avail-
able HNSCC single-cell RNA-seq and spatial transcriptomics
data. This result was also supported by the TCGA HPV-negative
HNSCC bulk RNA-seq data. We also found that mast cells were
enriched in the TP of patients with a low proportion of p-EMT and
were associated with good prognosis in the TCGA HPV-negative
HNSCC cohort. The abundance of mast cells in patients with low
p-EMT proportion was validated by mlIF staining. This finding is
in line with recent reports associating mast cells with better prog-
nosis in HNSCC.”""*

In summary, our single-cell transcriptomic analysis of
advanced HPV-negative OSCC revealed several key insights:
(1) the presence of comparable copy number alterations at ST
and primary tumors, suggesting field cancerization; (2) a nega-
tive prognostic impact of p-EMT at TP and its correlation with
metabolic pathways; (3) the association of cytotoxic Tex cell
enrichment in low p-EMT TP regions with better outcomes; (4)
the heterogeneity of Treg populations with an enrichment of
the inhibitory Treg subtype in ST and primary tumors; and (5)
increased mast cell abundance at TP in low p-EMT cases, linked
to favorable prognosis. These findings contribute to a deeper un-
derstanding of the TME in advanced OSCC and highlight poten-
tial avenues for therapeutic intervention and prognostic
stratification.

Limitations of the study

Our study design did not include non-metastatic head and neck
lymph node samples. Although this study was based on a limited
number of patient samples, we actively leveraged publicly avail-
able HNSCC scRNA-seq, spatial transcriptomics, and bulk RNA-
seq datasets to validate our findings. Another limitation is that
the interpretation of immune cell proportions in our metastatic
lymph node samples is limited by the use of control data derived
from normal lymph node samples of patients with lung cancer.
While we observed a difference in T cell proportions (as detailed
in the results section), this comparison is subject to potential
confounding factors arising from the distinct tumor biology of
lung versus oral squamous cell carcinoma.

Furthermore, our microscopic analysis of SLUG and ENO1
expression did not reveal a statistically significant difference be-
tween patient groups with high and low p-EMT cell ratios (results
not shown). This lack of significance may be attributed to the
limited number of patient samples and the potential for substan-
tial heterogeneity in the subcellular localization of these proteins.
While prior research has demonstrated that ENO1 promotes lung
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cancer metastasis, at least in part, by upregulating SLUG and
inducing EMT,”® our current data does not provide statistically
significant support for this in our OSCC cohort. Future studies
with larger sample sizes and spatial analysis are needed to
further investigate this potential link in OSCC.

Functional validation of the underlying mechanism of hypoxia/
glycolysis and p-EMT programs and the crosstalk between p-
EMT and immune cells in model systems would be helpful to
further elucidate the molecular mechanism of how p-EMT con-
tributes to shaping the immunosuppressive environment, which
eventually leads to poor prognosis of OSCC.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be
directed to and will be fulfiled by the Lead Contact, Yoon Woo Koh
(ywkohent@yuhs.ac).

Materials availability
This study did not generate new unique reagents.

Data and code availability

® Processed data for the single-cell RNA-seq experiments and sample in-
formation have been deposited at the NCBI GEO (https://www.ncbi.
nim.nih.gov/geo/) under the accession number GSE198315. All sin-
gle-cell RNA-sequencing data generated by this study have been
deposited in the NCBI SRA (https://www.ncbi.nlm.nih.gov/sra) under
the accession number PRJNA814536. These accession numbers for
the datasets are also listed in the key resources table.

® The source code used for pre-processing and main analysis is available
at https://github.com/CompbioLabUnist/SEV_OSCC_scRNA_seq.

