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Purpose: To investigate the correlation between cortical thickness (CT), sulcal 

depth (SD), local gyrification index (LGI), and cognitive scores in patients with 

Alzheimer’s disease (AD). 

Methods: A total of 200 patients with AD from 2014 to 2021 were included, 

confirmed by 18F-florbetaben-positron emission tomography, and having a 

Clinical Dementia Rating score of 0.5 or 1. Demographic and clinical data were 

collected, and cognitive function was assessed through the Mini-Mental State 

Examination (MMSE) and Seoul Neuropsychological Screening Battery (SNSB)-II, 

with specific z-scores used for multiple divisional cognitive functions. CT, SD, 

and LGI were extracted from the 3D T1-weighted images acquired with 3-T MRI 

scanners. General linear models were used to examine associations between 

cortical features and cognitive scores, controlling for age, sex, and years of 

education. Cluster-level significance was determined using a family-wise error 

(FWE)–corrected threshold of p < 0.05, with a cluster-forming height threshold 

of uncorrected p < 0.01. 

Results: The analysis included patients with a mean age of 73.7 years and 

an average MMSE score of 23.8. The cortical shape features of multiple brain 

regions showed significant correlations with the MMSE score after adjusting 

for age, sex, and years of education. Among those, SD and LGI in the 

parahippocampal and fusiform gyri had positive correlations with MMSE. For 

executive function, SD showed correlations in the left inferior frontal and 

orbitofrontal gyrus. Regarding language function, CT was associated with 

regions such as the superior temporal gyrus, while SD demonstrated correlations 

with the left supramarginal gyrus. 

Conclusion: The results indicate that certain changes in cortical shape 

features are associated with particular cognitive function scores. Surface-based 

morphometric features of SD and LGI provided complementary results to CT 

analyses. Region-specific changes in SD and LGI could be useful imaging 

markers to predict cognitive decline in AD patients. 
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1 Introduction 

Alzheimer’s disease (AD) is the most prevalent form of 
dementia, primarily associated with advancing age, with an 
estimated 57 million cases worldwide as of 2019 (Nichols et al., 
2022). AD is characterized by an acquired decline in cognitive 
abilities across multiple domains, leading to impairment in daily 
activities (Arvanitakis et al., 2019). It is also a major contributor 
to the loss of disability-adjusted life-years (DALYs) in patients over 
75 years old (Vos et al., 2020). 

Brief cognitive screening questionnaires have a key role in 
the early diagnosis and assessment of AD (Ismail et al., 2010). 
One such test is the Mini-Mental State Examination (MMSE), a 
brief 30-point questionnaire with a 50-year history (Folstein et al., 
1975), still widely used to assess cognitive impairment (Milne 
et al., 2008). The Seoul Neuropsychological Screening Battery-II 
(SNSB-II) is a comprehensive neuropsychological evaluation tool, 
that provides essential information on early cognitive decline by 
assessing multiple divisional cognitive function scores, such as 
language and frontal/executive functions (Ryu and Yang, 2023). 

Structural MRI plays a major role in excluding alternative 
non-AD etiologies of dementia and assessing patterns of 
neurodegeneration (Jack et al., 2024). While MRI-detectable 
changes in brain morphology were previously thought to emerge 
predominantly in later stages of AD, recent evidence suggests that 
structural alterations may appear much earlier in the course of 
disease. In particular, early patterns of cortical atrophy and network 
dysfunction have been observed even before overt cognitive decline 
(Javed et al., 2025). Reduced cortical thickness (CT) has been widely 
studied as a surrogate marker of neuronal loss. For example, a 
well-established “AD signature” of region-specific cortical thinning 
which involve inferior and middle temporal gyri, temporal pole, 
frontal and parietal association cortices, precuneus, etc. has 
been identified in mild cognitive impairment (MCI) and early 
AD, correlating with disease severity (Dickerson et al., 2009; 
Möller et al., 2013). Such cortical thinning reflects the underlying 
pathology and is strongly associated with declines in memory and 
other cognitive functions in AD (Jack et al., 2010; Keith et al., 
2023). However, CT alone may not capture all aspects of cortical 
structural changes in AD, which therefore promotes interest in 
additional surface-based morphometric measures. 

