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Republic of Korea

Purpose: To investigate the correlation between cortical thickness (CT), sulcal
depth (SD), local gyrification index (LGI), and cognitive scores in patients with
Alzheimer's disease (AD).

Methods: A total of 200 patients with AD from 2014 to 2021 were included,
confirmed by 18F-florbetaben-positron emission tomography, and having a
Clinical Dementia Rating score of 0.5 or 1. Demographic and clinical data were
collected, and cognitive function was assessed through the Mini-Mental State
Examination (MMSE) and Seoul Neuropsychological Screening Battery (SNSB)-II,
with specific z-scores used for multiple divisional cognitive functions. CT, SD,
and LGl were extracted from the 3D T1-weighted images acquired with 3-T MRI
scanners. General linear models were used to examine associations between
cortical features and cognitive scores, controlling for age, sex, and years of
education. Cluster-level significance was determined using a family-wise error
(FWE)—-corrected threshold of p < 0.05, with a cluster-forming height threshold
of uncorrected p < 0.01.

Results: The analysis included patients with a mean age of 73.7 years and
an average MMSE score of 23.8. The cortical shape features of multiple brain
regions showed significant correlations with the MMSE score after adjusting
for age, sex, and years of education. Among those, SD and LGl in the
parahippocampal and fusiform gyri had positive correlations with MMSE. For
executive function, SD showed correlations in the left inferior frontal and
orbitofrontal gyrus. Regarding language function, CT was associated with
regions such as the superior temporal gyrus, while SD demonstrated correlations
with the left supramarginal gyrus.

Conclusion: The results indicate that certain changes in cortical shape
features are associated with particular cognitive function scores. Surface-based
morphometric features of SD and LGI provided complementary results to CT
analyses. Region-specific changes in SD and LGl could be useful imaging
markers to predict cognitive decline in AD patients.
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1 Introduction

Alzheimer’s disease (AD) is the most prevalent form of
dementia, primarily associated with advancing age, with an
estimated 57 million cases worldwide as of 2019 (Nichols et al.,
2022). AD is characterized by an acquired decline in cognitive
abilities across multiple domains, leading to impairment in daily
activities (Arvanitakis et al., 2019). It is also a major contributor
to the loss of disability-adjusted life-years (DALYSs) in patients over
75 years old (Vos et al., 2020).

Brief cognitive screening questionnaires have a key role in
the early diagnosis and assessment of AD (Ismail et al., 2010).
One such test is the Mini-Mental State Examination (MMSE), a
brief 30-point questionnaire with a 50-year history (Folstein et al.,
1975), still widely used to assess cognitive impairment (Milne
et al., 2008). The Seoul Neuropsychological Screening Battery-II
(SNSB-II) is a comprehensive neuropsychological evaluation tool,
that provides essential information on early cognitive decline by
assessing multiple divisional cognitive function scores, such as
language and frontal/executive functions (Ryu and Yang, 2023).

Structural MRI plays a major role in excluding alternative
non-AD etiologies of dementia and assessing patterns of
neurodegeneration (Jack et al, 2024). While MRI-detectable
changes in brain morphology were previously thought to emerge
predominantly in later stages of AD, recent evidence suggests that
structural alterations may appear much earlier in the course of
disease. In particular, early patterns of cortical atrophy and network
dysfunction have been observed even before overt cognitive decline
(Javed etal., 2025). Reduced cortical thickness (CT) has been widely
studied as a surrogate marker of neuronal loss. For example, a
well-established “AD signature” of region-specific cortical thinning
which involve inferior and middle temporal gyri, temporal pole,
frontal and parietal association cortices, precuneus, etc. has
been identified in mild cognitive impairment (MCI) and early
AD, correlating with disease severity (Dickerson et al, 2009;
Moller et al., 2013). Such cortical thinning reflects the underlying
pathology and is strongly associated with declines in memory and
other cognitive functions in AD (Jack et al.,, 2010; Keith et al,
2023). However, CT alone may not capture all aspects of cortical
structural changes in AD, which therefore promotes interest in
additional surface-based morphometric measures.