® Any additional information required to reanalyze the data reported in this
work article is available from the lead contact upon request.
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Antibodies

Anti-a Enolase Antibody (L-27) Santa cruz sc-100812; RRID: AB_1118874
CD155 Monoclonal Antibody (D171) Invitrogen MAS5-13493; RRID: AB_10978147
Human CD4 antibody R&D AF-379-NA; RRID: AB_354469
Anti-SLUG antibody Abcam ab27568; RRID: AB_777968
TIGIT (E5Y1W) XP® Rabbit mAb Cell Signaling #99567; RRID: AB_2922806
TAGLN Monoclonal Antibody (GT336) Invitrogen MA5-17276; RRID: AB_2538742
TPM2 Polyclonal Antibody Bioss bs-1243R; RRID: AB_10857486
Galectin 1 (LGALS1) Monoclonal Antibody (6C8.4-1) Invitrogen 43-7400; RRID: AB_2533538
Anti-Mast Cell Tryptase (TPSAB1) antibody [EPR8476] Abcam ab134932; RRID: AB_2811029
Anti-CD137 (TNFRSF9) (4-1BB) Monoclonal (2G1) Invitrogen MA5-42580; RRID: AB_2911721

CD8a Monoclonal Antibody (AMC908), eFluor 660
Anti-Granzyme B antibody [EPR22645-206].
Granzyme A Polyclonal Antibody

anti-Mouse IgG (H + L) Alexa Fluor™ 488
anti-Mouse IgG (H + L) Alexa Fluor™ 568
anti-Rabbit IgG (H + L) Alexa Fluor™ 488
anti-Rabbit IgG (H + L) Alexa Fluor™ 568
anti-Mouse IgG (H + L) Alexa Fluor™ 647
anti-Rabbit IgG (H + L) Alexa Fluor™ 647

eBioscience™
Abcam

Bioss
Invitrogen
Invitrogen
Abcam
Invitrogen
Invitrogen

abcam

50-0008-82; RRID: AB_2574149
ab255598; RRID: AB_2860567
bs-2578R; RRID: AB_10855216
A21202; RRID: AB_141607
A10037; RRID: AB_11180865
ab150073; RRID: AB_2636877
A10042; RRID: AB_2534017
Ab150107; RRID: AB_2890037
ab150075; RRID: AB_2752244

Chemicals, peptides, and recombinant proteins

Normal Donkey Serum

Sodium chloride

Sodium phosphate dibasic

Potassium phosphate dibasic
potassium chloride

Antibody Diluent, Ready-to-use diluent,
Immunohistochemistry
VECTASHIELD® Antifade Mounting
Medium with DAPI

Jackson ImmunoResearch
Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich

Dako

Vector Laboratories

017-000-121
S9888
S9763
P3786
P3911
S0809

H-1200-10

Deposited data

Processed scRNA-seq data
Raw scRNA-seq data
Code

This paper
This paper
GitHub

GEO: GSE198315
SRA: PRJNA814536

https://github.com/CompbioLabUnist/
SEV_OSCC_scRNA_seq

Software and algorithms

CellRanger v3.0.2
Scrublet v0.2.1
SoupX v1.4.5
Seurat v3.2.0
SingleR v1.0.6
MAST v1.12.0
DESeq2 v1.26.0
EnrichR v3.0

10x Genomics
GitHub
GitHub
GitHub
GitHub
Bioconductor
Bioconductor
CRAN

https://www.10xgenomics.com/
https://github.com/AllonKleinLab/scrublet
https://github.com/constantAmateur/SoupX
https://github.com/satijalab/seurat
https://github.com/dviraran/SingleR
https://www.bioconductor.org/packages/MAST
https://bioconductor.org/packages/DESeq2
https://cran.r-project.org/web/packages/enrichR/
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inferCNV v1.2.1 GitHub https://github.com/broadinstitute/inferCNV/

Monocle2 v2.14.0 GitHub https://github.com/cole-trapnell-lab/
monocle2-rge-paper

CellPhoneDB v2.1.4 GitHub https://github.com/Teichlab/cellphonedb

ggplot2 v3.3.2 CRAN https://cran.r-project.org/web/packages/ggplot2/

pheatmap v1.0.12 CRAN https://cran.r-project.org/web/
packages/pheatmap/

GATK v3.7 McKenna et al.”® https://gatk.broadinstitute.org/

BWA v0.7.15 Li and Durbin”’ https://github.com/Ih3/bwa

Samtools v1.6 GitHub https://github.com/samtools/samtools

Picard v2.9.0 Broad Institute http://broadinstitute.github.io/picard/

CNVKkit v0.9.6 Talevich et al.”® https://cnvkit.readthedocs.io/en/stable/

pySCENIC v0.11.0 Van de Sande et al.”® https://pyscenic.readthedocs.io/
en/latest/index.html

scVelo v0.3.2 Bergen et al.®° https://scvelo.readthedocs.io/en/stable/

R project for statistical computing R Core Team https://www.r-project.org

Python Programming Language Python https://www.python.org

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient recruitment and ethical approval

Samples were obtained from Yonsei Head and Neck Cancer Center. Approvals to collect samples from OSCC patients were granted
by the institutional review board at Severance Hospital, Yonsei University College of Medicine (IRB number: 255-001). All patients
were given full information of the study and provided written informed consent to participate in the study.

