BMB

Korean Society for Biochenisy and Molecuiar Biology

ARTICLE

www.nhature.com/emm

W) Check for updates

Cannabidiol potentiates p53-driven autophagic cell death in
non-small cell lung cancer following DNA damage: a novel
synergistic approach beyond canonical pathways
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The search for more effective and safer cancer therapies has led to an increasing interest in combination treatments that use well-
established agents. Here we explore the potential of cannabidiol (CBD), a compound derived from cannabis, to enhance the
anticancer effects of etoposide in non-small cell lung cancer (NSCLC). Although CBD is primarily used to manage childhood
epilepsy, its broader therapeutic applications are being actively investigated, particularly in oncology. Our results revealed that,
among various tested chemotherapeutic drugs, etoposide showed the most significant reduction in NSCLC cell viability when
combined with CBD. To understand this synergistic effect, we conducted extensive transcriptomic and proteomic profiling, which
showed that the combination of CBD and etoposide upregulated genes associated with autophagic cell death while
downregulating key oncogenes known to drive tumor progression. This dual effect on cell death and oncogene suppression was
mediated by inactivation of the PI3K—-AKT-mTOR signaling pathway, a crucial regulator of cell growth and survival, and was found
to be dependent on the p53 status. Interestingly, our analysis revealed that this combination therapy did not rely on traditional
cannabinoid receptors or transient receptor potential cation channels, indicating that CBD exerts its anticancer effects through
novel, noncanonical mechanisms. The findings suggest that the combination of CBD with etoposide could represent a
groundbreaking approach to NSCLC treatment, particularly in cases where conventional therapies fail. By inducing autophagic cell
death and inhibiting oncogenic pathways, this therapeutic strategy offers a promising new avenue for enhancing treatment

efficacy in NSCLC, especially in tumors with p53 function.

Experimental & Molecular Medicine (2025) 57:979-989; https://doi.org/10.1038/512276-025-01444-x

INTRODUCTION

Lung cancer is typically categorized into non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC,
accounting for 85% lung cancers, is characterized by its
heterogeneity and slower growth than that of SCLC. Despite
advances in treatment, NSCLC often leads to poor prognosis due
to its aggressiveness?. Current standard chemotherapeutic
regiments for NSCLC include cisplatin, carboplatin and paclitaxel.
However, these treatments are often limited by low response rate,
the emergence of drug resistance and significant adverse effects.
This underscores the urgent need for more effective and safer
therapeutic strategies.

Etoposide, a well-established chemotherapeutic agent used to
treat SCLC and various other malignancies owing to its broad-
spectrum efficacy, inhibits topoisomerase Il activity, leading to
DNA damage and cytotoxicity. However, its application in NSCLC
has been limited, primarily because of its significantly low
efficacy in this subtype. This is probably due to the distinct

biological characteristics and chemotherapy response profiles
between SCLC and NSCLC, necessitating the exploration of
novel combination therapies to enhance treatment outcomes in
NSLCL*.

Cannabidiol (CBD) has been advocated for various health
conditions. Its therapeutic efficiency against severe childhood
epilepsy progressions, such as Dravet and Lennox-Gastaut
syndromes, which are usually resistant to conventional antiseizure
treatments, is substantially supported by scientific evidence.
Previous reports have shown that CBD could decrease seizure
frequency and, sometimes, cease them completely. With CBD as a
primary ingredient, Epidiolex was the first cannabis-derived drug
approved by the Food and Drug Administration to treat these
conditions®®. However, the effects of CBD on NSCLC and its
potential in combination therapy remain unknown.

In NSCLC, combination treatment using chemotherapeutic
agents, including cisplatin, carboplatin and paclitaxel, has shown
promising results. For instance, combination treatment using
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paclitaxel and carboplatin improved survival rates and reduced
toxicity compared with single-agent therapies’®. Conversely,
combining cisplatin with paclitaxel has been shown to signifi-
cantly increase response rates, although some associated toxicities
have been reported®. Collectively, combination therapies that
utilize well-established and safe chemotherapeutic agents offer a
promising approach to improving treatment efficacy and safety.

This study aims to investigate the synergetic effect of CBD when
combined with etoposide in NSCLC cells. Notably, we performed
transcriptomic and proteomic profiling to elucidate the key
molecular pathways using RNA sequencing (RNA-seq) and
multiphospho-kinase arrays. We hypothesized that the combina-
tion treatment using CBD and etoposide could effectively
influence autophagic cell death, presenting a potential break-
through in the management of NSCLC.

