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Purpose: Black-blood (BB) magnetic resonance images (MRI) offer superior image contrast for the detection and segmentation of
brain metastases (BMs). This study investigated the efficacy and accuracy of deep learning (DL) architectures and post-processing
for BMs detection and segmentation with BB images.

Materials and Methods: The BB images of 50 patients were collect to train (40) and test (10) the DL model. To ensure consistency,
we implemented piecewise linear histogram matching for intensity normalization and resampling. Modified U-Net, including com-
bination with generative adversarial network (GAN), was applied to enhance the segmentation performance. The U-Net-based net-
works generated bounding boxes indicating regions of interest, which were then processed in a post-processing using the Segment
Anything Model (SAM). We quantitatively assessed the three U-Net-based models and their post-processed counterparts in terms of
lesion-wise sensitivity (LWS), patient-wise dice similarity coefficient (DSC), and average false-positive rate (FPR).

Results: The modified U-Net with GAN yielded a patient-wise DSC of 0.853 and a LWS of 89.19%, which outperformed the stan-
dard U-Net (patient-wise DSC of 0.815) and modified U-Net only (patient-wise DSC of 0.846). Combining GAN architecture with
modified U-Net also reduced the FPR, less than 1 on average. Post-processing with SAM further did not affect LWS and FPR, but
effectively enhanced the patient-wise DSC by 2%-3% for the U-Net-based models.

Conclusion: The modifications to standard U-Net notably improves the detection and segmentation of BMs in BB images, and
applying SAM as post-processing can further enhance the precision of segmentation results.
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INTRODUCTION

Brain metastases (BMs) are the most common intracranial tu-
mors and comprise over half of all clinically diagnosed brain
tumors in adults."* Palliative whole-brain radiotherapy (WBRT)
has been previously recommended. However, with advances
in systemic therapy, the treatment perspectives for BMs have
evolved. Recently, the American Society of Clinical Oncology
Society for Neuro-Oncology-American Society for Radiation
Oncology (ASCO-SNO-ASTRO) published guidelines for BMs
in solid tumors.® The evolution of radiotherapy (RT) modalities
has significantly altered treatment strategies regarding RT.
Firstly, the decreased role of WBRT is presented. Secondly, ste-
reotactic radiosurgery (SRS) is increasingly used to treat BM.
SRS offers the advantage of less cognitive decline compared to
WBRT, which is particularly recommended for patients with a
small number of BMs.* Therefore, with the increasing use of
SRS in radiation oncology, accurate detection and delineation
of BMs are essential.®

Contrast-enhanced magnetic resonance imaging is the pre-
ferred imaging modality for detecting and delineating BMs,*”
allowing the detection of tiny metastases with high spatial
resolution and low partial volume effects. Several studies have
attempted to automatically detect and segment BMs on T1
weighted gadolinium enhanced (T1Gd) MR images using
deep learning (DL) algorithms.*"* However, T1Gd MR simul-
taneously enhances BMs and intracranial vessels, causing dif-
ficulties in the auto-segmentation of BMs. Black-blood (BB)
imaging, on the other hand, is known to selectively suppress
blood signals, enhancing the visualization of small lesions com-
pared to T1Gd."* Thus, once DL-based auto-segmentation is
involved in BB images, more accurate and reliable BMs detec-
tion and segmentation can be achieved.'*"

Although several DL-based algorithms have been devel-
oped for the detection and delineation of BMs,*** only a few
studies have attempted to extend them to BB images.'*"® Sev-
eral studies that applied DL-based algorithms to BB images
have reported improved BMs detection performance, particu-
larly for small metastases. For instance, Kottlors, et al.'® dem-
onstrated that a neural network architecture trained on BB
images achieved significantly higher accuracy, with an area
under the curve of 0.87, compared to 0.53 on T1Gd images.
Oh, et al."” also evaluated BMs detection using BB images,
achieving a sensitivity of 87.95% and an average false-positive
rate (FPR) of 14.48. Additionally, Kikuchi, et al.’® showed that
their BMs detection model achieved the sensitivity of 91.7%,
with a FPR of 1.5, which was slightly higher than that of the
observer test. However, these studies did not directly address
the segmentation of BMs on BB images. Another study Park; et
al.” investigated BMs segmentation on BB images, but their
network required combining BB images with other imaging to
achieve improved segmentation performance.