Surface-based morphometry (SBM) offers distinct advantages
over voxel-based morphometry (VBM), as it enables vertex-level
analysis of cortical surface shape and folding (Goto et al., 2022).
Additional surface-based morphometric features such as sulcal
depth (SD) and the local gyrification index (LGI) are not easily
captured by volumetric approaches and offer complementary
insights into cortical architecture. SD measures the distance from
the brain’s outer cortical surface (i.e., convex hull) to the deepest
point of each sulcus, therefore effectively quantifies how “deep” or
pronounced each cortical fold is (Lyu et al., 2018a). In contrast,
LGI captures the degree of cortical folding in each region, typically
defined as the ratio of the folded (inner) surface area to the outer
surface area of the cortex (Luders et al., 2006). These metrics reflect
aspects of cortical geometry and complexity that are not captured
by thickness alone - being influenced by developmental cortical
folding patterns and structural connectivity (Liu et al., 2012). By
characterizing the shape and complexity of gyri and sulci, SD and
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LGI therefore serve as valuable complements to CT in assessing
neurodegenerative changes on the brain’s surface.

Recent studies indicate that both SD and LGI are altered in
AD, revealing characteristic region-specific patterns and links to
cognition. Cortical sulci tend to widen and become shallower in
AD, resulting in reduced SD compared to age-matched healthy
brain (Liu et al., 2012). For example, it was reported that
individuals with AD or MCI exhibit significantly lower SD
and curvature than cognitively normal controls, with the most
prominent differences observed in the temporal lobes (Im et al.,
2008). Similarly, global measures of cortical folding are diminished:
even at very early stages of AD, overall cortical gyrification
is lower than in cognitively normal individuals and continues
to decline as the disease progresses (Liu et al, 2012; Lebed
et al., 2013). Importantly, these morphological changes of lower
global gyrification and greater sulcal expansion are associated
with cognitive impairment. Moreover, specific cognitive domains
map onto regional SD and LGI changes: recent work has shown
that poorer memory, language, and executive function in AD
are associated with reduced gyrification or shallower sulci in key
areas (e.g., inferior temporal and supramarginal gyri) independent
of CT (Coleman et al, 2023). Furthermore, emerging evidence
suggests that cortical folding geometry may influence not only
cognitive outcomes but also the effectiveness of neuromodulatory
interventions such as transcranial alternating current stimulation
(tACS), as demonstrated in computational and experimental
work (Cabrera-Alvarez et al., 2023). These findings imply that
AD-related neurodegeneration is accompanied by an abnormal
“unfolding” of the cortical surface, manifesting as altered SD and
LGI in key brain regions.

Despite clinical findings, the conventional LGI approach
is limited in ways that may hinder accurate quantification of
cortical folding. First, it relies on fixed-size spherical patches on
cortical surfaces, which may not adequately account for individual
variability in brain size or folding patterns (Lyu et al., 2018b).
For instance, even if identical shapes are presented at different
scales, their computed gyrification can differ despite the LGI
intending to quantify the ratio of cortical to outer surface area,
which should be scale-invariant. Second, the conventional local
patch follows a simple, fixed shape that likely spans both gyral and
sulcal regions even when these belong to distinct sulcal structures.
As pointed out in Power et al. (2011) and Wig et al. (2014),
human brain functions tend to be locally homogeneous within a
sulcus or gyrus, but the conventional approach is limited in its
ability to capture such functional and anatomical specificity. Third,
traditional approaches focus solely on the LGI, which measures
the ratio of cortical to outer surface area. However, this metric
cannot distinguish between changes in SD and width, potentially
overlooking important morphological variations. To address these
limitations, we adopted an improved LGI computation method
that uses shape-adaptive patches, enhancing spatial specificity by
including only anatomically relevant regions around each vertex
and offering improved methodological reliability (Lyu et al., 2018b).
Plonka et al. (2020) have further demonstrated improved sensitivity
in localizing group-level differences in cortical folding compared
to the conventional method. This approach has been then applied
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Patients diagnosed with Alzheimer’s dementia who
visited the outpatient clinic between 2014 and 2021

Inclusion criteria:

1) Clinical Dementia Rating (CDR) score of 0.5 0or 1

2) Confirmation of amyloid beta (AB) deposition by 18F-
Florbetaben-positron emission tomography (FBB-PET)

3) Underwent brain MRI scans

281 patients

Exclusion criteria:

1) Other causes of dementia or cognitive impairment (n = 13)
2) MRI scans without 3D T1w images (n = 15)

3) Missing divisional cognitive function scores (n = 3)

4) Failed quality assessment (n = 50)

200 patients

FIGURE 1
Flowchart for patient inclusion.

in various contexts, including neurodevelopmental studies (Lyu
et al, 2018b) and investigations of neurological disorders such as
Huntington’s disease (Stoebner et al., 2023) and autism spectrum
disorders (Zoltowski et al., 2021; Lucibello et al., 2022).