MATERIALS AND METHODS

CBD information

CBD and its derivatives, including tetrahydrocannabinol (THC), tetrahy-
drocannabinolic acid (THCA) and cannabidiolic acid (CBDA), were obtained
on the basis of previous studies®. The Ministry of Food and Drug Safety and
the Seoul Regional Food and Drug Administration approved the allocation
and transfer of cannabis for research purposes (approval numbers 1564
and 1979).

Cell culture

We procured the NSCLC cell line A549 from the American Type Culture
Collection. The NCI-H1703, NCI-H358, NCI-H1299, Calu-3 and HEL299
cell lines were purchased from the Korean Cell Line Bank. All cell lines
were routinely maintained in RPMI1640 medium (Gibco), supplemen-
ted with 10% fetal bovine serum (Gibco), 100 U/ml penicillin and
100 pg/ml streptomycin, at 37 °C in a humidified atmosphere with 5%

2.

Assessment of cell viability using the WST-8 assay

Cells (1x10* per well) were incubated into 96-well plates for 24 h.
Subsequently, the cells were maintained with various concentrations of
etoposide and/or CBD for 24h and 48 h. We used the WST-8 assay kit
(Biomax) to evaluate cell viability following the manufacturer’s guidelines.

Western blotting

Protein expression and phosphorylation levels were analyzed via
western blotting as described previously®. Cells were lysed in RIPA
buffer (Cell Signaling Technology) supplemented with protease inhibitor
cocktail and phosphatase inhibitor cocktail (Cell Signaling Technology)
on ice for 30min. The lysates were clarified by centrifugation at
14,000 rpm and 4°C for 15 min, and the supernatants were collected.
Proteins (30-50 ug per lane) were separated by electrophoresis on
NUuPAGE 4-12% Bis-Tris gels (Invitrogen), transferred onto PVDF
membranes and probed with specific primary and secondary antibodies.
Signal detection was performed using SuperSignal West Femto (Thermo
Fisher Scientific) and visualized using a LAS 4000 system (Fujifilm).
Details of the applied antibodies and the experimental conditions are
provided in Supplementary Table 1.

Multiphospho-kinase assay

To profile the phospho-kinase activity, the Human Phospho-Kinase Array
Kit (R&D Systems) was used. Whole-cell extracts (200 ug per A and B
membranes) were prepared and analyzed following the manufacturer’s
protocol. Protein phosphorylation was visualized using the LAS 4000 sys-
tem (Fujifilm).

Flow cytometry analysis

To detect the apoptotic cells, A549 cells were divided into control, CBD
(15 uM), etoposide (20 pM) and combined treatment groups. After 48 h of
treatment, we evaluated the cells using flow cytometry with the FITC
Annexin V apoptosis detection kit (BD Biosciences) as described
previously®, and the data were processed using FlowJo software (TreeStar).
At least 1000 cells were analyzed for each sample.
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In vivo experiments

We subcutaneously injected A549 cells (1x 107 cells) suspended in RPMI
(100 pl) mixtures into the right rear dorsal flank of BALB/c-nude mice
(4 weeks old, weighing 18 £2g, Orient Bio). When the tumor volume
reached approximately 50 mm?, the mice were randomly divided into five
groups: control, CBD (10 mg/kg), etoposide (5 mg/kg, Sigma-Aldrich), low-
dose etoposide (1 mg/kg) + CBD, and high-dose etoposide (5 mg/kg) +
CBD. CBD and etoposide were dispersed in 0.5% carboxymethylcellulose
and given orally once daily at a concentration ranging from 1 to 10 mg/kg
body weight. During the first 4 weeks, we weighed the mice and recorded
any uncommon behavior and death. Finally, the animals were anesthetized
using ether and euthanized. All the animal experimental procedures were
approved and followed the Institutional Animal Care and Use Committees
of KIST guidelines (approval no. KIST-IACUC-2023-046).