Surface-based morphometry (SBM) oers distinct advantages 
over voxel-based morphometry (VBM), as it enables vertex-level 
analysis of cortical surface shape and folding (Goto et al., 2022). 
Additional surface-based morphometric features such as sulcal 
depth (SD) and the local gyrification index (LGI) are not easily 
captured by volumetric approaches and oer complementary 
insights into cortical architecture. SD measures the distance from 
the brain’s outer cortical surface (i.e., convex hull) to the deepest 
point of each sulcus, therefore eectively quantifies how “deep” or 
pronounced each cortical fold is (Lyu et al., 2018a). In contrast, 
LGI captures the degree of cortical folding in each region, typically 
defined as the ratio of the folded (inner) surface area to the outer 
surface area of the cortex (Luders et al., 2006). These metrics reflect 
aspects of cortical geometry and complexity that are not captured 
by thickness alone – being influenced by developmental cortical 
folding patterns and structural connectivity (Liu et al., 2012). By 
characterizing the shape and complexity of gyri and sulci, SD and 

LGI therefore serve as valuable complements to CT in assessing 
neurodegenerative changes on the brain’s surface. 

Recent studies indicate that both SD and LGI are altered in 
AD, revealing characteristic region-specific patterns and links to 
cognition. Cortical sulci tend to widen and become shallower in 
AD, resulting in reduced SD compared to age-matched healthy 
brain (Liu et al., 2012). For example, it was reported that 
individuals with AD or MCI exhibit significantly lower SD 
and curvature than cognitively normal controls, with the most 
prominent dierences observed in the temporal lobes (Im et al., 
2008). Similarly, global measures of cortical folding are diminished: 
even at very early stages of AD, overall cortical gyrification 
is lower than in cognitively normal individuals and continues 
to decline as the disease progresses (Liu et al., 2012; Lebed 
et al., 2013). Importantly, these morphological changes of lower 
global gyrification and greater sulcal expansion are associated 
with cognitive impairment. Moreover, specific cognitive domains 
map onto regional SD and LGI changes: recent work has shown 
that poorer memory, language, and executive function in AD 
are associated with reduced gyrification or shallower sulci in key 
areas (e.g., inferior temporal and supramarginal gyri) independent 
of CT (Coleman et al., 2023). Furthermore, emerging evidence 
suggests that cortical folding geometry may influence not only 
cognitive outcomes but also the eectiveness of neuromodulatory 
interventions such as transcranial alternating current stimulation 
(tACS), as demonstrated in computational and experimental 
work (Cabrera-Álvarez et al., 2023). These findings imply that 
AD-related neurodegeneration is accompanied by an abnormal 
“unfolding” of the cortical surface, manifesting as altered SD and 
LGI in key brain regions. 

Despite clinical findings, the conventional LGI approach 
is limited in ways that may hinder accurate quantification of 
cortical folding. First, it relies on fixed-size spherical patches on 
cortical surfaces, which may not adequately account for individual 
variability in brain size or folding patterns (Lyu et al., 2018b). 
For instance, even if identical shapes are presented at dierent 
scales, their computed gyrification can dier despite the LGI 
intending to quantify the ratio of cortical to outer surface area, 
which should be scale-invariant. Second, the conventional local 
patch follows a simple, fixed shape that likely spans both gyral and 
sulcal regions even when these belong to distinct sulcal structures. 
As pointed out in Power et al. (2011) and Wig et al. (2014), 
human brain functions tend to be locally homogeneous within a 
sulcus or gyrus, but the conventional approach is limited in its 
ability to capture such functional and anatomical specificity. Third, 
traditional approaches focus solely on the LGI, which measures 
the ratio of cortical to outer surface area. However, this metric 
cannot distinguish between changes in SD and width, potentially 
overlooking important morphological variations. To address these 
limitations, we adopted an improved LGI computation method 
that uses shape-adaptive patches, enhancing spatial specificity by 
including only anatomically relevant regions around each vertex 
and oering improved methodological reliability (Lyu et al., 2018b). 
Płonka et al. (2020) have further demonstrated improved sensitivity 
in localizing group-level dierences in cortical folding compared 
to the conventional method. This approach has been then applied 
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FIGURE 1 

Flowchart for patient inclusion. 

in various contexts, including neurodevelopmental studies (Lyu 
et al., 2018b) and investigations of neurological disorders such as 
Huntington’s disease (Stoebner et al., 2023) and autism spectrum 
disorders (Zoltowski et al., 2021; Lucibello et al., 2022). 

While each of the three morphometric measures (CT, SD, and 
LGI) has been studied individually, few studies have examined 
them collectively in relation to cognitive outcomes in AD. 
This leaves a gap in our understanding of how these imaging 
markers jointly contribute to cognitive decline. In this context, 
we hypothesized that cortical folding features including SD and 
LGI, alongside CT would show distinct associations with both 
global and domain-specific cognitive scores in patients with AD. 
A simultaneous analysis of these morphometric features may 
improve our understanding of how regional brain structure relates 
to cognitive function and would provide valuable support for 
decision-making and prognoses in clinical settings. 

