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Enhancing Brain Metastases Detection and 
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and Segment Anything Model (SAM) 
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Purpose: Black-blood (BB) magnetic resonance images (MRI) offer superior image contrast for the detection and segmentation of 
brain metastases (BMs). This study investigated the efficacy and accuracy of deep learning (DL) architectures and post-processing 
for BMs detection and segmentation with BB images.
Materials and Methods: The BB images of 50 patients were collect to train (40) and test (10) the DL model. To ensure consistency, 
we implemented piecewise linear histogram matching for intensity normalization and resampling. Modified U-Net, including com-
bination with generative adversarial network (GAN), was applied to enhance the segmentation performance. The U-Net-based net-
works generated bounding boxes indicating regions of interest, which were then processed in a post-processing using the Segment 
Anything Model (SAM). We quantitatively assessed the three U-Net-based models and their post-processed counterparts in terms of 
lesion-wise sensitivity (LWS), patient-wise dice similarity coefficient (DSC), and average false-positive rate (FPR).
Results: The modified U-Net with GAN yielded a patient-wise DSC of 0.853 and a LWS of 89.19%, which outperformed the stan-
dard U-Net (patient-wise DSC of 0.815) and modified U-Net only (patient-wise DSC of 0.846). Combining GAN architecture with 
modified U-Net also reduced the FPR, less than 1 on average. Post-processing with SAM further did not affect LWS and FPR, but 
effectively enhanced the patient-wise DSC by 2%–3% for the U-Net-based models. 
Conclusion: The modifications to standard U-Net notably improves the detection and segmentation of BMs in BB images, and 
applying SAM as post-processing can further enhance the precision of segmentation results.
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INTRODUCTION

Brain metastases (BMs) are the most common intracranial tu-
mors and comprise over half of all clinically diagnosed brain 
tumors in adults.1,2 Palliative whole-brain radiotherapy (WBRT) 
has been previously recommended. However, with advances 
in systemic therapy, the treatment perspectives for BMs have 
evolved. Recently, the American Society of Clinical Oncology 
Society for Neuro-Oncology-American Society for Radiation 
Oncology (ASCO-SNO-ASTRO) published guidelines for BMs 
in solid tumors.3 The evolution of radiotherapy (RT) modalities 
has significantly altered treatment strategies regarding RT. 
Firstly, the decreased role of WBRT is presented. Secondly, ste-
reotactic radiosurgery (SRS) is increasingly used to treat BM. 
SRS offers the advantage of less cognitive decline compared to 
WBRT, which is particularly recommended for patients with a 
small number of BMs.4 Therefore, with the increasing use of 
SRS in radiation oncology, accurate detection and delineation 
of BMs are essential.5 

Contrast-enhanced magnetic resonance imaging is the pre-
ferred imaging modality for detecting and delineating BMs,5-7 
allowing the detection of tiny metastases with high spatial 
resolution and low partial volume effects. Several studies have 
attempted to automatically detect and segment BMs on T1 
weighted gadolinium enhanced (T1Gd) MR images using 
deep learning (DL) algorithms.8-13 However, T1Gd MR simul-
taneously enhances BMs and intracranial vessels, causing dif-
ficulties in the auto-segmentation of BMs. Black-blood (BB) 
imaging, on the other hand, is known to selectively suppress 
blood signals, enhancing the visualization of small lesions com-
pared to T1Gd.14,15 Thus, once DL-based auto-segmentation is 
involved in BB images, more accurate and reliable BMs detec-
tion and segmentation can be achieved.16-19 