RNA-seq data processing and transcriptome profiling

For transcriptome analysis, A549 cells were plated into six-well plates at
3% 10° cells per well and incubated for 24 h before being treated with CBD
(15 uM), etoposide (20 uM) and merge. After 24 h of treatment, total RNA
was extracted using the RNeasy kit (Qiagen). RNA-seq profiling was
performed using lllumina Hiseq4000. To compute the fragments per
kilobase of transcript per million mapped reads (FPKM), we applied Tophat
and Cufflinks'®. Using the obtained FPKM values, transcriptome profiling
was performed in the R environment (https://www.r-project.org/). We
applied transcriptome profiling and gene set enrichment analysis (GSEA), as
previously described''. We analyzed the gene sets using STRING (https:/
string-db.org/) based on Kyoto Encyclopedia of Genes and Genomes
(KEGG) and UniProt databases. Also, we calculated GSEA using KEGG (http://
www.genome.jp/kegg/) and REAC (reactome, http://www.reactome.org/)
databases. The list of oncogenes (n=674) and tumor suppressor genes
(n =1,088) was retrieved from previous reports'>'3, The details of the data
and references are summarized in Supplementary Table 2.

Immunofluorescence

For immunofluorescence, we followed preestablished methods. A549 cells
were plated in coverglasses (16 mm) at a density of 1x 10* cells per well
and incubated for 24 h before treatment with CBD (15 uM), etoposide
(20 uM) and merge. A549 cells were fixed, permeabilized and blocked with
2% bovine serum albumin for 1 h. Then, the cells were stained with anti-
LC3B and anti-SQSTM1/p62 antibody in 2% bovine serum albumin for 24 h
at 4°C, followed by staining with Alexa Flour 488-conjugated goat anti-
rabbit IgG as the secondary antibody for 1 h at 37 °C. Finally, we washed
and mounted the cells with DAKO Fluorescent Mounting Medium
(DakoCytomation). The stained cells were evaluated using an EVOS
M5000 imaging system (Invitrogen). The antibodies and the experiment
conditions are listed in Supplementary Table 1.

Monodansylcadaverine (MDC) assay

The cells (2 x 10%) were seeded into a 100-mm dish and treated with
etoposide and/or CBD for 12 h. Subsequently, whole-cell extracts were
prepared and assessed using a human phospho-kinase array system (R&D
Systems) to detect phospho-kinase activity following the manufacturer’s
guidelines.

Transient and stable cell lines

The tagged cannabinoid receptors (CNRT and CNR2) and TP53 genes were
cloned into the pCDH-CMV-EF1-puro vector after amplifying their respective
genes using total RNA extracted from HEK293 and A549 cells, respectively.
We conducted PCR using precise primers containing Xbal (NEB) and Notl
(NEB) restriction sites with CloneAmp HiFi PCR Premix (Thermo Fisher
Scientific). Next, we cloned the PCR products into the linearized vector using
the In-Fusion cloning system (Takara Bio). Primer sequences and thermal
cycling details are provided in Supplementary Table 3.

A549, NCI-H358 and NCI-H1299 cells were transfected with pCDH-CMV-
EF1-puro containing tagged CNRs and TP53 coding sequences, along with
the gag-pol and VSV-G plasmids, using Lipofectamine 3000 (Invitrogen).
Stable cell lines expressing CNRs and TP53 were established by selecting
transfected cells with 0.5-1.0 ug/ml puromycin (Sigma-Aldrich) for 4 weeks.

TP53, TRPV1 and TRPV2 siRNA (MISSION select predesigned siRNAs,
Sigma-Aldrich) and MISSION siRNA Universal Negative Control (Sigma-
Aldrich) were transfected into A549 cells using Lipofectamine RNAIMAX
Transfection Reagent (Invitrogen) according to the manufacturer’s
recommendations.
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Statistical analysis

The results are presented as mean + s.d. from at least three independent
experiments. Statistical analysis was carried out using Student’s t-tests and
one-way ANOVA, with significance defined at P < 0.05.

RESULTS

Low concentrations of CBD did not induce cell death in
A539 cells

CBD has been shown to exhibit anticancer activity and influence
apoptotic cell death at high doses (above 40 uM)>'*. This study
aimed to investigate the potential of CBD to improve the
therapeutic effects of conventional anticancer treatments. There-
fore, we evaluated the optimal concentration of CBD using A549
cells to assess its synergistic effects. CBD exhibited obvious
cytotoxicity (Supplementary Fig. 1a) and induced apoptosis by
altering the expression patterns of related markers such as
poly(ADP-ribose) polymerase (PARP), caspases 8 and 9, and Bcl2-
associated X (Bax) at concentrations above 25 uM (Supplementary
Fig. 1b). Therefore, a concentration of 15 uM CBD was selected for
subsequent experiments in A549 cells because it was noncytotoxic.