Therefore, this study aimed to investigate the relationship 
between three cortical shape features—CT, SD, and LGI— 
and cognitive performance in AD, thereby providing a 
multidimensional cortical profile for AD-related cognitive decline. 

2 Materials and methods 

2.1 Patient population 

This study was approved by the Institutional Review Board, 
and the requirement for written informed consent was waived 
due to the retrospective design of the study and use of de-
identified data. A total of 281 consecutive patients with AD who 

visited the dementia clinic at Severance Hospital between 2014 
and 2021 and had a Clinical Dementia Rating (CDR) score of 
0.5 or 1 were included in the study. The diagnosis of AD was 
established according to the 2011 National Institute on Aging– 
Alzheimer’s Association (NIA-AA) criteria. Diagnoses were made 
through a consensus panel of neurologists (Y.-G.L. and B.Y.), with 
confirmation of amyloid beta (Aβ) deposition via 18F-florbetaben-
positron emission tomography (FBB-PET). The following criteria 
were used for exclusion: (1) diagnoses of other types of dementia, 
including frontotemporal dementia, dementia with Lewy bodies, 
corticobasal degeneration, and progressive supranuclear palsy, (2) 
cognitive impairment caused by medications, (3) the presence of 
other potential causes of cognitive impairment, such as epilepsy, 
psychiatric disorder, or structural brain lesions, and (4) insuÿcient 
or inadequate MRI scans or cognitive function scores. Figure 1 
shows a flowchart for patient enrollment. 

2.2 Clinical data 

The demographic and clinical data were obtained from patient 
medical records, which included age, sex, level of education, 
and presence of comorbidities of hypertension, type 2 diabetes, 
dyslipidemia, and history of cerebrovascular accident (CVA). 
All patients underwent a comprehensive neuropsychological 
assessment, which included the MMSE and SNSB-II (Ryu and 
Yang, 2023). Regarding the SNSB-II scores, each test score was first 
transformed into a z-score to standardize the results, allowing for 
the composite score to reflect an individual’s cognitive performance 
relative to the study population. The language function score was 
defined as z-scores of the Korean version of the Boston Naming 
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Test (BNT) (Kim and Na, 1999). The executive function score 
is calculated by the summation of z-scores of the Controlled 
Oral Word Association Test (COWAT) and Color Word Stroop 
Test (CWST) scores. The attention score is calculated by the 
summation of z-scores of the digit span forward and digit span 
backward scores. The visuospatial function score is determined by 
the z-score of the Rey Complex Figure Test (RCFT) score. Memory 
function is assessed by summing the z-scores of the Seoul Verbal 
Learning Test (SVLT) immediate recall, SVLT delayed recall, SVLT 
recognition, RCFT copying, RCFT immediate recall, and RCFT 
delayed recall scores. 

2.3 MRI and PET acquisition 

Structural MRI scans were performed using the 3-T system 
(Ingenia CX, Philips Healthcare) equipped with a 32-channel 
head coil, with a 3D magnetization-prepared rapid acquisition 
with gradient echo (MPRAGE) sequence utilized for T1-weighted 
images (T1w). Supplementary Data shows the details of the MRI 
acquisition parameters. 

18F-Florbetaben-positron emission tomography scans were 
performed using the Discovery 600 system (GE Healthcare). 
Participants received an intravenous injection of 300 MBq (8 mCi) 
of FBB. Image acquisition began 90 min after injection and 
continued for 20 min. PET images were reconstructed using the 
ordered subset expectation maximization (OSEM) algorithm with 
4 iterations and 32 subsets. A Gaussian filter with a 4-mm full 
width at half maximum (FWHM) was applied to the reconstructed 
images. Then, Aβ positivity was determined using a global FBB 
standardized uptake value ratio (SUVR) cuto of 1.478. 

The acquired MR images were processed via FreeSurfer 
v7.4.1, including N4 bias correction, skull-stripping, tissue 
segmentation, intensity normalization, and cortical surface 
reconstruction. The reconstructed surfaces were spherically 
mapped and registered to fsaverage template surface (Fischl 
et al., 1999) for shape correspondence using the hierarchical 
spherical deformation method that reduces registration 
distortion (Lyu et al., 2019). After registration, each surface 
was resampled into 163,842 vertices using the icosahedral 
regular grid to establish shape correspondence across subjects. 
It is important to note that the resampled surface was only 
used for statistical shape analysis. To prevent any potential 
information loss associated with the resampling process, other 
surface-related processing was conducted on the originally 
reconstructed surface. 