Although several DL-based algorithms have been devel-
oped for the detection and delineation of BMs,8-13 only a few 
studies have attempted to extend them to BB images.16-19 Sev-
eral studies that applied DL-based algorithms to BB images 
have reported improved BMs detection performance, particu-
larly for small metastases. For instance, Kottlors, et al.16 dem-
onstrated that a neural network architecture trained on BB 
images achieved significantly higher accuracy, with an area 
under the curve of 0.87, compared to 0.53 on T1Gd images. 
Oh, et al.17 also evaluated BMs detection using BB images, 
achieving a sensitivity of 87.95% and an average false-positive 
rate (FPR) of 14.48. Additionally, Kikuchi, et al.18 showed that 
their BMs detection model achieved the sensitivity of 91.7%, 
with a FPR of 1.5, which was slightly higher than that of the 
observer test. However, these studies did not directly address 
the segmentation of BMs on BB images. Another study Park, et 
al.19 investigated BMs segmentation on BB images, but their 
network required combining BB images with other imaging to 
achieve improved segmentation performance.

In this study, we investigated methods to enhance the per-

formance of BMs auto-segmentation through DL algorithms 
on BB images. Specifically, we propose 1) modifying the neu-
ral network architecture to improve sensitivity and reduce false 
positives and 2) employing post-processing using the Segment 
Anything Model (SAM) to refine the segmentation perfor-
mance.

MATERIALS AND METHODS

Patient cohort
The patient cohort comprised 50 patients diagnosed with BMs 
from lung cancer who underwent either WBRT or SRS be-
tween January 2019 and December 2020 at the Yonsei Cancer 
Center. The dataset consisted of BB images with manual delin-
eation of the BMs by an expert radiation oncologist. The study 
was approved by the Institutional Review Board of Severance 
Hospital (4-2021-0306), and the requirement for informed con-
sent was waived due to the retrospective nature of the study. 
Table 1 summarizes the baseline characteristics of the patients 
with BMs. In the training set, five patients had a single tumor, 
two had two tumors, two had three tumors, and 31 had four or 
more tumors. In the test set, two patients had a single tumor, 
one had two tumors, two had three tumors, and five had four or 
more tumors. Tumor volumes in the training set ranged from 
0.003 cc to 101.672 cc, with a median of 0.049 cc. In the test set, 
volumes ranged from 0.007 cc to 16.642 cc, with a median of 
0.069 cc.

Data pre-processing
The MR images in our datasets had different pixel spacing res-
olutions ranging from 0.195 to 0.417. To ensure consistency, 

Table 1. Characteristics of 50 Patients with BM

Characteristic
Total  

(n=50)
Train-set  

(n=40)
Test-set 
(n=10)

Age  
  (median, yr)

62.5 
(range 31–81)

64.5 
(range 40–81)

60 
(range 31–76)

Sex
Male 25 19   6
Female 25 21   4

Number of patients per tumor
1 tumor   7   5   2
2 tumors   3   2   1
3 tumors   4   2   2
≥4 tumors 36 31   5

Tumor volume in cc
Maximum 101.672 101.672 16.642
Minimum     0.003     0.003     0.007
Q1     0.018     0.018     0.024
Q2 (median)     0.049     0.049     0.069
Q3     0.203     0.023     0.254

BM, brain metastases.
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we adjusted the data for pixel spacing by setting it to 0.4. The 
slice thickness for all the scans was consistently 1 mm. The in-
tensity distribution of the MR images showed slight variations 
across patient scans, although the same simulator and pulse 
sequence were employed, which necessitated the use of inten-
sity normalization to constrain the variations.20-22 Among various 
methods, we adopted piecewise linear histogram matching,23 
called Nyul normalization, which is a data-driven approach that 
establishes a standard intensity scale from a set of representa-
tive images, which is subsequently applied to each MR image. 
This process aligns the histogram of the MR images with the 
landmarks of the standard scale, thereby enhancing the consis-
tency across different images.

DL models
The U-Net architecture,24 which is the most widely used archi-
tecture for semantic segmentation, consists of an encoding 
phase to capture context and a symmetric decoding phase for 
precise localization. In this study, the encoder had four layers, 
each comprising a convolutional layer, followed by batch nor-
malization, ReLU activation, and a pooling layer. Similarly, the 
decoder had four layers, each incorporating a transposed 
convolutional layer for upsampling, followed by concatenation 
with the corresponding feature map from the encoder through 
skip connections. In this study, the network input and output 
were aggregated into three consecutive 2D slices, capturing 
partial volume information during the training of the network.