In this study, we investigated methods to enhance the per-
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formance of BMs auto-segmentation through DL algorithms
on BB images. Specifically, we propose 1) modifying the neu-
ral network architecture to improve sensitivity and reduce false
positives and 2) employing post-processing using the Segment
Anything Model (SAM) to refine the segmentation perfor-
mance.

MATERIALS AND METHODS

Patient cohort

The patient cohort comprised 50 patients diagnosed with BMs
from lung cancer who underwent either WBRT or SRS be-
tween January 2019 and December 2020 at the Yonsei Cancer
Center. The dataset consisted of BB images with manual delin-
eation of the BMs by an expert radiation oncologist. The study
was approved by the Institutional Review Board of Severance
Hospital (4-2021-0306), and the requirement for informed con-
sent was waived due to the retrospective nature of the study.
Table 1 summarizes the baseline characteristics of the patients
with BMs. In the training set, five patients had a single tumor,
two had two tumors, two had three tumors, and 31 had four or
more tumors. In the test set, two patients had a single tumor,
one had two tumors, two had three tumors, and five had four or
more tumors. Tumor volumes in the training set ranged from
0.003 cc to 101.672 cc, with a median of 0.049 cc. In the test set,
volumes ranged from 0.007 cc to 16.642 cc, with a median of
0.069 cc.

Data pre-processing
The MR images in our datasets had different pixel spacing res-
olutions ranging from 0.195 to 0.417. To ensure consistency,

Table 1. Characteristics of 50 Patients with BM

Characteristic Total Train-set Test-set
(n=50) (n=40) (n=10)
Age 62.5 64.5 60
(median, yr) (range 31-81)  (range 40-81) (range 31-76)
Sex
Male 25 19 6
Female 25 21 4
Number of patients per tumor
1 tumor 7 9 2
2 tumors 2 1
3 tumors 2 2
>4 tumors 36 31 5
Tumor volume in cc
Maximum 101.672 101.672 16.642
Minimum 0.003 0.003 0.007
Q1 0.018 0.018 0.024
Q2 (median) 0.049 0.049 0.069
Q3 0.203 0.023 0.254

BM, brain metastases.
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we adjusted the data for pixel spacing by setting it to 0.4. The
slice thickness for all the scans was consistently 1 mm. The in-
tensity distribution of the MR images showed slight variations
across patient scans, although the same simulator and pulse
sequence were employed, which necessitated the use of inten-
sity normalization to constrain the variations.”** Among various
methods, we adopted piecewise linear histogram matching,*
called Nyul normalization, which is a data-driven approach that
establishes a standard intensity scale from a set of representa-
tive images, which is subsequently applied to each MR image.
This process aligns the histogram of the MR images with the
landmarks of the standard scale, thereby enhancing the consis-
tency across different images.

DL models
The U-Net architecture,* which is the most widely used archi-
tecture for semantic segmentation, consists of an encoding
phase to capture context and a symmetric decoding phase for
precise localization. In this study, the encoder had four layers,
each comprising a convolutional layer, followed by batch nor-
malization, ReLU activation, and a pooling layer. Similarly, the
decoder had four layers, each incorporating a transposed
convolutional layer for upsampling, followed by concatenation
with the corresponding feature map from the encoder through
skip connections. In this study, the network input and output
were aggregated into three consecutive 2D slices, capturing
partial volume information during the training of the network.

The major concern of the standard U-Net architecture is the
loss of detailed image gradient information, which is mostly
attributed to pooling operations in the encoding phase. A skip
connection was devised to mitigate this loss by introducing the
imaging features in the encoder to the newly upsampled fea-
tures in the decoder. The modified U-Net provides additional
amendments to conventional skip connections® as illustrated
in Fig. 1A. The image features before applying the max-pooling
operation (downsampling) were transmitted to the skip con-
nection. The downsampled images resulting from pooling
were then processed through the transpose convolution (de-
convolution) operator, and the result was subtracted from the
image features in the skip connection. This subtraction pro-
cess allowed for identifying the imaging information lost dur-
ing the pooling operation. The image-loss information was
plugged into the newly upsampled features in the decoder,
which helped preserve the image gradient information more
effectively than the conventional skip connection. The modi-
fied U-Net, which was initially proposed by Seo, et al.,” includes
an object-dependent adaptive filter that is activated depending
on the object size. However, we chose not to incorporate this
modification in the present study since our dataset predomi-
nantly consisted of small BMs (median volume, 0.049 cc).