2.4 Shape feature extraction 

Three cortical shape features—CT, SD, and LGI—were 
extracted from the reconstructed cortical surface for analysis. 
The measurement of CT, which refers to the width of the 
cortical gray matter, was calculated using the FreeSurfer (Fischl, 
2012). The cerebral hull surface (CHS), which is the virtual 
outer contour of the cerebral cortex, was used as the reference 
for the measurement of SD (Lyu et al., 2018a) and LGI (Lyu 
et al., 2018b). SD is defined as the Laplacian trajectory between 

CHS and pial surface, while LGI represents the ratio between 
CHS area and pial surface area at each point on the inner 
contour using a shape-adaptive kernel. This definition of SD is 
conceptually distinct from FreeSurfer’s SD (also referred to as 
average convexity), which is computed as the displacement along 
the inflation trajectory from the cortical surface to the inflated 
surface rather than CHS. CT and SD were then smoothed over the 
cortical surface using a Gaussian kernel with a FWHM of 6 mm 
in FreeSurfer for denoising and improving spatial consistency. 
Figure 2 provides an overview of the methodology for measuring 
CT, SD, and LGI. 

2.5 Statistical analysis 

A comprehensive whole-brain vertex-wise analysis was 
conducted using a general linear model (GLM) in SurfStat 
(Worsley et al., 2009), a toolbox designed for cortical SBM analysis, 
in MATLAB v.2021a. 

Statistical inference was performed using random field theory 
(RFT) to control the family-wise error (FWE) rate from multiple 
comparisons. Cluster-level significance was assessed at FWE-
corrected threshold of p < 0.05, using cluster-forming height 
threshold of uncorrected p < 0.01. 

In order to examine the association between MMSE scores 
and each of three cortical shape features while controlling 
for year of education, age and sex, the following model was 
specified: (shape feature) = β0 + β1 (MMSE) + β2 (year of 
education) + β3 (age) + β4 (sex) + ε. The null hypothesis of 
H0 : β1 = 0 was tested, and vertex-wise t values and standardized 
β were computed to evaluate the strength and spatial extent of 
the observed eects. For domain-specific analysis, the model was 
extended by including divisional cognitive function scores as 
an additional predictor: (shape feature) = β0 + β1 (divisional 
cognitive function score) + β2 (MMSE) + β3 (year of 
education) + β4 (age) + β5 (sex) + ε. The corresponding null 
hypothesis H0 : β1 = 0 was tested, and corresponding t values 
and standardized β were computed. 

3 Results 

3.1 Patient characteristics 

A total of 200 patients were enrolled in this study, excluding 
those with other causes of dementia or cognitive impairment 
(n = 13) and those without 3D T1w (n = 15). Additionally, patients 
with missing cognitive scores (n = 3) and those with T1w scans 
that failed quality assessment (n = 50) were excluded (Figure 1). 
Quality assessment failures included cropped or noisy scans, 
inaccurate automated tissue segmentation, and mesh artifacts in the 
reconstructed cortical surfaces. 

A total of 62.5% (n = 125) of patients were female, with a mean 
age ± standard deviation (Stdev) of 73.7 ± 7.1 years (range: 55.5– 
87.1). The mean ± Stdev duration of education was 10.4 ± 4.7 years 
(range: 0.5–18) and the mean ± Stdev MMSE score was 23.8 ± 3.0 
(range: 15–30). Hypertension was the most common comorbidity, 
aecting 56.0% (n = 112) of patients, followed by dyslipidemia 
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FIGURE 2 

Overview of the methodology for measuring (a) CT, (b) SD, and (c) LGI on the cerebral surface. CT is measured as the minimal distance between 
corresponding point on the pial and white matter surface (yellow bar). SD is measured as the Laplacian trajectory between CHS (red contour) and 
the pial surface (blue contour). LGI is then measured as the ratio between the pial (blue) and CHS (red) surface area. The color gradients for LGI 
indicates the regions expected to have higher values (shown in orange) and lower values (shown in yellow). CHS, cerebral hull surface; CT, cortical 
thickness; LGI, local gyrification index; SD, sulcal depth 
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TABLE 1 Patient characteristics. 

Characteristics AD (n = 200) 

Female, n (%) 125 (62.5) 

Age, mean ± Stdev 73.7 ± 7.1 

Education, mean ± Stdev 10.4 ± 4.7 

MMSE score, mean ± Stdev 23.8 ± 3.0 

Hypertension, n (%) 112 (56.0) 

Type 2 diabetes, n (%) 40 (20.0) 

Dyslipidemia, n (%) 48 (24.0) 

History of CVA, n (%) 12 (6.0) 

CVA, cerebrovascular accident; MMSE, Mini-Mental State Examination; Stdev, 
standard deviation. 

(24.0%, n = 48) and type 2 diabetes (20.0%, n = 40). Table 1 
summarizes the baseline characteristics of the cohort. 