The major concern of the standard U-Net architecture is the 
loss of detailed image gradient information, which is mostly 
attributed to pooling operations in the encoding phase. A skip 
connection was devised to mitigate this loss by introducing the 
imaging features in the encoder to the newly upsampled fea-
tures in the decoder. The modified U-Net provides additional 
amendments to conventional skip connections25 as illustrated 
in Fig. 1A. The image features before applying the max-pooling 
operation (downsampling) were transmitted to the skip con-
nection. The downsampled images resulting from pooling 
were then processed through the transpose convolution (de-
convolution) operator, and the result was subtracted from the 
image features in the skip connection. This subtraction pro-
cess allowed for identifying the imaging information lost dur-
ing the pooling operation. The image-loss information was 
plugged into the newly upsampled features in the decoder, 
which helped preserve the image gradient information more 
effectively than the conventional skip connection. The modi-
fied U-Net, which was initially proposed by Seo, et al.,25 includes 
an object-dependent adaptive filter that is activated depending 
on the object size. However, we chose not to incorporate this 
modification in the present study since our dataset predomi-
nantly consisted of small BMs (median volume, 0.049 cc). 

To enhance the BMs detection and segmentation perfor-
mance, the modified U-Net architecture uses a generative ad-
versarial network (GAN)26 consisting of a generator and discrim-

inator (Fig. 1B). The generator consisted of a modified U-Net. 
The discriminator distinguishes between real and generated 
segmentation maps. The basic idea of a GAN is to compete 
with the generator against the discriminator, which makes it 
challenging to discern which of the true and generated seg-
mentation maps is genuine. The architecture of the discrimi-
nator consisted of a series of four layers, each comprising a 
convolutional layer, followed by batch normalization and PRe-
LU activation.

 

SAM as post-processing
SAM is an open-source software provided by Meta AI (New York 
City, NY, USA) comprising three main components: an image 
encoder, a prompt encoder, and a mask decoder. The image en-
coder utilizes a vision transformer (ViT)27 pre-trained with a 
mask autoencoder28 to capture detailed image features. The 
prompt encoder processes manual annotations using posi-
tional encoding. The mask decoder efficiently maps the image 
and prompts embeddings, along with an output token, to pro-
duce a mask through self-attention and cross-attention. We 
opted to use SAM for post-processing, focusing its application 
on refining segmentation within predefined bounding boxes 
generated by the three U-Net-based networks. The three U-Net-
based networks generated different bounding boxes around 
the BM-segmented regions, with selected the regions of inter-
est (ROIs) serving as the SAM prompt encoder input. Finally, 
SAM refines the segmentation within these boxes to enhance 
accuracy (Fig. 1C).

Evaluation
All training tasks in this study utilized a single graphic process-
ing unit (NVIDIA TITAN RTX). The investigated networks were 
implemented using the PyTorch framework.29 Preprocessing 
steps, including resampling and intensity normalization, were 
implemented using scikit-learn30 and an intensity-normaliza-
tion library.22 During the training process, a batch size of four 
was selected, and the models underwent early stopping after 
100 epochs. The networks were optimized using the Adam op-
timizer and DICE loss function. The learning rate was initially 
set to 2e-5, and the scheduler dynamically adjusted it based 
on the validation loss. Furthermore, it reduced the rate by a fac-
tor of 0.5 if there was no improvement throughout two epochs; 
otherwise, the rate was reduced by a factor of zero.

To evaluate the robustness of our method, we set aside a test 
set comprising data from 10 randomly selected patients out of 
the total of 50 patients. The patient scans were excluded from 
the training process. The performances of the investigated net-
works, both with and without post-processing, were assessed 
using the dice similarity coefficient (DSC), lesion-wise sensi-
tivity (LWS), and average FPR. The DSC values represent the 
accuracy of BMs segmentation, while the LWS and average 
FPR are associated with the detection capability of BMs on BB 
images. Statistical analyses were performed using SPSS ver. 27 
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(IBM Corp., Armonk, NY, USA), and significance was assessed 
using the Wilcoxon signed-rank test for non-normally distrib-
uted data.