While each of the three morphometric measures (CT, SD, and
LGI) has been studied individually, few studies have examined
them collectively in relation to cognitive outcomes in AD.
This leaves a gap in our understanding of how these imaging
markers jointly contribute to cognitive decline. In this context,
we hypothesized that cortical folding features including SD and
LGI, alongside CT would show distinct associations with both
global and domain-specific cognitive scores in patients with AD.
A simultaneous analysis of these morphometric features may
improve our understanding of how regional brain structure relates
to cognitive function and would provide valuable support for
decision-making and prognoses in clinical settings.

Therefore, this study aimed to investigate the relationship
between three cortical shape features—CT, SD, and LGI—
in AD,
multidimensional cortical profile for AD-related cognitive decline.

and cognitive performance

thereby providing a

2 Materials and methods

2.1 Patient population

This study was approved by the Institutional Review Board,
and the requirement for written informed consent was waived
due to the retrospective design of the study and use of de-
identified data. A total of 281 consecutive patients with AD who
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visited the dementia clinic at Severance Hospital between 2014
and 2021 and had a Clinical Dementia Rating (CDR) score of
0.5 or 1 were included in the study. The diagnosis of AD was
established according to the 2011 National Institute on Aging—
Alzheimer’s Association (NIA-AA) criteria. Diagnoses were made
through a consensus panel of neurologists (Y.-G.L. and B.Y.), with
confirmation of amyloid beta (Ap) deposition via 18F-florbetaben-
positron emission tomography (FBB-PET). The following criteria
were used for exclusion: (1) diagnoses of other types of dementia,
including frontotemporal dementia, dementia with Lewy bodies,
corticobasal degeneration, and progressive supranuclear palsy, (2)
cognitive impairment caused by medications, (3) the presence of
other potential causes of cognitive impairment, such as epilepsy,
psychiatric disorder, or structural brain lesions, and (4) insufficient
or inadequate MRI scans or cognitive function scores. Figure 1
shows a flowchart for patient enrollment.

2.2 Clinical data

The demographic and clinical data were obtained from patient
medical records, which included age, sex, level of education,
and presence of comorbidities of hypertension, type 2 diabetes,
dyslipidemia, and history of cerebrovascular accident (CVA).
All patients underwent a comprehensive neuropsychological
assessment, which included the MMSE and SNSB-II (Ryu and
Yang, 2023). Regarding the SNSB-II scores, each test score was first
transformed into a z-score to standardize the results, allowing for
the composite score to reflect an individual’s cognitive performance
relative to the study population. The language function score was
defined as z-scores of the Korean version of the Boston Naming
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Test (BNT) (Kim and Na, 1999). The executive function score
is calculated by the summation of z-scores of the Controlled
Oral Word Association Test (COWAT) and Color Word Stroop
Test (CWST) scores. The attention score is calculated by the
summation of z-scores of the digit span forward and digit span
backward scores. The visuospatial function score is determined by
the z-score of the Rey Complex Figure Test (RCFT) score. Memory
function is assessed by summing the z-scores of the Seoul Verbal
Learning Test (SVLT) immediate recall, SVLT delayed recall, SVLT
recognition, RCFT copying, RCFT immediate recall, and RCFT
delayed recall scores.

2.3 MRI and PET acquisition

Structural MRI scans were performed using the 3-T system
(Ingenia CX, Philips Healthcare) equipped with a 32-channel
head coil, with a 3D magnetization-prepared rapid acquisition
with gradient echo (MPRAGE) sequence utilized for T1-weighted
images (T1w). Supplementary Data shows the details of the MRI
acquisition parameters.

18F-Florbetaben-positron emission tomography scans were
performed using the Discovery 600 system (GE Healthcare).
Participants received an intravenous injection of 300 MBq (8 mCi)
of FBB. Image acquisition began 90 min after injection and
continued for 20 min. PET images were reconstructed using the
ordered subset expectation maximization (OSEM) algorithm with
4 iterations and 32 subsets. A Gaussian filter with a 4-mm full
width at half maximum (FWHM) was applied to the reconstructed
images. Then, Af positivity was determined using a global FBB
standardized uptake value ratio (SUVR) cutoft of 1.478.