3.2 Cortical shape features and MMSE 

After controlling age, sex, and year of education, CT was 
positively correlated with MMSE score in the right precuneus 
(p = 0.006) and left inferior temporal gyrus (p = 0.013). 
SD was positively correlated with the MMSE score in the 
left parahippocampal and fusiform gyri (p = 0.002). LGI was 
positively correlated with MMSE score in left parahippocampal and 
fusiform gyri (p < 0.001), left inferior frontal gyrus (p < 0.001), 
and right parahippocampal and fusiform gyri (p = 0.035) 
(Table 2 and Figure 3). 

3.3 Cortical shape features and executive 
function score 

After controlling age, sex, year of education, and MMSE score, 
no brain region showed a significant positive correlation between 
CT and executive function scores. SD was positively correlated 
with executive function scores in the left inferior frontal gyrus 
(p < 0.001), orbitofrontal cortex (p < 0.001), right middle cingulate 
gyrus (p < 0.001), and right subcallosal area (p = 0.044). LGI was 
positively correlated with executive function scores in the bilateral 

postcentral and supramarginal gyri (p < 0.001 and p = 0.002, 
respectively), right superior temporal gyrus (p = 0.002), right 
precuneus (p = 0.002), and left orbitofrontal cortex (p = 0.001) 
(Table 3 and Figure 4). 

3.4 Cortical shape features and language 
function score 

Cortical thickness was positively correlated with language 
function score in the left parahippocampal and fusiform gyri 
(p < 0.001), bilateral superior temporal gyrus (p < 0.001 and 
p = 0.015, respectively), and left fusiform and inferior temporal 
gyri (p = 0.017). SD was positively correlated with language 
function scores in the left inferior frontal gyrus (p < 0.001), left 
supramarginal and postcentral gyri (p = 0.021), and left inferior 
parietal gyrus (p = 0.046). LGI was associated with language 
function scores in the left inferior parietal gyrus (p = 0.028) (Table 4 
and Figure 5). 

3.5 Cortical shape features and attention 
function score 

No brain region showed a significant positive correlation 
between CT and attention function scores. SD was positively 
correlated with attention function scores in the left postcentral and 
supramarginal gyri (p = 0.025). LGI was associated with attention 
function scores in the right inferior frontal gyrus (p < 0.001) 
and right entorhinal and parahippocampal gyri (p < 0.001) 
(Supplementary Table 1 and Figure 6). 

3.6 Cortical shape features and memory 
function score 

We observed mixed positive and negative correlations between 
cortical shape features and memory function scores in specific 
brain regions. CT showed a significant positive correlation memory 
function scores in the right parahippocampal gyrus (p < 0.001), 
while there was also negative correlation with memory function 
scores in the left lateral occipital gyrus (p = 0.024). SD was 

TABLE 2 List of cortical clusters showing significant associations between cortical shape features and MMSE scores. 

Cortical feature Cluster Cluster size 
(vertices) 

Peak t-value Corrected 
p-value (FWE) 

CT Right precuneus 561 3.55 0.006 

CT Left inferior temporal gyrus 284 4.69 0.013 

SD Left parahippocampal, fusiform, and lingual gyri 1,489 3.98 0.002 

LGI Left parahippocampal, fusiform, and lingual gyri 1,718 3.95 <0.001 

LGI Left inferior frontal gyrus 1,542 3.92 <0.001 

LGI Right parahippocampal and fusiform gyri 1,058 3.56 0.035 

CT, cortical thickness; FWE, family-wise error; LGI, local gyrification index; MMSE, Mini-Mental State Examination; SD, sulcal depth. 
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FIGURE 3 

Whole-brain statistical maps showing associations between MMSE scores and cortical morphometry: CT (top), SD (middle), and LGI (bottom). From 
left to right: corrected cluster-wise p values, vertex-wise t values, and standardized β coefficients. CT, cortical thickness; LGI, local gyrification index; 
SD, sulcal depth 

TABLE 3 List of cortical clusters showing significant associations between cortical shape features and executive function scores. 

Cortical 
feature 

Cluster Cluster size 
(vertices) 

Peak t-value Corrected p-value 
(FWE) 

SD Left inferior frontal gyrus 3,294 4.51 <0.001 

SD Left orbitofrontal cortex 626 4.39 <0.001 

SD Right middle cingulate gyrus 603 3.38 <0.001 

SD Right subcallosal area 92 4.13 0.044 

LGI Left postcentral and supramarginal gyri 2,444 3.99 <0.001 

LGI Right postcentral and supramarginal gyri 1,319 4.51 0.002 

LGI Right superior temporal gyrus 1,024 4.02 0.002 

LGI Right precuneus 463 4.69 0.002 

LGI Left orbitofrontal cortex 438 3.59 0.001 

CT, cortical thickness; FWE, family-wise error; LGI, local gyrification index; SD, sulcal depth. 

negatively associated with memory function scores in the left 
superior frontal gyrus (p = 0.023). Additionally, LGI demonstrated 

a significant positive correlation with memory function scores in 

the left insula (p = 0.008) and right precentral gyrus (p = 0.049) 
(Supplementary Table 2 and Figure 7). 