RESULTS

Performance of three U-Net-based models
The comparison metrics for evaluating the performances of the 
three U-Net-based models are listed in Table 2. The modified 

Fig. 1. A deep learning approach enhancing BMs detection and segmentation. (A) A modified U-Net. (B) A modified U-Net with GAN. (C) The post-pro-
cessing step using SAM. BM, brain metastases; GAN, generative adversarial network; SAM, Segment Anything Model.

A

B

C
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U-Net equipped with a specialized skip connection yielded a 
patient-wise DSC of 0.846, a LWS of 89.19%, and an average 
FPR of 1.4. These results outperformed those of the standard U-
Net with a conventional skip connection. Additionally, as 
shown in Fig. 2, the modified U-Net with the GAN, including 

the discriminator, enhanced the segmentation performance, 
achieving a patient-wise DSC of 0.853, while the LWS remained 
unchanged. Notably, the modified U-Net with GAN signifi-
cantly reduced the average FPR to less than 1 compared to the 
standard U-Net (p=0.024). While the improvement over the 
modified U-Net did not reach statistical significance (p=0.059), 
it still demonstrated a consistent trend toward enhanced per-
formance.

The lesion-wise DSC across varying BMs volumes is also pre-
sented in Table 2. For BMs with volumes in the range of 0.04–
0.06 cc, the modified U-Net and modified U-Net with GAN 
achieved notable improvements, yielding lesion-wise DSC of 
0.635 and 0.674, respectively, as compared to the standard U-
Net’s 0.540. This indicates enhanced segmentation perfor-
mance for smaller BMs. For BMs with volumes over 0.1 cc, the 
lesion-wise DSC across all three models was consistently 
around 0.715–0.724. However, for BMs with very small volumes, 
below 0.04 cc, the lesion-wise DSC was lower across all models.

Table 3 demonstrates that the LWS remained consistently 
high at 100% across all models when the number of BMs per 
patient was less than four, aligning with the ASCO-SNO-AS-
TRO guidelines 4 recommending SRS for such cases. Perfor-
mance differences across models became apparent as the 

Table 2. Comparison of the Results of Three U-Net-Based Models for 
BMs Detection and Segmentation

Standard 
U-Net

Modified 
U-Net

Modified U-Net 
with GAN

LWS (%) 87.84 89.19 89.19
Average FPR 2.2 1.4 0.9* (p=0.024)
Patient-wise DSC 0.815 (±0.09) 0.846 (±0.06) 0.853 (±0.06)
Tumor volume range (lesion-wise DSC)
≥0.1 cc 0.724 (±0.27) 0.712 (±0.28) 0.715 (±0.28)
0.06–<0.1 cc 0.754 (±0.05) 0.761 (±0.08) 0.763 (±0.08)
0.04–<0.06 cc 0.540 (±0.34) 0.635 (±0.27) 0.674 (±0.17)
0.02–<0.04 cc 0.567 (±0.22) 0.553 (±0.20) 0.575 (±0.17)
<0.02 cc 0.515 (±0.34) 0.558 (±0.38) 0.556 (±0.37)

BM, brain metastases; GAN, generative adversarial network; LWS, lesion-
wise sensitivity; FPR, false-positive rate; DSC, dice similarity coefficient.
Asterisk (*) indicates the statistical significance of differences between the 
modified U-Net with GAN and the standard U-Net, as determined by p-values.