The acquired MR images were processed via FreeSurfer
v7.4.1, including N4 bias correction, skull-stripping, tissue
segmentation, intensity normalization, and cortical surface
reconstruction. The reconstructed surfaces were spherically
mapped and registered to fsaverage template surface (Fischl
et al, 1999) for shape correspondence using the hierarchical
method  that
distortion (Lyu et al, 2019). After registration, each surface

spherical ~deformation reduces registration
was resampled into 163,842 vertices using the icosahedral
regular grid to establish shape correspondence across subjects.
It is important to note that the resampled surface was only
used for statistical shape analysis. To prevent any potential
information loss associated with the resampling process, other
surface-related processing was conducted on the originally

reconstructed surface.

2.4 Shape feature extraction

Three cortical shape features—CT, SD, and LGI—were
extracted from the reconstructed cortical surface for analysis.
The measurement of CT, which refers to the width of the
cortical gray matter, was calculated using the FreeSurfer (Fischl,
2012). The cerebral hull surface (CHS), which is the virtual
outer contour of the cerebral cortex, was used as the reference
for the measurement of SD (Lyu et al, 2018a) and LGI (Lyu
et al., 2018Db). SD is defined as the Laplacian trajectory between
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CHS and pial surface, while LGI represents the ratio between
CHS area and pial surface area at each point on the inner
contour using a shape-adaptive kernel. This definition of SD is
conceptually distinct from FreeSurfer’s SD (also referred to as
average convexity), which is computed as the displacement along
the inflation trajectory from the cortical surface to the inflated
surface rather than CHS. CT and SD were then smoothed over the
cortical surface using a Gaussian kernel with a FWHM of 6 mm
in FreeSurfer for denoising and improving spatial consistency.
Figure 2 provides an overview of the methodology for measuring
CT, SD, and LGIL.

2.5 Statistical analysis

A comprehensive whole-brain vertex-wise analysis was
conducted using a general linear model (GLM) in SurfStat
(Worsley et al., 2009), a toolbox designed for cortical SBM analysis,
in MATLAB v.2021a.

Statistical inference was performed using random field theory
(RFT) to control the family-wise error (FWE) rate from multiple
comparisons. Cluster-level significance was assessed at FWE-
corrected threshold of p < 0.05, using cluster-forming height
threshold of uncorrected p < 0.01.

In order to examine the association between MMSE scores
and each of three cortical shape features while controlling
for year of education, age and sex, the following model was
specified: (shape feature) = po + p1 (MMSE) + f» (year of
education) + Pz (age) + P4 (sex) + e. The null hypothesis of
Hp : f1 = 0was tested, and vertex-wise ¢ values and standardized
B were computed to evaluate the strength and spatial extent of
the observed effects. For domain-specific analysis, the model was
extended by including divisional cognitive function scores as
an additional predictor: (shape feature) = fo + p1 (divisional
cognitive function score) + [ (MMSE) + f3 (year of
education) + f4 (age) + fs (sex) + ¢. The corresponding null
hypothesis Hy : fi = 0 was tested, and corresponding ¢ values
and standardized p were computed.

3 Results

3.1 Patient characteristics

A total of 200 patients were enrolled in this study, excluding
those with other causes of dementia or cognitive impairment
(n = 13) and those without 3D T1w (n = 15). Additionally, patients
with missing cognitive scores (n = 3) and those with T1w scans
that failed quality assessment (n = 50) were excluded (Figure 1).
Quality assessment failures included cropped or noisy scans,
inaccurate automated tissue segmentation, and mesh artifacts in the
reconstructed cortical surfaces.

A total of 62.5% (n = 125) of patients were female, with a mean
age = standard deviation (Stdev) of 73.7 & 7.1 years (range: 55.5—
87.1). The mean =+ Stdev duration of education was 10.4 & 4.7 years
(range: 0.5-18) and the mean + Stdev MMSE score was 23.8 & 3.0
(range: 15-30). Hypertension was the most common comorbidity,
affecting 56.0% (n = 112) of patients, followed by dyslipidemia
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(a) Cortical thickness (CT)

(b) Sulcal depth (SD)

(c) Local gyrification index (LGI)

High LGI

FIGURE 2
Overview of the methodology for measuring (a) CT, (b) SD, and (c) LGl on the cerebral surface. CT is measured as the minimal distance between
corresponding point on the pial and white matter surface (yellow bar). SD is measured as the Laplacian trajectory between CHS (red contour) and
the pial surface (blue contour). LGl is then measured as the ratio between the pial (blue) and CHS (red) surface area. The color gradients for LGl
indicates the regions expected to have higher values (shown in orange) and lower values (shown in yellow). CHS, cerebral hull surface; CT, cortical
thickness; LGl, local gyrification index; SD, sulcal depth
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TABLE 1 Patient characteristics.