Study design

Ten patients diagnosed with advanced oral cavity cancer and treated at Yonsei Head and Neck Cancer Center from March 2019 to
February 2020 were recruited in the current study. The inclusion criteria for recruitment were as follows: (1) oral cavity cancer patients
older than 18 years with biopsy-proven squamous cell carcinoma with cervical lymph node metastasis on preoperative imaging
studies; (2) primary lesion size larger than 3 cm, with or without adjacent dysplastic lesions; and (3) pathologically confirmed negative
for HPV infection with p16 staining. All patients were given full information of the study and provided the written consent after approval
of the institutional review board at Severance Hospital, Yonsei University College of Medicine (IRB number: 255-001). All patients
were treated with complete resection according to the NCCN guideline by experienced head and neck surgeons, Y.W. Koh and
Y.M. Park. The general clinical characteristics of the patients are described in Table S1.

METHOD DETAILS

Single-cell library preparation

Fresh tissues from primary tumor lesions (central and periphery of the tumor), dysplastic STs (at least 1 cm apart from the gross
margin, within 2 cm distance), and matched mLNs were sampled and retrieved. All tissues were harvested immediately after surgery
and dissociated by the gentleMACS Dissociator (Miltenyi Biotec, Bergisch Gladbach, Germany) using Human Dissociation Kit (Mil-
tenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s protocol. The viability of the dissociated cells was
confirmed to be over 90% by Cellometer auto C4 (Nexcelom Bioscience, Lawrence, MA, USA) using acridine orange/propidium io-
dide solution. Single-cell libraries were prepared using the Single Cell 3’ Reagent Kit v3 (10x Genomics, Pleasanton, CA, United
States) following the Chromium Single Cell 3' Reagent Kit v3 protocol (Document # CG000183). Libraries underwent paired-end
sequencing on the HiSeq X sequencer (lllumina, San Diego, CA, USA); sequencing was conducted by Macrogen Inc. (Seoul, Korea).

Immunofluorescence staining and processing

Formalin-fixed paraffin-embedded tissue sections from the archives of Yonsei Severance hospital tissue bank were collected and
prepared on glass slides. For immunofluorescence analysis, the slides were de-paraffinized with xylene and rehydrated. Heat
induced antigen retrieval was performed with 90°C for 20 min in Tris-EDTA buffer (10 mM Tris Base, 1 mM EDTA solution, 0.05%
Tween 20, pH 9.0). The slides were blocked and stained with primary antibody to SNAI2 (1:200, ab21206, Abcam, Cambridge,

e2  iScience 28, 112988, September 19, 2025


https://github.com/broadinstitute/inferCNV/
https://github.com/cole-trapnell-lab/monocle2-rge-paper
https://github.com/cole-trapnell-lab/monocle2-rge-paper
https://github.com/Teichlab/cellphonedb
https://cran.r-project.org/web/packages/ggplot2/
https://cran.r-project.org/web/packages/pheatmap/
https://cran.r-project.org/web/packages/pheatmap/
https://gatk.broadinstitute.org/
https://github.com/lh3/bwa
https://github.com/samtools/samtools
http://broadinstitute.github.io/picard/
https://cnvkit.readthedocs.io/en/stable/
https://pyscenic.readthedocs.io/en/latest/index.html
https://pyscenic.readthedocs.io/en/latest/index.html
https://scvelo.readthedocs.io/en/stable/
https://www.r-project.org
https://www.python.org