A

C

B

Modified U-Net with GANBB image Ground truth Modified U-NetStandard U-Net

Fig. 2. The comparison of three U-Net-based models. The figure demonstrates the improvements in DSC, sensitivity, and false positives across different 
U-Net model variations. (A) True positives are shown, highlighting DSC improvements across the standard U-Net, modified U-Net, and modified U-Net 
with GAN. (B) False negatives are presented, illustrating the increase in sensitivity achieved by the modified models. (C) False positives are displayed, in-
dicating the reduction in false positives with both modified models. Yellow bounding boxes indicate zoomed-in images to make differences clearer. DSC, 
dice similarity coefficient; GAN, generative adversarial network.
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number of BMs per patient equaled or exceeded four. Regard-
ing the volume of BMs, the largest variation across the models 
occurred in the range of 0.04–0.06 cc. Within this range, the 
standard U-Net yielded a relatively low LWS (88.89%), whereas 
the other two models achieved a LWS of 100%. 

In Table 4, regardless of the number of BMs, a consistent 
trend is shown, in which the average FPR decreases in the or-
der of standard U-Net, modified U-Net, and modified U-Net 
with GAN. With fewer than four BMs, the modified U-Net only 
and the modified U-Net with GAN achieved an average FPR of 
less than 1. When the number of BMs was equal to or exceed-
ed four, the gaps among the models increased. Importantly, 
the modified U-Net with GAN constrained the FPR to approxi-
mately one under such conditions. 

Performance of post-processed models
Table 5 lists the numerical performance of SAM-based post-
processing models. The post-processing tasks enhanced seg-
mentation performance, increasing the patient-wise DSC by 
2% for the U-Net-based models, with statistical significance ob-
served for the standard U-Net (p=0.017), the modified U-Net 
(p=0.019), and the modified U-Net with GAN (p=0.037). The 
modified U-Net with GAN achieved a patient-wise DSC of 
0.873. For lesion-wise DSC, performance improved across all 
volume ranges. Notably, in the volume range of over 0.1 cc, all 
three models exhibited statistically significant improvements 
with p<0.001, while in the 0.02–0.04 cc range, the improve-
ments were also significant with p<0.01. The enhancement in 
segmentation performance throughout post-processing was 
also evident in the delineations of BMs, as shown in Fig. 3. The 
predicted segmentation maps after post-processing closely re-
sembled the ground-truth contours compared to the segmen-
tation maps before processing. The post-processing, which uti-
lized the bounding boxes from the U-Net-based approaches, 
did not affect LWS or the average number of FPR, but segmen-
tation performance was improved. 

DISCUSSION

The primary objective of this study was to enhance the auto-
matic detection and segmentation of BMs in BB images. De-
tecting and segmenting BMs has been challenging due to 
their intrinsic features such as irregular shapes, small volumes, 
and unpredictable locations of occurrence. BB imaging sup-
presses the vessel elements that can facilitate BMs detection. 
To enhance the performance of DL-based models in terms of 
BMs detection and segmentation, we focused on two key as-
pects: modifications to the DL network architecture and post-
processing using a foundation model (SAM)-based prompt. 

For the network architecture, the standard U-Net was modi-
fied by incorporating a new concept of skip connection (mod-
ified U-Net) and adding a discriminator to the generator 

Table 5. The Numerical Performance of Three Post-Processed Models for BMs Detection and Segmentation

After post-processing Standard U-Net Modified U-Net Modified U-Net with GAN
LWS (%) 87.84 89.19 89.19
Average FPR 2.2 1.4 0.9
Patient-wise DSC 0.834 (±0.08)* (p=0.017) 0.868 (±0.05)* (p=0.019) 0.873 (±0.05)* (p=0.037)
Tumor volume range (lesion-wise DSC)
≥0.1 cc 0.754 (±0.27)* (p<0.001) 0.746 (±0.28)* (p<0.001) 0.752 (±0.28)* (p<0.001)
0.06–<0.1 cc 0.775 (±0.05) 0.788 (±0.08) 0.787 (±0.08)
0.04–<0.06 cc 0.576 (±0.34) 0.667 (±0.27) 0.718 (±0.17)
0.02–<0.04 cc 0.638 (±0.22)* (p=0.002) 0.607 (±0.20)* (p=0.002) 0.630 (±0.17)* (p=0.003)
<0.02 cc 0.534 (±0.34) 0.575 (±0.38) 0.586 (±0.37)

BMs, brain metastases; GAN, generative adversarial network; LWS, lesion-wise sensitivity; FPR, false-positive rate; DSC, dice similarity coefficient.
Asterisks (*) indicate the statistical significance of differences between the post-processed model and the corresponding model before post-processing, as de-
termined by p-values.