Characteristics AD (n = 200)

Female, 1 (%) 125 (62.5)
Age, mean =+ Stdev 73.7+7.1
Education, mean + Stdev 10.4 £4.7
MMSE score, mean + Stdev 23.8+£3.0
Hypertension, n (%) 112 (56.0)
Type 2 diabetes, 1 (%) 40 (20.0)
Dyslipidemia, # (%) 48 (24.0)
History of CVA, n (%) 12 (6.0)

CVA, cerebrovascular accident; MMSE, Mini-Mental State Examination; Stdev,

standard deviation.

(24.0%, n = 48) and type 2 diabetes (20.0%, n = 40). Table 1
summarizes the baseline characteristics of the cohort.

3.2 Cortical shape features and MMSE

After controlling age, sex, and year of education, CT was
positively correlated with MMSE score in the right precuneus
(p = 0.006) and left inferior temporal gyrus (p = 0.013).
SD was positively correlated with the MMSE score in the
left parahippocampal and fusiform gyri (p = 0.002). LGI was
positively correlated with MMSE score in left parahippocampal and
fusiform gyri (p < 0.001), left inferior frontal gyrus (p < 0.001),
and right parahippocampal and fusiform gyri (p = 0.035)
(Table 2 and Figure 3).

3.3 Cortical shape features and executive
function score

After controlling age, sex, year of education, and MMSE score,
no brain region showed a significant positive correlation between
CT and executive function scores. SD was positively correlated
with executive function scores in the left inferior frontal gyrus
(p < 0.001), orbitofrontal cortex (p < 0.001), right middle cingulate
gyrus (p < 0.001), and right subcallosal area (p = 0.044). LGI was
positively correlated with executive function scores in the bilateral

10.3389/fnagi.2025.1635861

postcentral and supramarginal gyri (p < 0.001 and p = 0.002,
respectively), right superior temporal gyrus (p = 0.002), right
precuneus (p = 0.002), and left orbitofrontal cortex (p = 0.001)
(Table 3 and Figure 4).

3.4 Cortical shape features and language
function score

Cortical thickness was positively correlated with language
function score in the left parahippocampal and fusiform gyri
(p < 0.001), bilateral superior temporal gyrus (p < 0.001 and
p = 0.015, respectively), and left fusiform and inferior temporal
gyri (p = 0.017). SD was positively correlated with language
function scores in the left inferior frontal gyrus (p < 0.001), left
supramarginal and postcentral gyri (p = 0.021), and left inferior
parietal gyrus (p = 0.046). LGI was associated with language
function scores in the left inferior parietal gyrus (p = 0.028) (Table 4
and Figure 5).

3.5 Cortical shape features and attention
function score

No brain region showed a significant positive correlation
between CT and attention function scores. SD was positively
correlated with attention function scores in the left postcentral and
supramarginal gyri (p = 0.025). LGI was associated with attention
function scores in the right inferior frontal gyrus (p < 0.001)
and right entorhinal and parahippocampal gyri (p < 0.001)
(Supplementary Table 1 and Figure 6).

3.6 Cortical shape features and memory
function score

We observed mixed positive and negative correlations between
cortical shape features and memory function scores in specific
brain regions. CT showed a significant positive correlation memory
function scores in the right parahippocampal gyrus (p < 0.001),
while there was also negative correlation with memory function
scores in the left lateral occipital gyrus (p = 0.024). SD was

TABLE 2 List of cortical clusters showing significant associations between cortical shape features and MMSE scores.

Cortical feature Cluster

Cluster size Peak t-value Corrected

(vertices) p-value (FWE)
CT Right precuneus 561 3.55 0.006
CT Left inferior temporal gyrus 284 4.69 0.013
SD Left parahippocampal, fusiform, and lingual gyri 1,489 3.98 0.002
LGI Left parahippocampal, fusiform, and lingual gyri 1,718 3.95 <0.001
LGI Left inferior frontal gyrus 1,542 3.92 <0.001
LGI Right parahippocampal and fusiform gyri 1,058 3.56 0.035

CT, cortical thickness; FWE, family-wise error; LGI, local gyrification index; MMSE, Mini-Mental State Examination; SD, sulcal depth.
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FIGURE 3

Whole-brain statistical maps showing associations between MMSE scores and cortical morphometry: CT (top), SD (middle), and LGl (bottom). From
left to right: corrected cluster-wise p values, vertex-wise t values, and standardized B coefficients. CT, cortical thickness; LGI, local gyrification index;
SD, sulcal depth

TABLE 3 List of cortical clusters showing significant associations between cortical shape features and executive function scores.