CBD increases sensitivity to etoposide in A549 cells

CBD has been shown to act synergistically with anticancer drugs
to elicit cell death'®. Therefore, we evaluated the viability of A549
cells treated with CBD in combination with well-known anticancer
drugs (including etoposide (VP-16), cisplatin, paclitaxel and
tamoxifen). Among these combinations, etoposide with CBD
exhibited the highest inhibitory effect, as demonstrated by the
suppression of cell proliferation (half maximal inhibitory concen-
tration; 1Cso = 15.77 uM; Fig. 1a, b). By contrast, the combination
treatment showed no notable inhibitory effect on the normal lung
fibroblast cell line, HEL299 (ICso >100 uM; Supplementary Fig. 2).
We also investigated the synergistic effects of etoposide with
other cannabinoids that have a similar structure to CBD, including
CBDA, CBD, THCA and THC, which did not show improved cancer
cell toxicity (Supplementary Table 4).

Etoposide is used to treat SCLC, but not NSCLC"'*'6, We further
explored whether CBD could facilitate the induction of apoptosis
by etoposide in A549 cells. Compared with treatment with
etoposide alone, combined treatment with CBD resulted in higher
levels of apoptotic protein markers, including cleaved PARP and
Bax, in a dose-dependent manner. Conversely, the expression of
B-cell lymphoma 2 (Bcl-2), an inhibitor of apoptotic stimuli,
showed a decreasing pattern (Fig. 1c). We assessed the apoptotic
rate using flow cytometry, which showed that the apoptotic cells
were significantly higher in the combined treatment than those
treated with either CBD or etoposide (P < 0.05; Fig. 1d).

Furthermore, we validated our findings using an A549 xenograft
model (Fig. 1e). We determined the suitable concentrations of
etoposide (5 mg/kg) and CBD (5 and 10 mg/kg) that did not cause
substantial body weight loss (Supplementary Fig. 3). The
combination treatment significantly reduced the tumor size
compared with either treatment alone (Fig. 1f, g). Taken together,
our findings suggest that CBD might enhance the sensitivity to
etoposide-induced apoptosis in A549 cells.

Transcriptomic profiling of A549 cells after combination
treatment with etoposide

We conducted RNA-seq to analyze the transcriptomic profile and
explain the fundamental mechanisms underlying the combination
treatment using etoposide and CBD on A549 cells (Supplementary
Fig. 4a). Unsupervised clustering analysis of the variably expressed
genes (median absolute deviation >0.5, n = 1,676) demonstrated
that the four groups (control, CBD, etoposide and merge
(etoposide + CBD)) were clearly classified on the basis of their
treatment status (Supplementary Fig. 4b). Furthermore, principal
component analysis revealed that the merge groups were notably
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distributed in separate clusters compared with other groups,
reflecting distinct transcriptomic traits (Supplementary Fig. 4c).
Next, we identified the robust genes by analyzing the differentially
expressed genes between the untreated and combination-treated
cells. Two categories were retrieved; ‘Up genes’ (n=1,157) and
‘Down genes’ (n=1,125) (P < 0.05, fold change (FC) >1.0; Fig. 2a
and Supplementary Table 5). The former genes were significantly
associated with autophagy, apoptosis and lysosome signaling
pathway-related genes (Fig. 2b, top). Conversely, the later genes
were significantly associated with cell cycle and Hippo signaling
pathway-related genes (Fig. 2b, bottom). These genes are involved
in cancer development'”'®, We found that the ‘Up genes’ traits
reveal the synergistic effect on gene expression patterns (P < 0.01;
Fig. 2c). In addition, the merge groups showed reduced expression
of oncogene-related cancer traits (for example, pathways in
cancer, microRNAs in cancer, PI3K-Akt signaling pathway and so
on). Among these oncogenes, KRAS (FC —0.51), NRAS (FC —0.55),
IGF1R (FC —1.17), EGFR (FC —0.95), PDGFB (FC —0.92), PRKCA (FC
—0.59) and MYC (FC —1.83), which are highly relevant to the
pathogenesis of NSLCL, showed significant differences between
the groups (P < 0.05; Fig. 2d).