Table 4. Average FPR Depending on the Number of BMs Per Patient

Standard 
U-Net

Modified 
U-Net

Modified U-Net 
with GAN

Patients with tumor count <4 1.17 0.83 0.67
Patients with tumor count ≥4 3.75 2.25 1.25
FPR, false-positive rate; BMs, brain metastases; GAN, generative adversarial 
network.

Table 3. LWS Depends on the Number of BMs Per Patient and the Vol-
ume Range of BMs

Standard 
U-Net

Modified 
U-Net

Modified U-Net 
with GAN

Patients with tumor count <4 100 100 100
Patients with tumor count ≥4 84.75 86.44 86.44
Tumor volume range
≥0.1 cc 93.55 93.55 93.55
0.06–<0.1 cc 100 100 100
0.04–<0.06 cc 88.89 100 100
0.02–<0.04 cc 92.31 92.31 92.31
<0.02 cc 66.67 66.67 66.67

LWS, lesion-wise sensitivity; BMs, brain metastases; GAN, generative ad-
versarial network.
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Fig. 3. The cases achieved enhancement through post-processing. The top row (A) displays under-segmentation (center) and its refinement (SAM post-
processed), while the bottom row (B) shows over-segmentation (center) and its refinement (SAM post-processed). In the SAM post-processed images, 
the green box represents the bounding box used as input for the SAM’s prompt encoder, generated by the U-Net-based model. In the comparison col-
umn, red contours denote the ground truth, green contours indicate the model’s initial segmentation, and yellow contours show the post-processed seg-
mentation, illustrating refinement in both under- and over-segmentation cases. Yellow bounding boxes indicate zoomed-in images to make differences 
clearer. SAM, Segment Anything Model.

(modified U-Net with GAN). The enhanced skip connections 
were designed to mitigate information loss during the encod-
ing phase, allowing more effective retention of gradient infor-
mation in BMs detection and segmentation. Additionally, the 
inclusion of a discriminator in the modified U-Net improved 
segmentation performance by encouraging the model to gen-
erate more realistic and accurate segmentation maps. The 
modified U-Net and modified U-Net with GAN models dem-
onstrated substantial performance improvements, both achiev-
ing an LWS of 89.19%. Notably, the modified U-Net with GAN 
effectively minimized false positives, reducing the average FPR 
from 2.2 to 0.9 (p=0.024), demonstrating its robustness in en-
hancing detection reliability, as shown in Table 2. 

In the post-processing stage, we used SAM to further refine 
the segmentation maps. While SAM alone can provide seg-
mentation results for given medical images, it may not pro-
duce qualified segmented maps when the model is trained 
with different types of images. Furthermore, since SAM was 
designed for a broad range of segmentation tasks, applying it 
to our dataset posed challenges, as it segmented not only the 
GTV but also other structures, potentially leading to difficulty 
in interpreting multiple GTVs as distinct labels. Alternatively, 
adjusting the model to improve BMs detection and segmenta-
tion predictions could be beneficial, but fine-tuning may be 
challenging due to the limited dataset size used for tuning com-
pared to the original SAM model’s training data. Given these 
considerations, we employed SAM as a post-processing step, 
focusing on narrow ROIs. As shown in Tables 2 and 5, this ap-
proach contributed to improved segmentation performance, 
with the modified U-Net with GAN achieving a significant in-

crease in patient-wise DSC from 0.853 to 0.873. Furthermore, 
lesion-wise DSC significantly improved after post-processing 
(p<0.001 for over 0.1 cc, p<0.01 for 0.02–0.04 cc), demonstrating 
enhanced segmentation performance across different lesion 
sizes and reinforcing the robustness of our approach.