Cortical Cluster Cluster size Peak t-value Corrected p-value
feature (vertices) (FWE)
SD Left inferior frontal gyrus 3,294 4.51 <0.001
SD Left orbitofrontal cortex 626 439 <0.001
SD Right middle cingulate gyrus 603 3.38 <0.001
SD Right subcallosal area 92 4.13 0.044
LGI Left postcentral and supramarginal gyri 2,444 3.99 <0.001
LGI Right postcentral and supramarginal gyri 1,319 4.51 0.002
LGI Right superior temporal gyrus 1,024 4.02 0.002
LGI Right precuneus 463 4.69 0.002
LGI Left orbitofrontal cortex 438 3.59 0.001

CT, cortical thickness; FWE, family-wise error; LGI, local gyrification index; SD, sulcal depth.

negatively associated with memory function scores in the left 3.7 Cortical sha pe features and
superior frontal gyrus (p = 0.023). Additionally, LGI demonstrated ~ visuospatial function score
a significant positive correlation with memory function scores in

the left insula (p = 0.008) and right precentral gyrus (p = 0.049) Cortical thickness exhibited positive correlations with

(Supplementary Table 2 and Figure 7). visuospatial function scores in extensive areas of brain regions,
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FIGURE 4
Whole-brain statistical maps showing associations between executive function scores and cortical morphometry: CT (top), SD (middle), and LGI
(bottom). From left to right: corrected cluster-wise p values, vertex-wise t values, and standardized B coefficients. CT, cortical thickness; LG, local
gyrification index; SD, sulcal depth

TABLE 4 List of cortical clusters showing significant associations between cortical shape features and language function scores.

Cortical Cluster Cluster size Peak t-value Corrected p-value
feature (vertices) (FWE)

CT Left parahippocampal and fusiform gyri 865 3.65 <0.001

CT Left superior temporal gyrus 773 3.63 <0.001

CT Right superior temporal gyrus 584 4.02 0.015

CT Left fusiform and inferior temporal gyri 513 4.40 0.017

SD Left inferior frontal gyrus 2,449 3.22 <0.001

SD Left supramarginal and postcentral gyri 1,063 3.66 0.021

SD Left inferior parietal gyrus 266 3.26 0.046

LGI Left inferior parietal gyrus 282 3,51 0.028

CT, cortical thickness; FWE, family-wise error; LG, local gyrification index; SD, sulcal depth.

especially including bilateral occipital and temporal lobes,
and supramarginal and angular gyri. LGI showed significant
positive correlation in the left supramarginal and postcentral
gyri (p =
right orbitofrontal cortex (p =

0.004), while displaying a negative correlation in the
0.013) (Supplementary Table 3
and Figure 8).
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4 Discussion
4.1 Summary of main findings

In this study, we investigated the regional associations between

three cortical shape features—CT, SD, and LGI—and cognitive

frontiersin.org


https://doi.org/10.3389/fnagi.2025.1635861
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

Sim et al. 10.3389/fnagi.2025.1635861
Cluster p-value Vertex-wise t-statistics Standardized 8
c ‘ ‘
SD
K) ‘a 4 :»‘\
Cluster p-value, corrected ¢ Vertex-wise t-value Standardized B (LGI ~ Language) v
FIGURE 5

gyrification index; SD, sulcal depth
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performance scores measured by MMSE and multiple divisional
cognitive function scores in patients with AD. By controlling for
age, sex, and year of education, we were able to identify specific
regions where cortical morphology correlates with cognitive
performance scores. Our findings reveal that MMSE scores were
positively correlated with CT in the left inferior temporal gyrus
and right precuneus, SD in the left parahippocampal and fusiform
gyri, and LGI in the bilateral parahippocampal gyri, left fusiform
and inferior frontal gyri, and right parahippocampal gyrus. For
executive function scores, CT showed no significant association,
while SD was correlated with the left inferior frontal gyrus,
orbitofrontal cortex, right middle cingulate gyrus, and subcallosal
area. LGI was positively associated with executive scores in the
bilateral postcentral gyri, left orbitofrontal cortex, right precuneus,
and right superior temporal gyrus. Language function scores were
positively correlated with CT in the left parahippocampal and
fusiform gyri and bilateral superior temporal gyri, and with SD in
the left inferior frontal, supramarginal, and inferior parietal gyri.
LGI was associated with language performance only in a small
region of the left inferior parietal gyrus. For attention, CT showed
no significant correlation, whereas SD was positively associated
with the left postcentral and supramarginal gyri, and LGI with
the right inferior frontal gyrus. Memory function showed both
positive and negative correlations: CT was positively associated