Combination treatment with CBD and etoposide induces
autophagic cell death

The RNA-seq analysis revealed that autophagy and lysosome traits
were notably present in the merge groups. Furthermore,
supervised clustering using autophagy and lysosome-related
genes (n = 69) was significantly upregulated in the merge groups.
These genes included cell-death-related genes, such as SQSTM1
(FC 0.98), LAMP2 (FC 0.52), CTSL (FC 1.32) and CTNS (FC 0.65)
(Fig. 3a). Morphological analysis further confirmed that the
combination treatment promotes autophagy and apoptosis
(Fig. 3b). We also observed increased markers of autophagic cell
death in the merge groups (Fig. 3¢, d). To further validate these
findings, we performed a western blot analysis on the A549 cells.
The combination treatment elevated LC3B-Il and SQSTM1/p62
expression but not Beclin-1, indicating that it induced apoptosis.
In addition, this treatment enhanced apoptotic traits, as indicated
by increased levels of cleaved BiD, caspases 8 and 9, and Bax, and
decreased levels of Bcl-2 (Fig. 3e, f). Consistently, our findings
support the hypothesis that CBD promotes etoposide-induced
apoptosis through autophagic cell death mechanisms.

To explain the fundamental process of the combined treatment
of etoposide and CBD, we applied a multiphospho-kinase assay to
select the associated signaling pathways. Consequently, we
identified putative kinase proteins required for cell multiplication,
differentiation, cell cycle regulation and apoptosis. In particular,
the levels of phosphorylated serine-threonine kinase protein
(AKT) notably decreased after the combination treatment
compared with that after a single treatment (Fig. 4a). As the
phosphorylation of AKT at Ser473 is linked to phosphoinositide
3-kinase (PI3K) activation, the mammalian target of rapamycin
(mTOR) is a central regulatory kinase protein that is crucial for
autophagic traits'®?°. Therefore, we investigated whether the
combination treatment between etoposide and CBD led to the
inactivation of the PI3K, AKT and mTOR pathways. We observed a
marked reduction in the phosphorylation of PI3K, AKT and mTOR
and an increase in the expression of autophagic and apoptotic
markers (including LC3B-Il, Bax and p62) after the combination
treatment compared with the single treatment of etoposide (Fig.
4b). These results suggest that the combination treatment could
induce autophagic cell death, at least partially, through the
inactivation of the PI3BK-AKT-mTOR signaling pathway.

Autophagic cell death induced by combination treatment is
associated with the LATS1-p53-PTEN axis

Based on the obtained results, we further analyzed the
expression of PI3K-AKT-mTOR-related genes involved in
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Fig. 1

CBD sensitivity to etoposide in A549 cells. a ICs, values of anticancer drugs with and without CBD. b Cell viability (left) and crystal

violet staining (right) of A549 cells treated with etoposide, with or without CBD, for 48 h. Statistical significance is indicated (***P <0.001;
Student’s t-test). ¢ Western blot analysis of cleaved PARP, Bax and Bcl-2, normalized to GAPDH. d Top: flow cytometry analysis of A549 cells
under the indicated conditions where early apoptotic cells are indicated by the increased fluorescence intensity of FITC-conjugated Annexin
V. Bottom: a bar plot showing the frequency of cell population. e A diagram of the experimental schedule for the A549 xenograft mouse
model. f A point plot showing the tumor size on the indicated dates across the groups (control (Ctrl), CBD, etoposide (5 mg/kg), low-dose
etoposide (1 mg/kg) + CBD, and high-dose etoposide (5 mg/kg) + CBD). g Representative images of dissected tumors from each experimental
group. Results are presented as mean +s.d. (n =4 per group). Statistical significance is indicated (versus Ctrl, ¥***P < 0.001; Student’s t-test).

autophagic traits. We observed that the merge groups
expressed significantly higher levels of PTEN, GSK3B and TSCT
than the other groups (P < 0.05; Fig. 5a, b). PTEN and GSK3B, key
regulators associated with the inactivation of the mTOR path-
way'??', are also involved in the activation of the tumor
suppressor protein p53 pathway, which triggers cell death?*%3.
In this study, we demonstrated that the combination treatment