3.7 Cortical shape features and 
visuospatial function score 

Cortical thickness exhibited positive correlations with 

visuospatial function scores in extensive areas of brain regions, 
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FIGURE 4 

Whole-brain statistical maps showing associations between executive function scores and cortical morphometry: CT (top), SD (middle), and LGI 
(bottom). From left to right: corrected cluster-wise p values, vertex-wise t values, and standardized β coefficients. CT, cortical thickness; LGI, local 
gyrification index; SD, sulcal depth 

TABLE 4 List of cortical clusters showing significant associations between cortical shape features and language function scores. 

Cortical 
feature 

Cluster Cluster size 
(vertices) 

Peak t-value Corrected p-value 
(FWE) 

CT Left parahippocampal and fusiform gyri 865 3.65 <0.001 

CT Left superior temporal gyrus 773 3.63 <0.001 

CT Right superior temporal gyrus 584 4.02 0.015 

CT Left fusiform and inferior temporal gyri 513 4.40 0.017 

SD Left inferior frontal gyrus 2,449 3.22 <0.001 

SD Left supramarginal and postcentral gyri 1,063 3.66 0.021 

SD Left inferior parietal gyrus 266 3.26 0.046 

LGI Left inferior parietal gyrus 282 3.51 0.028 

CT, cortical thickness; FWE, family-wise error; LGI, local gyrification index; SD, sulcal depth. 

especially including bilateral occipital and temporal lobes, 

and supramarginal and angular gyri. LGI showed significant 

positive correlation in the left supramarginal and postcentral 

gyri (p = 0.004), while displaying a negative correlation in the 

right orbitofrontal cortex (p = 0.013) (Supplementary Table 3 

and Figure 8). 

4 Discussion 

4.1 Summary of main findings 

In this study, we investigated the regional associations between 

three cortical shape features—CT, SD, and LGI—and cognitive 
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FIGURE 5 

Whole-brain statistical maps showing associations between language function scores and cortical morphometry: CT (top), SD (middle), and LGI 
(bottom). From left to right: corrected cluster-wise p values, vertex-wise t values, and standardized β coefficients. CT, cortical thickness; LGI, local 
gyrification index; SD, sulcal depth 

performance scores measured by MMSE and multiple divisional 
cognitive function scores in patients with AD. By controlling for 
age, sex, and year of education, we were able to identify specific 
regions where cortical morphology correlates with cognitive 
performance scores. Our findings reveal that MMSE scores were 
positively correlated with CT in the left inferior temporal gyrus 
and right precuneus, SD in the left parahippocampal and fusiform 
gyri, and LGI in the bilateral parahippocampal gyri, left fusiform 
and inferior frontal gyri, and right parahippocampal gyrus. For 
executive function scores, CT showed no significant association, 
while SD was correlated with the left inferior frontal gyrus, 
orbitofrontal cortex, right middle cingulate gyrus, and subcallosal 
area. LGI was positively associated with executive scores in the 
bilateral postcentral gyri, left orbitofrontal cortex, right precuneus, 
and right superior temporal gyrus. Language function scores were 
positively correlated with CT in the left parahippocampal and 
fusiform gyri and bilateral superior temporal gyri, and with SD in 
the left inferior frontal, supramarginal, and inferior parietal gyri. 
LGI was associated with language performance only in a small 
region of the left inferior parietal gyrus. For attention, CT showed 
no significant correlation, whereas SD was positively associated 
with the left postcentral and supramarginal gyri, and LGI with 
the right inferior frontal gyrus. Memory function showed both 
positive and negative correlations: CT was positively associated 

with the right parahippocampal gyrus and negatively with the 
left lateral occipital gyrus; SD showed a negative association with 
the left superior frontal gyrus; and LGI was positively correlated 
with the left insula and right precentral gyri. Visuospatial function 
scores were associated with CT in widespread regions, including 
the bilateral occipital and temporal lobes and the supramarginal 
and angular gyri. LGI showed a positive correlation in the left 
supramarginal gyrus and a negative correlation in the right 
orbitofrontal cortex. Overall, these findings highlight the regional 
specificity of cortical shape features in relation to distinct cognitive 
functions in AD. 