Frontiers in Aging Neuroscience

with the right parahippocampal gyrus and negatively with the
left lateral occipital gyrus; SD showed a negative association with
the left superior frontal gyrus; and LGI was positively correlated
with the left insula and right precentral gyri. Visuospatial function
scores were associated with CT in widespread regions, including
the bilateral occipital and temporal lobes and the supramarginal
and angular gyri. LGI showed a positive correlation in the left
supramarginal gyrus and a negative correlation in the right
orbitofrontal cortex. Overall, these findings highlight the regional
specificity of cortical shape features in relation to distinct cognitive
functions in AD.

4.2 MMSE and global cognitive function

The MMSE comprises questionnaires for the concise evaluation
of multiple cognitive domains, including attention, orientation,
memory, registration, recall, calculation, and language function
(Folstein et al.,,
different cortical shape features of multiple brain regions showed

1975). This broad scope may explain why

a significant correlation with the MMSE score. In particular,
the involvement of both posterior and parietal regions suggests
a network that supports integrated visuospatial processing and
cognitive function (Kravitz et al, 2011). SD and LGI analyses
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depth; LG, local gyrification index.

showed positive correlations with MMSE scores in various regions
linked to memory formation and retrieval, language processing,
somatosensory functions, and motor control, indicating that
overall cognitive abilities are influenced by both CT and sulcal
folding complexity. Interestingly, the spatial extent of CT-MMSE
associations was relatively limited in our sample, possibly due to
the restricted variance in cognition decline across the mild-to-
moderate AD cohort and the stringent surface-based statistical
correction applied. Notably, LGI demonstrated broader and more
robust associations with MMSE, potentially reflecting its sensitivity
to both SD and width as markers of advanced cortical remodeling.

4.3 Executive function and frontal
morphology

Executive functions, also sometimes referred to as frontal
functions (Fuster, 2000), are cognitive processes that are key to
goal-directed behavior, planning, decision-making, and problem-
solving (Alvarez and Emory, 2006). The prefrontal cortex, in
particular, is known to play a key role in reward-related decision-
making and inhibitory control, aligning with its correlation to
executive function (Friedman and Robbins, 2022). SD, rather than
CT, in the lateral prefrontal cortex was shown to be a significant
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2023).
Similarly, SD—but not CT—in the inferior frontal gyrus and

indicator of working memory performance (Yao et al,

orbitofrontal cortex was associated with our executive function
scores. This suggests that alterations in the sulcal structure of
these regions could be linked to decline in executive function
performance in patients with AD. In addition, LGI in the
postcentral gyri, precuneus, and superior temporal gyrus—regions
implicated in sensorimotor integration and attentional control—
showed significant associations with executive performance, which
is possible reflection of the role of multimodal networks in
supporting task execution.

4.4 Language and visuospatial correlates

Loss of language function occurs in a significant proportion
of AD patients (Henry et al., 2004) and is a major contributor
to the deterioration of their daily abilities, making it a key target
for early therapeutic intervention (Verma and Howard, 2012). In
our study, language performance was evaluated using BNT, which
is widely used for the assessment of naming deficits in AD. Our
analysis shows that language function scores are associated with
cortical features in the superior temporal and supramarginal gyri,
regions well-known for their role in speech and language processing
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FIGURE 7
Whole-brain statistical maps showing associations between memory function scores and cortical morphometry: (a) CT (positive correlation), (b) CT
(negative correlation), (c) SD (negative correlation), and (d) LGI (positive correlation). From left to right: corrected cluster-wise p values, vertex-wise
t-statistics, and standardized p coefficients. CT, cortical thickness; SD, sulcal depth; LGI, local gyrification index.

(Friederici, 2011). This also aligns with previous research that
showed that overall performance on the BNT is associated with
a left hemispheric network including the middle and superior
temporal gyrus and extending into the inferior parietal cortex
(Baldo et al, 2013). The fusiform gyrus, anatomically linked
to object recognition processes (Weiner and Zilles, 2016), may
structurally support naming abilities as measured by the BNT;
however, this association should be interpreted in light of the
structural nature of the imaging data rather than direct functional
inference. However, the minimal LGI association limited to the left
inferior parietal gyrus suggests that cortical folding complexity may
be less involved in language performance, at least as assessed by
naming tasks. Additional domain-specific tests targeting syntax or
semantic fluency may be needed to better assess LGI sensitivity.
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The association between CT and visuospatial function across
widespread parieto-occipital regions supports the involvement of
the dorsal visual pathway, which may contribute to the execution
of visuospatial tasks, consistent with findings from previous studies
(Kang et al, 2019). Overall, our results suggest that distinct
alterations in cortical shape features are selectively associated with

specific cognitive domains in patients with AD.