A significant commonality between our study and previous 
studies16-19 is the recognition of the potential benefits of em-
ploying BB images. Previous studies demonstrated the effica-
cy of utilizing BB images by achieving notable improvements 
in BMs detection performance. A previous study19 reported 
that the average FPR reached 0.59. However, the network was 
designed for training using both T1Gd and BB images. Addi-
tionally, the datasets used in the previous study may have dif-
fered from our datasets in terms of the proportion of patients 
with a small volume of BMs. Notably, our proposed network 
detected BMs at 100% with an average FPR of 0.67 when the 
number of BMs was less than four. This implies that the pro-
posed network has the potential to be applied to patients with 
SRS according to the ASCO-SNO-ASTRO guidelines.4 In gen-
eral, studies on BMs from lung cancer cases reported a median 
volume of 0.1 cc to 4 cc,31 whereas our dataset focused on tu-
mors with a significantly smaller median volume. Specifically, 
our dataset included a total of 787 BMs, with approximately 
20% (165 BMs) containing both necrosis and viable tumor tis-
sue. Notably, around 80% of the BMs in this study were very 
small and did not contain necrosis. This aspect underscores the 
challenge of detecting small BMs, highlighting the effectiveness 
of our approach in identifying and segmenting these difficult-
to-detect cases.

Despite the various advantages stated in this study, there 

A

B

BB image Ground truth SAM post-processed ComparisonModified U-Net coupled with a GAN
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were certain limitations. First, the patient cohort included data-
sets from a single institution and consisted of only 50 patients, a 
relatively small sample size compared to previous studies on 
BMs segmentation. Although this size is modest, our study fo-
cused on enhancing the segmentation and detection accuracy 
of small-volume BMs in BB images by amending network ar-
chitecture and employing foundation model with relatively 
limited sample size. The modifications of the skip connection 
of the U-Net and foundation model-based post-processing 
methods were demonstrated to effectively function in this 
work. Second, while convolutional neural network-based ap-
proaches have been employed for current automated BMs 
segmentation, recent advancements such as ViTs32-34 may offer 
potential improvements. ViTs are believed to overcome the 
drawbacks of convolution-based networks, which mostly rely 
on local image information. BMs segmentation requires a very 
small volume of BMs, and the degree of improvement from 
ViTs may be insignificant. Third, this study utilized SAM as a 
post-processing method, which successfully enhanced the seg-
mentation performance, as evidenced by the increase in pa-
tient-wise DSCs. However, the post-processing method with 
bounding boxes from the U-Net inferences was unable to iden-
tify false-negative BMs (related to sensitivity) or suppress false-
positive BMs (related to average FPR). From our observations, 
applying the given SAM model to our datasets did not perform 
well because the given model was trained with numerous 
types of natural images and not solely BB images. Another ap-
proach for fine-tuning the given network failed to achieve bet-
ter performance than the U-Net-based approach. As a further 
study, expanding the dataset to include multiple institutions 
and using federated transfer learning could improve the gen-
eralizability of DL-based models for BMs segmentation. Addi-
tionally, developing a domain-specific SAM model trained on 
BB images specifically for BMs segmentation may further en-
hance the accuracy in identifying and segmenting BMs, ad-
dressing the limitations noted with the current SAM model.

In conclusion, the proposed work developed DL-based au-
to-segmentation networks to enlarge the BMs detection and 
segmentation performance in BB images. Modifying the skip 
connection in the standard U-Net notably enhanced the sen-
sitivity of BMs in BB images, and incorporating the discrimi-
nator helped reduce false positives in BMs detection. Addi-
tionally, it was demonstrated that applying SAM as a post-
processing step further improved the segmentation performance 
of BMs in BB images. 
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