4.2 MMSE and global cognitive function 

The MMSE comprises questionnaires for the concise evaluation 
of multiple cognitive domains, including attention, orientation, 
memory, registration, recall, calculation, and language function 
(Folstein et al., 1975). This broad scope may explain why 
dierent cortical shape features of multiple brain regions showed 
a significant correlation with the MMSE score. In particular, 
the involvement of both posterior and parietal regions suggests 
a network that supports integrated visuospatial processing and 
cognitive function (Kravitz et al., 2011). SD and LGI analyses 
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FIGURE 6 

Whole-brain statistical maps showing associations between attention function scores and cortical morphometry: CT (top), SD (middle), and LGI 
(bottom). From left to right: corrected cluster-wise p values, vertex-wise t-statistics, and standardized β coefficients. CT, cortical thickness; SD, sulcal 
depth; LGI, local gyrification index. 

showed positive correlations with MMSE scores in various regions 
linked to memory formation and retrieval, language processing, 
somatosensory functions, and motor control, indicating that 
overall cognitive abilities are influenced by both CT and sulcal 
folding complexity. Interestingly, the spatial extent of CT–MMSE 
associations was relatively limited in our sample, possibly due to 
the restricted variance in cognition decline across the mild-to-
moderate AD cohort and the stringent surface-based statistical 
correction applied. Notably, LGI demonstrated broader and more 
robust associations with MMSE, potentially reflecting its sensitivity 
to both SD and width as markers of advanced cortical remodeling. 

4.3 Executive function and frontal 
morphology 

Executive functions, also sometimes referred to as frontal 
functions (Fuster, 2000), are cognitive processes that are key to 
goal-directed behavior, planning, decision-making, and problem-
solving (Alvarez and Emory, 2006). The prefrontal cortex, in 
particular, is known to play a key role in reward-related decision-
making and inhibitory control, aligning with its correlation to 
executive function (Friedman and Robbins, 2022). SD, rather than 
CT, in the lateral prefrontal cortex was shown to be a significant 

indicator of working memory performance (Yao et al., 2023). 
Similarly, SD—but not CT—in the inferior frontal gyrus and 
orbitofrontal cortex was associated with our executive function 
scores. This suggests that alterations in the sulcal structure of 
these regions could be linked to decline in executive function 
performance in patients with AD. In addition, LGI in the 
postcentral gyri, precuneus, and superior temporal gyrus—regions 
implicated in sensorimotor integration and attentional control— 
showed significant associations with executive performance, which 
is possible reflection of the role of multimodal networks in 
supporting task execution. 

4.4 Language and visuospatial correlates 

Loss of language function occurs in a significant proportion 
of AD patients (Henry et al., 2004) and is a major contributor 
to the deterioration of their daily abilities, making it a key target 
for early therapeutic intervention (Verma and Howard, 2012). In 
our study, language performance was evaluated using BNT, which 
is widely used for the assessment of naming deficits in AD. Our 
analysis shows that language function scores are associated with 
cortical features in the superior temporal and supramarginal gyri, 
regions well-known for their role in speech and language processing 
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FIGURE 7 

Whole-brain statistical maps showing associations between memory function scores and cortical morphometry: (a) CT (positive correlation), (b) CT 
(negative correlation), (c) SD (negative correlation), and (d) LGI (positive correlation). From left to right: corrected cluster-wise p values, vertex-wise 
t-statistics, and standardized β coefficients. CT, cortical thickness; SD, sulcal depth; LGI, local gyrification index. 

(Friederici, 2011). This also aligns with previous research that 
showed that overall performance on the BNT is associated with 
a left hemispheric network including the middle and superior 
temporal gyrus and extending into the inferior parietal cortex 
(Baldo et al., 2013). The fusiform gyrus, anatomically linked 
to object recognition processes (Weiner and Zilles, 2016), may 
structurally support naming abilities as measured by the BNT; 
however, this association should be interpreted in light of the 
structural nature of the imaging data rather than direct functional 
inference. However, the minimal LGI association limited to the left 
inferior parietal gyrus suggests that cortical folding complexity may 
be less involved in language performance, at least as assessed by 
naming tasks. Additional domain-specific tests targeting syntax or 
semantic fluency may be needed to better assess LGI sensitivity. 

The association between CT and visuospatial function across 
widespread parieto-occipital regions supports the involvement of 
the dorsal visual pathway, which may contribute to the execution 
of visuospatial tasks, consistent with findings from previous studies 
(Kang et al., 2019). Overall, our results suggest that distinct 
alterations in cortical shape features are selectively associated with 
specific cognitive domains in patients with AD. 