iScience ¢? CellPress
OPEN ACCESS

UK), ENO1 (1:200, sc100812 Santa Cruz Biotechnology, Dallas, TX, USA), TPM2 (1:100, BS-1243R, Bioss), TAGLN (1:500, MA5-
17276, Invitrogen), LGALS1 (1:100, 43-7400, Invitrogen), CD8 (1:100, 50-0008-82, Invitrogen), GZMB (1:500, ab255598, Abcam),
GZMA (1:500, BS-2578R, Bioss), TNFRSF9 (1:100, MA5-42580, Invitrogen), TPSAB1 (1:200, ab134932, Abcam), PVR (CD155,
1:20, MA5-13493, Invitrogen), and TIGIT (1:200, #99567, Cell signaling, Danvers, MA, USA). After washing steps in PBS, all slides
were stained with secondary antibodies, Alexa-fluor 488-conjugated to Rabbit (1:200, Invitrogen), Alexa-fluor 568-conjugated to
mouse (1:200, Invitrogen), Alexa-fluor 647-conjugated to mouse (1:200, Invitrogen). All samples were washed in PBS again and incu-
bated in mounting solution including 4’,6-diamidino-2-phenylindole (DAPI, Vector Laboratories, Burlingame, CA). Images were ac-
quired at 20x and 40x using a Zeiss LSM 700(Carl Zeiss, Oberkochen, Germany) with Zen black software (Carl Zeiss).

H&E and mIF images were obtained from adjacent tissue sections of the same patient, ensuring the accurate correlation of histo-
logical features with protein expression patterns.

Microscope images were acquired in .czi format, each containing multiple fluorescent channels corresponding to different proteins
of interest. To ensure consistent quality and reduce noise, an automated Fiji macro script was developed. This script systematically
processed each image, applying a background reduction algorithm to minimize artifacts and enhance signal clarity for each fluores-
cent channel. Following background reduction, the script quantified the intensity of individual fluorescent signals for each protein
channel.

The fluorescence intensity measurements were aggregated for each condition across all images from individual patients. Aggre-
gated intensity data from multiple images were analyzed using t-tests to compare differences between experimental groups.

Processing of scRNA-seq data, integration of public data, and clustering
The Cell Ranger pipeline (version 3.0.2)'” was applied for pre-processing, including demultiplexing of sequencing results, barcode
processing, read alignment, filtering of estimated droplets, and the generation of gene/barcode matrices. Reads were aligned to the
GRCh38 human reference genome (version GRCh38-1.2.0), and the UMI matrix of cell barcodes according to genes was generated
for each sample. Cell-free mRNA contamination was estimated and removed using SoupX (version 1.4.5)" with default parameters.
Potential doublets were further removed using Scrublet (version 0.2.1)%? for each sample, with the expected doublet rate of 0.05.
Cells with a doublet score greater than 0.1 were filtered out (approximately 8.5%, 24,933 cells out of the original 293,064 cells). Seurat
package (version 3.2.0)%° was used for downstream analyses. We excluded low-quality cells using the following criteria: 1) cells with
more than or equal to 10% of the transcripts derived from the mitochondrial genome, estimated as apoptotic cells; and 2) cells with a
minimum detected gene between 200 and 1,000 based on the QC distribution of each sample. We then normalized the gene expres-
sion matrix for each cell by dividing the total expression counts, multiplying a scale factor of 10,000, and converting it to a natural
logarithm using the NormalizeData function. The FindVariableFeatures function was used to detect highly variable genes using the
default setting. We measured the cell-cycle scores using the CellCycleScore function to regress this signal from the data. We re-
gressed out variations caused by the count of detected transcripts, the mitochondrial gene percent, and the cell-cycle heterogeneity
using the ScaleData function. We applied the same normalization and doublet filtering method when loading publicly available
scRNA-seq dataset of normal lymph node (nLN) samples.'® The publicly available nLN samples were composed of T, B, and myeloid
cells. Batch effects were corrected in the re-clustering analysis of major cell types, except the epithelial cells, by canonical correlation
analysis after normalization using sctransform,®" implemented in the Seurat package, to minimize the potential variations from sam-
ple processing. We considered each batch as the collection of samples from a single patient. The batch-corrected expression values
stored in the “integrated” assay were utilized only for dimension reduction and clustering. After integration, we performed principal
component analysis with the top 2,000 variable genes and 50 principal components (PCs) using the RunPCA function. For dimension
reduction and clustering analysis, the FindNeighbors and FindClusters functions were used with the number of PCs being 36 and the
resolution being 1.0, respectively. Each cell was projected onto a two-dimensional space and visualized using the RunUMAP func-
tion. This step was iterated over for the re-clustering analysis of major cell types, including epithelial, T, myeloid, B cells, endothelial
cells, and fibroblasts (the number of PCs ranging from 13 to 20 and resolution parameters ranging from 0.2 to 1.0 based on the elbow
plot and manual review). We excluded metastatic lymph nodes of P03 and P10, which had few epithelial cells, from the re-clustering
analysis of epithelial cells. Cell type annotation was conducted with a manual review of established marker genes and SingleR'®
estimation.