4.5 Clinical implications and
interpretability of LGl

Cortical thinning, particularly in temporal and parietal
association cortices, was most consistently associated with memory
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and language performance, in line with previous work identifying
the “AD signature” pattern of cortical atrophy. SD reductions
were observed in similar regions, but also extended to frontal
areas, suggesting that SD may detect early geometric alterations
related to neurodegeneration. LGI changes were more regionally
restricted but nonetheless informative: lower gyrification in the
supramarginal and insular cortices correlated with poorer executive
and language performance, consistent with recent studies linking
cortical complexity to cognitive resilience in AD.

Importantly, our findings demonstrate that CT, SD, and LGI
are non-redundant features capturing complementary aspects
of cortical structure. In several regions, cognitive outcomes
were predicted more accurately by a combination of CT, SD,
and LGI than by CT alone. Among the three features, LGI
demonstrated relatively broader and more robust associations
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across domains—particularly in MMSE, executive, and visuospatial
scores—highlighting its potential as a sensitive marker of cortical
remodeling. While CT remains the most sensitive index of global
cortical atrophy, SD and LGI provide additional geometrical and
topographical insights that may capture subtle cortical remodeling
and support prediction of cognitive decline. This may be because
LGI not only considers simple SD but also includes the ratio of
the pial surface to the CHS, which is influenced by both the depth
and width of the sulcus (Schaer et al., 2008). This allows for a more
detailed reflection of cortical morphology compared to SD.

A primary strength of this study is the application of cutting-
edge techniques to analyze the cortical shape features, with a
particular focus on evaluating the usefulness of LGI. This study
employed techniques that adapt to individual brain size and the
structural pattern of local cortical folding, accounting for individual
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differences and providing more reproducible results (Lyu et al,
2018b). By employing a shape-adaptive LGI approach, we improved
anatomical specificity and reduced variability, supporting its
potential as a practical biomarker. Through such reliable analysis
of cortical shape features, future research might not only analyze
associations but also predict and measure an AD patient’s cognitive
function to some extent.

4.6 Limitations and future directions

Some limitations warrant caution during the interpretation of
this study’s findings. This retrospective study was conducted at a
single center, which included a relatively small number of patients.
This was also an exploratory study and did not account for patient-
specific medical history or other socioeconomic factors (Sattler
et al., 2012) that may have influenced the global and domain-
specific cognitive scores. MMSE and domain-specific cognitive
scores are also affected by measurement errors and a patient’s
overall health condition, potentially leading to variability in results
(Clark et al., 1999).

Although we focused on assessing the main effects of each
cortical morphometric feature, it would be beneficial to examine
potential interaction effects (e.g., CT x SD, CT x LGI) to identify
complex structural profiles. Future research should explore these
interactions to elucidate whether combinations of cortical metrics
can improve the prediction of cognitive decline trajectories.

Another limitation is the unavailability of continuous SUVR
data from the FBB-PET scans, which precluded the incorporation
of amyloid-B burden as a covariate or moderator in the surface-
based analyses. Future longitudinal studies are needed to clarify
the relative contributions of AP pathology and downstream
neurodegeneration to cortical morphological changes.

Finally, while our study highlights regional specificity of
morphometric features, the cross-sectional design limits inference
on temporal progression. Future longitudinal studies are needed
to evaluate the predictive value of sulcal morphometry features for
cognitive progression in AD and to explore their utility in tracking
disease-modifying treatment responses.

5 Conclusion

Our findings demonstrate that CT, SD, and LGI each show
distinct and region-specific associations with global and domain-
specific cognitive performance in AD patients. Surface-based
morphometric features of SD and LGI provided complementary
results to CT analyses. While CT remains a well-established marker
of cortical atrophy, SD and LGI offer additional geometrical
and topographical insights into sulcal remodeling and folding
complexity that are not captured by CT alone. These metrics
were particularly informative for functions such as executive
processing and visuospatial skills, where CT alone showed
limited associations. This multidimensional profiling offers a more
precise characterization of imaging biomarkers in clinical research
and may guide individualized intervention strategies. Further
research with more diverse cohorts is necessary to generalize and
extend these results.
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