SPRINGER NATURE

with etoposide and CBD enhances the phosphorylation of p53 at
Ser46 and MDM2 proto-oncogene at Ser395 in a time-
dependent manner, resulting in apoptosis and p53 activation
(Fig. 5¢, top)**. Furthermore, the combination treatment
reduced the Hippo pathway-related gene expression, known
to be associated with p53 inactivation and cell cycle regula-
tion?>2%, We also observed increased phosphorylation of large
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Fig. 3 Effect of combination treatment with CBD and etoposide on autophagic cell death. a A supervised clustering heat map displaying
the autophagy-, lysosome- and cell-death-related genes (n=69) across the groups with each relevant gene indicated. b Morphological
features of autophagic cell death in A549 cells treated with CBD (15 pM), etoposide (20 pM) and their combination (merge) at 12, 24 and 48 h.
White arrows indicate autophagic cell death. ¢ Confocal immunofluorescence of LC3B (green), SQSTM1/p62 (green) and DAPI (blue) in A549
cells using the EVOS M5000 imaging system. d A bar plot showing the absorbance of MDC, indicating the autophagic traits in A549 cells
treated with CBD (15 pM), etoposide (20 pM) and their combination (merge) at 24 h. Statistical significance is indicated (versus Ctrl, *P < 0.05
and ***P < 0.001; Student’s t-test). e Western blot analysis of LC3B, Beclin and SQSTM1/p62, normalized to GAPDH. f Western blot of cleaved
BiD, caspases 8 and 9, Bcl-2 and Bax, normalized to GAPDH.

tumor suppressor kinase 1 (LATS1) and yes-associated protein 1 where the associated cell death genes were closely correlated
(YAP) but not of macrophage stimulating 1 (MST1) (Fig. 5c, with the expression levels of PTEN and GSK3B (R = 0.4, P < 0.05)
bottom). GSEA also revealed decreased enriched expression of but showed a significant negative correlation with the expres-
MTOR pathway-related signatures in nontreated cells (P < 0.05; sion of Hippo pathway-related genes (R = —0.46, P < 0.05; Fig.
Fig. 5d). LATS1 phosphorylation regulates p53 activation®®, 5e). Collectively, our findings suggest that p53 activation is a
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crucial regulator of autophagic cell death induced by the
combination treatment. To evaluate whether the combination
treatment is significantly associated with the p53 status, we
assessed the synergistic effects of CBD and etoposide on cell
viability using p53 mutant cell lines, such as Calu-3 (c.710G>A)
and NCI-H1703 (c.853G>A). We found that the viability of these
cells was not significantly affected and was comparable to that
of the wild-type TP53 cell line A549 (Fig. 5f)*’. To further
substantiate that the combination treatment specifically targets
wild-type TP53, we performed additional experiments using
p53-null cell lines, NCI-H358 and NCI-H1299 (Supplementary Fig.
5a). Using lentiviral transduction, wild-type TP53 was stably
overexpressed in these cell lines (Supplementary Fig. 5b), and
combination treatment was reassessed. Notably, the combina-
tion treatment resulted in a notable reduction in cell viability in
wild-type TP53-overexpressing cells compared with control cells,
revealing that the presence of functional wild-type TP53
enhances the efficacy of combination treatment (Supplementary
Fig. 5c). To further validate the effects of p53 after the
combination treatment, we conducted TP53 knockdown using
siRNA. The viability of cells with suppressed TP53 expression was
not significantly altered after the combination treatment
compared with the control group (Fig. 59).

Further, we assessed the PI3K-AKT-mTOR pathway and found that
the downregulation of TP53 expression enhanced the phosphoryla-
tion of the key components in the pathway after the combination
treatment (Fig. 5h). Furthermore, we found that the synergetic effect
on autophagy and cell death markers, such as LC3B-ll, p62, cleaved
BiD and Bax, was notably reduced by p53 depletion (Fig. 5i). These
findings suggest that CBD might enhance etoposide-induced cell
death via p53 activation, which in turn regulates the mTOR pathway
and subsequently induces autophagic traits.

Autophagic cell death induced by combination treatment is
not associated with the canonical pathways of CNRs

and TRPVs

CBD does not directly bind to CNRs and transient receptor potential
cation channel subfamily V members (TRPVs). However, it has
powerful indirect effects that are still being studied®®?°. This study
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evaluated whether the expression of CNR1 and CNR2 could influence
the effects observed with the combination treatment. To this end, we
developed CNR overexpression models using A549 cells, which
exhibit little endogenous expression of CNR1 and CNR2 (Fig. 6a). As
shown in Fig. 6b, ¢, the inhibition of cell proliferation induced by the
combination treatment was independent of CNR1 and CNR2
expression. Furthermore, using siRNA targeting TRPVs such as TRPV1
and TRPV2, we found that TPRVs were also not involved in the
synergistic effects induced by the combination treatment (Fig. 6d, e).
In summary, the synergistic effects of the combination treatment
were independent of both CNR or TRPV signaling pathways, revealing
the autophagic cell death.