To enhance the BMs detection and segmentation perfor-
mance, the modified U-Net architecture uses a generative ad-
versarial network (GAN)* consisting of a generator and discrim-
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inator (Fig. 1B). The generator consisted of a modified U-Net.
The discriminator distinguishes between real and generated
segmentation maps. The basic idea of a GAN is to compete
with the generator against the discriminator, which makes it
challenging to discern which of the true and generated seg-
mentation maps is genuine. The architecture of the discrimi-
nator consisted of a series of four layers, each comprising a
convolutional layer, followed by batch normalization and PRe-
LU activation.

SAM as post-processing

SAM is an open-source software provided by Meta Al (New York
City, NY, USA) comprising three main components: an image
encoder, a prompt encoder, and a mask decoder. The image en-
coder utilizes a vision transformer (ViT)* pre-trained with a
mask autoencoder® to capture detailed image features. The
prompt encoder processes manual annotations using posi-
tional encoding. The mask decoder efficiently maps the image
and prompts embeddings, along with an output token, to pro-
duce a mask through self-attention and cross-attention. We
opted to use SAM for post-processing, focusing its application
on refining segmentation within predefined bounding boxes
generated by the three U-Net-based networks. The three U-Net-
based networks generated different bounding boxes around
the BM-segmented regions, with selected the regions of inter-
est (ROIs) serving as the SAM prompt encoder input. Finally,
SAM refines the segmentation within these boxes to enhance
accuracy (Fig. 1C).

Evaluation

All training tasks in this study utilized a single graphic process-
ing unit (NVIDIA TITAN RTX). The investigated networks were
implemented using the PyTorch framework.” Preprocessing
steps, including resampling and intensity normalization, were
implemented using scikit-learn® and an intensity-normaliza-
tion library.* During the training process, a batch size of four
was selected, and the models underwent early stopping after
100 epochs. The networks were optimized using the Adam op-
timizer and DICE loss function. The learning rate was initially
set to 2e-5, and the scheduler dynamically adjusted it based
on the validation loss. Furthermore, it reduced the rate by a fac-
tor of 0.5 if there was no improvement throughout two epochs;
otherwise, the rate was reduced by a factor of zero.

To evaluate the robustness of our method, we set aside a test
set comprising data from 10 randomly selected patients out of
the total of 50 patients. The patient scans were excluded from
the training process. The performances of the investigated net-
works, both with and without post-processing, were assessed
using the dice similarity coefficient (DSC), lesion-wise sensi-
tivity (LWS), and average FPR. The DSC values represent the
accuracy of BMs segmentation, while the LWS and average
FPR are associated with the detection capability of BMs on BB
images. Statistical analyses were performed using SPSS ver. 27
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(IBM Corp., Armonk, NY, USA), and significance was assessed RESULTS
using the Wilcoxon signed-rank test for non-normally distrib-

uted data. Performance of three U-Net-based models
The comparison metrics for evaluating the performances of the
three U-Net-based models are listed in Table 2. The modified
A
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Fig. 1. A deep learning approach enhancing BMs detection and segmentation. (A) A modified U-Net. (B) A modified U-Net with GAN. (C) The post-pro-
cessing step using SAM. BM, brain metastases; GAN, generative adversarial network; SAM, Segment Anything Model.
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U-Net equipped with a specialized skip connection yielded a
patient-wise DSC of 0.846, a LWS of 89.19%, and an average
FPR of 1.4. These results outperformed those of the standard U-
Net with a conventional skip connection. Additionally, as
shown in Fig. 2, the modified U-Net with the GAN, including

Table 2. Comparison of the Results of Three U-Net-Based Models for
BMs Detection and Segmentation

Standard Modified Modified U-Net
U-Net U-Net with GAN

LWS (%) 87.84 89.19 89.19
Average FPR 22 14 0.9% (p=0.024)
Patient-wise DSC 0.815(£0.09) 0.846(+0.06) 0.853(+0.06)
Tumor volume range (lesion-wise DSC)

>0.1cc 0.724(£0.27) 0.712(+0.28)  0.715(%0.28)

0.06—<0.1 cc 0.754 (£0.05)  0.761(+0.08) 0.763 (+0.08)

0.04—<0.06 cc 0.540(+0.34)  0.635(+0.27) 0.674(+0.17)

0.02—<0.04 cc 0.567 (£0.22)  0.553(+0.20) 0.575(+0.17)

<0.02 cc 0.515(+0.34)  0.558(+0.38)  0.556 (+0.37)

BM, brain metastases; GAN, generative adversarial network; LWS, lesion-
wise sensitivity; FPR, false-positive rate; DSC, dice similarity coefficient.