4.5 Clinical implications and 
interpretability of LGI 

Cortical thinning, particularly in temporal and parietal 
association cortices, was most consistently associated with memory 
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FIGURE 8 

Whole-brain statistical maps showing associations between visuospatial function scores and cortical morphometry: (a) CT, (b) SD, (c) LGI (positive 
correlation), and (d) LGI (negative correlation). From left to right: corrected cluster-wise p values, vertex-wise t-statistics, and standardized β 
coefficients. CT, cortical thickness; SD, sulcal depth; LGI, local gyrification index. 

and language performance, in line with previous work identifying 
the “AD signature” pattern of cortical atrophy. SD reductions 
were observed in similar regions, but also extended to frontal 
areas, suggesting that SD may detect early geometric alterations 
related to neurodegeneration. LGI changes were more regionally 
restricted but nonetheless informative: lower gyrification in the 
supramarginal and insular cortices correlated with poorer executive 
and language performance, consistent with recent studies linking 
cortical complexity to cognitive resilience in AD. 

Importantly, our findings demonstrate that CT, SD, and LGI 
are non-redundant features capturing complementary aspects 
of cortical structure. In several regions, cognitive outcomes 
were predicted more accurately by a combination of CT, SD, 
and LGI than by CT alone. Among the three features, LGI 
demonstrated relatively broader and more robust associations 

across domains—particularly in MMSE, executive, and visuospatial 
scores—highlighting its potential as a sensitive marker of cortical 
remodeling. While CT remains the most sensitive index of global 
cortical atrophy, SD and LGI provide additional geometrical and 
topographical insights that may capture subtle cortical remodeling 
and support prediction of cognitive decline. This may be because 
LGI not only considers simple SD but also includes the ratio of 
the pial surface to the CHS, which is influenced by both the depth 
and width of the sulcus (Schaer et al., 2008). This allows for a more 
detailed reflection of cortical morphology compared to SD. 

A primary strength of this study is the application of cutting-
edge techniques to analyze the cortical shape features, with a 
particular focus on evaluating the usefulness of LGI. This study 
employed techniques that adapt to individual brain size and the 
structural pattern of local cortical folding, accounting for individual 
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dierences and providing more reproducible results (Lyu et al., 
2018b). By employing a shape-adaptive LGI approach, we improved 
anatomical specificity and reduced variability, supporting its 
potential as a practical biomarker. Through such reliable analysis 
of cortical shape features, future research might not only analyze 
associations but also predict and measure an AD patient’s cognitive 
function to some extent. 

4.6 Limitations and future directions 

Some limitations warrant caution during the interpretation of 
this study’s findings. This retrospective study was conducted at a 
single center, which included a relatively small number of patients. 
This was also an exploratory study and did not account for patient-
specific medical history or other socioeconomic factors (Sattler 
et al., 2012) that may have influenced the global and domain-
specific cognitive scores. MMSE and domain-specific cognitive 
scores are also aected by measurement errors and a patient’s 
overall health condition, potentially leading to variability in results 
(Clark et al., 1999). 

Although we focused on assessing the main eects of each 
cortical morphometric feature, it would be beneficial to examine 
potential interaction eects (e.g., CT × SD, CT × LGI) to identify 
complex structural profiles. Future research should explore these 
interactions to elucidate whether combinations of cortical metrics 
can improve the prediction of cognitive decline trajectories. 

Another limitation is the unavailability of continuous SUVR 
data from the FBB-PET scans, which precluded the incorporation 
of amyloid-β burden as a covariate or moderator in the surface-
based analyses. Future longitudinal studies are needed to clarify 
the relative contributions of Aβ pathology and downstream 
neurodegeneration to cortical morphological changes. 

Finally, while our study highlights regional specificity of 
morphometric features, the cross-sectional design limits inference 
on temporal progression. Future longitudinal studies are needed 
to evaluate the predictive value of sulcal morphometry features for 
cognitive progression in AD and to explore their utility in tracking 
disease-modifying treatment responses. 

5 Conclusion 

Our findings demonstrate that CT, SD, and LGI each show 
distinct and region-specific associations with global and domain-
specific cognitive performance in AD patients. Surface-based 
morphometric features of SD and LGI provided complementary 
results to CT analyses. While CT remains a well-established marker 
of cortical atrophy, SD and LGI oer additional geometrical 
and topographical insights into sulcal remodeling and folding 
complexity that are not captured by CT alone. These metrics 
were particularly informative for functions such as executive 
processing and visuospatial skills, where CT alone showed 
limited associations. This multidimensional profiling oers a more 
precise characterization of imaging biomarkers in clinical research 
and may guide individualized intervention strategies. Further 
research with more diverse cohorts is necessary to generalize and 
extend these results. 
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