DISCUSSION

NSCLC remains a formidable challenge in oncology owing to its
genetic heterogeneity and propensity for developing drug
resistance. While targeted therapies such as osimertinib and
alectinib have shown effectiveness in tumors with specific
mutations, such as EGFR and ALK, their utility is confined to these
particular genetic alterations, leaving a significant gap in
treatment options for patients with other mutations or those
who develop resistance to these targeted agents®*',

In this study, we explored the potential of CBD, a nonpsychoac-
tive component of cannabis, to enhance the efficacy of etoposide
in treating NSCLC. Our findings demonstrate that the combination
of CBD and etoposide significantly promotes apoptosis in NSCLC
cells while having minimal effect on normal lung fibroblasts
(summarized in Fig. 6f), indicated by the upregulation of key
apoptotic markers, including cleaved caspases 8 and 9, PARP and
Bax. This is further supported by transcriptomic analyses, which
revealed a substantial upregulation of autophagy-related genes
such as SQSTM1, LAMP2 and TPP1, implicating these pathways in
the promotion of autophagic cell death®*?7>*, Moreover, proteomic
analysis using a multiphospho-kinase array demonstrated that the
inactivation of the PI3K-AKT-mTOR signaling pathway is a key
driver of the observed effects, aligning with existing literature that
underscores the importance of this pathway in cancer cell survival
and autophagy regulation'®2°,
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The observed downregulation of critical oncogenes such as
KRAS, NRAS and MYC further highlights the potential of this
combination therapy to target multiple oncogenic pathways,
reducing the likelihood of cancer cell survival and proliferation.
This multitargeted approach is particularly advantageous in the
context of NSCLC, where oncogene-driven proliferation remains a
significant therapeutic challenge.

Importantly, our study elucidates the critical role of the p53
pathway in the efficacy of the combination treatment. The
activation of p53, along with the upregulation of PTEN and GSK3B,
appears to be instrumental in mediating the apoptotic and
autophagic responses. This finding is particularly relevant given
the high frequency of p53 mutations in NSCLC and their
association with resistance to conventional therapies. The lack of
important effects in p53 mutant cell lines and the results from
TP53-knockdown experiments underscore the central role of p53

Experimental & Molecular Medicine (2025) 57:979 - 989

in the therapeutic mechanism of CBD and etoposide, suggesting
that this combination could overcome the limitations of existing
therapies in treating p53-mutated NSCLC*%23,

Furthermore, our results indicate that the synergistic effects
of CBD and etoposide are independent of CNR and TRPV
pathways. This finding suggests that CBD may exert its
anticancer effects through noncanonical mechanisms, broad-
ening its potential therapeutic applications beyond traditional
cannabinoid targets.

In line with the concept of drug repurposing, which has been
successfully demonstrated with medications including metformin,
thalidomide and aspirin for their anticancer properties, our study
suggests that etoposide, a chemotherapeutic agent traditionally used
for SCLC, can be effectively repurposed for NSCLC when combined
with CBD*>*’. The enhanced efficacy observed, particularly in the
induction of autophagic cell death and suppression of key oncogenic
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pathways, highlights the potential of this combination therapy as a
novel treatment strategy for NSCLC.

In conclusion, the combination of CBD and etoposide presents a
compelling therapeutic strategy for NSCLC, leveraging mechanisms of
autophagy, apoptosis and oncogene suppression. These findings not
only provide a strong rationale for further exploration in preclinical
and clinical settings but also suggest the potential to address key
challenges in NSCLC treatment, such as drug resistance and the
limitations of existing therapies. Furthermore, this combination
therapy holds particular promise for patients with p53 mutations or
those who have developed resistance to EGFR inhibitors (for example,
osimertinib) or ALK-targeted drugs (for example, alectinib), providing
a promising alternative approach for improving the outcomes of
patients with NSCLC.

DATA AVAILABILITY

The transcriptome profile data are available via the GEO database at http://
www.ncbi.nlm.nih.gov/projects/geo under accession number GSE285498. Additional
data generated and analyzed during this study are available from the corresponding
author upon reasonable request.
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