Asterisk (*) indicates the statistical significance of differences between the
modified U-Net with GAN and the standard U-Net, as determined by p-values.

Ground truth

BB image

Standard U-Net

Brain Metastases Detection Using Black-Blood Image

the discriminator, enhanced the segmentation performance,
achieving a patient-wise DSC of 0.853, while the LWS remained
unchanged. Notably, the modified U-Net with GAN signifi-
cantly reduced the average FPR to less than 1 compared to the
standard U-Net (p=0.024). While the improvement over the
modified U-Net did not reach statistical significance (p=0.059),
it still demonstrated a consistent trend toward enhanced per-
formance.

The lesion-wise DSC across varying BMs volumes is also pre-
sented in Table 2. For BMs with volumes in the range of 0.04-
0.06 cc, the modified U-Net and modified U-Net with GAN
achieved notable improvements, yielding lesion-wise DSC of
0.635 and 0.674, respectively, as compared to the standard U-
Net’s 0.540. This indicates enhanced segmentation perfor-
mance for smaller BMs. For BMs with volumes over 0.1 cc, the
lesion-wise DSC across all three models was consistently
around 0.715-0.724. However, for BMs with very small volumes,
below 0.04 cc, the lesion-wise DSC was lower across all models.

Table 3 demonstrates that the LWS remained consistently
high at 100% across all models when the number of BMs per
patient was less than four, aligning with the ASCO-SNO-AS-
TRO guidelines 4 recommending SRS for such cases. Perfor-
mance differences across models became apparent as the

Modified U-Net Modified U-Net with GAN

Fig. 2. The comparison of three U-Net-based models. The figure demonstrates the improvements in DSC, sensitivity, and false positives across different
U-Net model variations. (A) True positives are shown, highlighting DSC improvements across the standard U-Net, modified U-Net, and modified U-Net
with GAN. (B) False negatives are presented, illustrating the increase in sensitivity achieved by the modified models. (C) False positives are displayed, in-
dicating the reduction in false positives with both modified models. Yellow bounding boxes indicate zoomed-in images to make differences clearer. DSC,
dice similarity coefficient; GAN, generative adversarial network.
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number of BMs per patient equaled or exceeded four. Regard-
ing the volume of BMs, the largest variation across the models
occurred in the range of 0.04-0.06 cc. Within this range, the
standard U-Net yielded a relatively low LWS (88.89%), whereas
the other two models achieved a LWS of 100%.

In Table 4, regardless of the number of BMs, a consistent
trend is shown, in which the average FPR decreases in the or-
der of standard U-Net, modified U-Net, and modified U-Net
with GAN. With fewer than four BMs, the modified U-Net only
and the modified U-Net with GAN achieved an average FPR of
less than 1. When the number of BMs was equal to or exceed-
ed four, the gaps among the models increased. Importantly,
the modified U-Net with GAN constrained the FPR to approxi-
mately one under such conditions.

Table 3. LWS Depends on the Number of BMs Per Patient and the Vol-
ume Range of BMs

Standard  Modified Modified U-Net
U-Net U-Net with GAN
Patients with tumor count <4 100 100 100
Patients with tumor count >4 84.75 86.44 86.44
Tumor volume range
>0.1cc S8155 8l55 g8i55
0.06—<0.1 cc 100 100 100
0.04—<0.06 cc 88.89 100 100
0.02—<0.04 cc 92.31 92.31 92.31
<0.02 cc 66.67 66.67 66.67

LWS, lesion-wise sensitivity; BMs, brain metastases; GAN, generative ad-
versarial network.

Table 4. Average FPR Depending on the Number of BMs Per Patient

Standard Modified Modified U-Net
U-Net U-Net with GAN
Patients with tumor count <4 1.17 0.83 0.67
Patients with tumor count =4~ 3.75 2.25 1.25

FPR, false-positive rate; BMs, brain metastases; GAN, generative adversarial
network.