Spatial transcriptomics data reanalyzed to validate the relationship between p-EMT score and M2 macrophage score are available
through the Gene Expression Omnibus with accession number GSE181300.°° The downloaded counts and H&E-stained tumor

slide images were imported into Seurat (version 4.3.0.1) using Read10X_Image and Load10X_Spatial functions. After normalizing
the expression counts with Seurat’s NormalizeData function with default parameters, we calculated the p-EMT and M2 macrophage
scores for each Visium spot using the AddModuleScore function in Seurat. After selecting the top 5% of spots based on the module
scores for each module, we visualized the p-EMT and M2 macrophage module scores using the geom_density_2d_filled function in

ggplot2.
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Differential expression and gene set enrichment analysis (GSEA)

Differentially expressed genes (DEGs) that characterize each major cell type were detected using the MAST algorithm®® implemented
in the FindAlIMarkers function. To remove false positive genes, we performed pseudobulk differential expression analysis using
mean CPM in each sample. We used DESeq2°° for the differential gene expression analysis within major cell types for the following
criteria:

(1) DEGs within each of the annotated cell types, by comparing each cluster to other clusters of the same cell type.
(2) DEGs for each cluster, by comparing each cluster to all other clusters within the same major cell type.

GSEA was performed using MsigDB_Hallmark_2020 database®” implemented in enrichR (version 3.0).%% The hierarchical clus-
tering heatmap described in Figure 2D was created using pheatmap (version 1.0.12).

To examine the tissue site specificity of epithelial cells, differential gene expression analysis was performed across sampling sites
using MAST for each patient. A set of genes which were upregulated in a specific site in at least three patients were used for GSEA.

To identify the enriched pathways of partial EMT (p-EMT) cells compared to other subtypes, we performed differential expression
analysis using the FindMarkers function implemented in the Seurat package.

Visualization of marker genes on major cell types in scRNA-seq

Marker genes of major cell types were visualized as a heatmap using the DoHeatmap function implemented in the Seurat package, as
described in Figure 1D. We selected the top 100 marker genes for each major cell type (Table S3) and plotted the scaled expression of
each gene across all cells on the heatmap. Marker gene heatmap of each major cell type was visualized using ggplot2 (version 3.3.2).

Inference of copy number variation (CNV) via scRNA-seq
Aberrant CNVs in each tumor cell were estimated using the InferCNV package (version 1.2.1).>°> We performed InferCNV with the
default option for each patient, using epithelial cells as a case group and endothelial cells as a control group.

Bulk whole-genome sequencing-based CNV analysis

Genomic DNA (gDNA) was extracted from ST, TC, TP, mLN and matched nLN, and sequencing libraries were prepared from 500 ng
gDNA using Nextera DNA Flex library prep kit (Illumina, San Diego, CA, USA), according to the manufacturer’s instructions. DNA of
ST, TC, TP, and mLN was extracted from some remaining cells after performing scRNA-seq, whereas DNA of nLN was extracted from
Formalin-fixed paraffin-embedded tissue. Whole-genome sequencing libraries were sequenced on lllumina NovaSeq6000 with
sequencing depth of at least 30x and 150 bp read length. Sequenced reads were mapped onto the human reference genome
(version GRCh38) using BWA (version 0.7.15) with the “-M” option.”” Mapped bam files were sorted and indexed using Samtools
(version 1.6).%° Duplicate reads were removed using Picard (version 2.9.0) MarkDuplicates (http://broadinstitute.github.io/picard/).
After that, the mapped reads were realigned using GATK (version 3.7)’° RealignerTargetCreator and IndelRealigner algorithms.
Base quality score was recalibrated using GATK BaseRecalibrator and PrintReads. Somatic CNVs in ST, TC, TP, and mLN were iden-
tified by CNVkit (version 0.9.6) with the “—method wgs” and “ —target-avg-size 1000000” options using matched normal lymph no-
des as controls.”®