YMJ

Performance of post-processed models

Table 5 lists the numerical performance of SAM-based post-
processing models. The post-processing tasks enhanced seg-
mentation performance, increasing the patient-wise DSC by
2% for the U-Net-based models, with statistical significance ob-
served for the standard U-Net (p=0.017), the modified U-Net
(p=0.019), and the modified U-Net with GAN (p=0.037). The
modified U-Net with GAN achieved a patient-wise DSC of
0.873. For lesion-wise DSC, performance improved across all
volume ranges. Notably, in the volume range of over 0.1 cc, all
three models exhibited statistically significant improvements
with p<0.001, while in the 0.02-0.04 cc range, the improve-
ments were also significant with p<0.01. The enhancement in
segmentation performance throughout post-processing was
also evident in the delineations of BMs, as shown in Fig. 3. The
predicted segmentation maps after post-processing closely re-
sembled the ground-truth contours compared to the segmen-
tation maps before processing. The post-processing, which uti-
lized the bounding boxes from the U-Net-based approaches,
did not affect LWS or the average number of FPR, but segmen-
tation performance was improved.

DISCUSSION

The primary objective of this study was to enhance the auto-
matic detection and segmentation of BMs in BB images. De-
tecting and segmenting BMs has been challenging due to
their intrinsic features such as irregular shapes, small volumes,
and unpredictable locations of occurrence. BB imaging sup-
presses the vessel elements that can facilitate BMs detection.
To enhance the performance of DL-based models in terms of
BMs detection and segmentation, we focused on two key as-
pects: modifications to the DL network architecture and post-
processing using a foundation model (SAM)-based prompt.
For the network architecture, the standard U-Net was modi-
fied by incorporating a new concept of skip connection (mod-
ified U-Net) and adding a discriminator to the generator

Table 5. The Numerical Performance of Three Post-Processed Models for BMs Detection and Segmentation

After post-processing Standard U-Net

Modified U-Net Modified U-Net with GAN

LWS (%) 87.84

Average FPR 22
Patient-wise DSC 0.834 (+0.08)* (p=0.017)
Tumor volume range (lesion-wise DSC)

=20.1cc 0.754 (£0.27)* (p<0.001)
0.06—<0.1 cc 0.775 (£0.05)
0.04—<0.06 cc 0.576 (£0.34)
0.02—<0.04 cc 0.638 (£0.22)* (p=0.002)
<0.02 cc 0.534 (+0.34)

89.19 89.19
1.4 09
0.868 (+0.05)* (p=0.019) 0.873 (£0.05)* (p=0.037)

0.746 (+0.28)* (p<0.001) 0.752 (+0.28)* (p<0.001)

0.788 (£0.08) 0.787 (£0.08)
0.667 (£0.27) 0.718(£0.17)
0.607 (£0.20)* (p=0.002) 0.630 (+£0.17)* (p=0.003)
0.575(£0.38) 0.586 (+0.37)

BMs, brain metastases; GAN, generative adversarial network; LWS, lesion-wise sensitivity; FPR, false-positive rate; DSC, dice similarity coefficient.
Asterisks (*) indicate the statistical significance of differences between the post-processed model and the corresponding model before post-processing, as de-

termined by p-values.
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Ground truth

BB image

Modified U-Net coupled with a GAN SAM post-processed Comparison

Fig. 3. The cases achieved enhancement through post-processing. The top row (A) displays under-segmentation (center) and its refinement (SAM post-
processed), while the bottom row (B) shows over-segmentation (center) and its refinement (SAM post-processed). In the SAM post-processed images,
the green box represents the bounding box used as input for the SAM's prompt encoder, generated by the U-Net-based model. In the comparison col-
umn, red contours denote the ground truth, green contours indicate the model's initial segmentation, and yellow contours show the post-processed seg-
mentation, illustrating refinement in both under- and over-segmentation cases. Yellow bounding boxes indicate zoomed-in images to make differences

clearer. SAM, Segment Anything Model.

(modified U-Net with GAN). The enhanced skip connections
were designed to mitigate information loss during the encod-
ing phase, allowing more effective retention of gradient infor-
mation in BMs detection and segmentation. Additionally, the
inclusion of a discriminator in the modified U-Net improved
segmentation performance by encouraging the model to gen-
erate more realistic and accurate segmentation maps. The
modified U-Net and modified U-Net with GAN models dem-
onstrated substantial performance improvements, both achiev-
ing an LWS of 89.19%. Notably, the modified U-Net with GAN
effectively minimized false positives, reducing the average FPR
from 2.2 to 0.9 (p=0.024), demonstrating its robustness in en-
hancing detection reliability, as shown in Table 2.

In the post-processing stage, we used SAM to further refine
the segmentation maps. While SAM alone can provide seg-
mentation results for given medical images, it may not pro-
duce qualified segmented maps when the model is trained
with different types of images. Furthermore, since SAM was
designed for a broad range of segmentation tasks, applying it
to our dataset posed challenges, as it segmented not only the
GTV but also other structures, potentially leading to difficulty
in interpreting multiple GTVs as distinct labels. Alternatively,
adjusting the model to improve BMs detection and segmenta-
tion predictions could be beneficial, but fine-tuning may be
challenging due to the limited dataset size used for tuning com-
pared to the original SAM model’s training data. Given these
considerations, we employed SAM as a post-processing step,
focusing on narrow ROIs. As shown in Tables 2 and 5, this ap-
proach contributed to improved segmentation performance,
with the modified U-Net with GAN achieving a significant in-
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crease in patient-wise DSC from 0.853 to 0.873. Furthermore,
lesion-wise DSC significantly improved after post-processing
(p<0.001 for over 0.1 cc, p<0.01 for 0.02-0.04 cc), demonstrating
enhanced segmentation performance across different lesion
sizes and reinforcing the robustness of our approach.

A significant commonality between our study and previous
studies'®" is the recognition of the potential benefits of em-
ploying BB images. Previous studies demonstrated the effica-
cy of utilizing BB images by achieving notable improvements
in BMs detection performance. A previous study" reported
that the average FPR reached 0.59. However, the network was
designed for training using both T1Gd and BB images. Addi-
tionally, the datasets used in the previous study may have dif-
fered from our datasets in terms of the proportion of patients
with a small volume of BMs. Notably, our proposed network
detected BMs at 100% with an average FPR of 0.67 when the
number of BMs was less than four. This implies that the pro-
posed network has the potential to be applied to patients with
SRS according to the ASCO-SNO-ASTRO guidelines.* In gen-
eral, studies on BMs from lung cancer cases reported a median
volume of 0.1 cc to 4 cc,* whereas our dataset focused on tu-
mors with a significantly smaller median volume. Specifically,
our dataset included a total of 787 BMs, with approximately
20% (165 BMs) containing both necrosis and viable tumor tis-
sue. Notably, around 80% of the BMs in this study were very
small and did not contain necrosis. This aspect underscores the
challenge of detecting small BMs, highlighting the effectiveness
of our approach in identifying and segmenting these difficult-
to-detect cases.

Despite the various advantages stated in this study, there

https://doi.org/10.3349/ym;.2024.0198
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were certain limitations. First, the patient cohort included data-
sets from a single institution and consisted of only 50 patients, a
relatively small sample size compared to previous studies on
BMs segmentation. Although this size is modest, our study fo-
cused on enhancing the segmentation and detection accuracy
of small-volume BMs in BB images by amending network ar-
chitecture and employing foundation model with relatively
limited sample size. The modifications of the skip connection
of the U-Net and foundation model-based post-processing
methods were demonstrated to effectively function in this
work. Second, while convolutional neural network-based ap-
proaches have been employed for current automated BMs
segmentation, recent advancements such as ViTs**** may offer
potential improvements. ViTs are believed to overcome the
drawbacks of convolution-based networks, which mostly rely
on local image information. BMs segmentation requires a very
small volume of BMs, and the degree of improvement from
ViTs may be insignificant. Third, this study utilized SAM as a
post-processing method, which successfully enhanced the seg-
mentation performance, as evidenced by the increase in pa-
tient-wise DSCs. However, the post-processing method with
bounding boxes from the U-Net inferences was unable to iden-
tify false-negative BMs (related to sensitivity) or suppress false-
positive BMs (related to average FPR). From our observations,
applying the given SAM model to our datasets did not perform
well because the given model was trained with numerous
types of natural images and not solely BB images. Another ap-
proach for fine-tuning the given network failed to achieve bet-
ter performance than the U-Net-based approach. As a further
study, expanding the dataset to include multiple institutions
and using federated transfer learning could improve the gen-
eralizability of DL-based models for BMs segmentation. Addi-
tionally, developing a domain-specific SAM model trained on
BB images specifically for BMs segmentation may further en-
hance the accuracy in identifying and segmenting BMs, ad-
dressing the limitations noted with the current SAM model.

In conclusion, the proposed work developed DL-based au-
to-segmentation networks to enlarge the BMs detection and
segmentation performance in BB images. Modifying the skip
connection in the standard U-Net notably enhanced the sen-
sitivity of BMs in BB images, and incorporating the discrimi-
nator helped reduce false positives in BMs detection. Addi-
tionally, it was demonstrated that applying SAM as a post-
processing step further improved the segmentation performance
of BMs in BB images.
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