Trajectory analysis

We performed single-cell lineage analysis for epithelial, CD8* T, Treg, Mono/Mac, and B cells using the Monocle2 package (version
2.14.0).°° The normalized UMI count matrices were imported from Seurat for downstream analysis. We selected the top 50 highly
expressed genes for each cluster, as detected by the FindAllMarkers function in the Seurat package, to order cells along the pseu-
dotime trajectory using the orderCells function with the default parameters. Dimension reduction was performed using the reduce-
Dimension function with the DDRTree method. For CD8" T cells, the inferred developmental trajectory was further validated using
RNA velocity analysis with scVelo (version 0.3.2).%°

Calculation of functional module scores

To identify the functional characteristics of the clusters of interest, we calculated the gene signature scores of functional modules
identified from previous publications for the clusters using the AddModuleScore function with the default parameters in the Seurat
package on a single-cell level. The genes involved in the functional modules including glycolysis, naiveness, cytotoxicity, terminally
exhausted, IL2R, inhibitory, co-stimulatory, Treg, M1, M2, and TAM scores are listed in Table S6.

SCENIC analysis

Single-Cell rEgulatory Network Inference and Clustering (SCENIC) analysis was performed using pySCENIC version 0.11.0”° to iden-
tify transcription factors (TFs) that were differentially activated in the p-EMT subtype. Single-cell RNA-seq data from epithelial cells
were used as input for pySCENIC to construct gene regulatory networks. Regulon activity scores were calculated for each cell using
the AUCell method. To identify TFs enriched in the p-EMT subtype, we averaged the regulon activity scores of cells within each
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subtype of each patient sample and performed a two-sided t-test comparing the p-EMT subtype to other epithelial subtypes. Sig-
nificant TFs were visualized using a heatmap generated with the pheatmap?2 package.

Cell-cell interaction analysis

We inferred intercellular interactions using CellPhoneDB (version 2.1.4).°" The counts per million normalized expression values from
all samples were used as the input. The estimated interactions between two cell types were based on the expression profiles of re-
ceptors and ligands. We considered the interactions only if at least 25% of cells expressed the specific ligand or receptor and they
were between p-EMT cells and immune cells.

Survival analysis using bulk RNA-seq

The TCGA HPV-negative HNSCC RNA-seq data were used as a validation set to evaluate the prognostic performance of each gene/
cluster signature. TCGA pan-cancer expression data and clinical information were downloaded from National Cancer Institute
Genomic Data Commons (https://gdc.cancer.gov) to obtain the information of HNSCC patients. We utilized the sum of scaled
expression (Z-normalization) of signature genes to stratify HPV-negative HNSCC patients based on the enrichment of each signature.
For the top and the bottom half expression group, the association between signature score and OS was evaluated via Kaplan-Meier
analysis and log-rank tests using the survminer (version 0.4.7) and survival (version 3.2.3) R packages. Additionally, we used
BayesPrism (version 1.4.0)>” to conduct the deconvolution analysis of major cell type or subtype composition in the TCGA HPV-
negative HNSCC bulk RNA-seq cohort. In our dataset, cells in all sites were used to infer the composition of major cell types and
subtypes. The deconvolution result of subtypes is described in Table S5. We performed survival analysis using the median of the
proportion of major cell type or subtype composition to compare top and bottom half.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were performed in R (version 3.6.3). Pair-wise t-tests were performed to analyze the proportional differences be-
tween sites within each major cell type/cluster. Correlations between two signature scores were calculated using Pearson correla-
tion. Kruskal-Wallis tests were performed to compare signature scores among multiple groups. A log-rank test was performed for all
survival analyses to identify significant differences between the high signature expression group (top 50%) and the low signature
expression group (bottom 50%). No mathematical corrections were made for multiple comparisons. Significance is displayed
as*, P <0.05; ", P <0.01; and **, P < 0.001.
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