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Background: Weakness in the quadriceps muscle significantly contributes to the development and progression of
knee osteoarthritis (OA), characterized by pain and impaired function. This study aimed to assess structural and
functional recovery in the quadriceps and its association with knee OA pain following treatment with the Muscle
Enhancement and Support Therapy (MEST) device. MEST involves inserting cog polydioxanone filaments directly
into muscle tissue to help alleviate OA pain.

Methods: Knee OA was induced in Sprague-Dawley rats using monoiodoacetate injections, followed by MEST or a
sham treatment. Five weeks post-MEST treatment, quadriceps recovery was evaluated by measuring entire muscle
volume, hindlimb torque, tissue morphology, and key structural and functional biomarkers. Pain was assessed
through paw withdrawal thresholds and weight-bearing distribution. Correlations between muscle measurements
and pain levels were then analyzed.

Results: MEST treatment resulted in significant increases in quadriceps volume, enhanced hindlimb torque, and
elevated expression of a-actin, myosin, and the mitochondrial marker cytochrome ¢ oxidase subunit 4, along with
reductions in OA pain. These enhancements in muscle condition were closely associated with pain relief in OA.
Conclusions: This study shows that MEST improves the quadriceps condition, including muscle volume, structure,
function, and energy metabolism, and relieves knee OA pain, which are closely linked. These findings may suggest
that promoting quadriceps recovery through MEST could be a promising approach for managing OA-related pain.
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INTRODUCTION

Osteoarthritis (OA) is a chronic degenerative joint dis-
ease, primarily characterized by the progressive dete-
rioration of articular cartilage and subsequent bone
remodeling, leading to pain and functional impairment.
It is the most common form of arthritis, affecting millions
of individuals worldwide, with the knee joint being one
of the most frequently involved sites [1-3]. Current treat-
ment approaches, including non-pharmacological, phar-
macological, and surgical interventions, primarily focus
on symptom management, with a particular emphasis
on pain relief. Despite advances in care, there remains no
definitive disease-modifying therapy for OA [1-5].

Beyond the pathological changes within the joint,
quadriceps weakness is a prevalent and significant con-
dition in patients with knee OA, contributing to both the
progression and severity of the disease [6-8]. This muscle
weakness can arise from several factors, including disuse
atrophy resulting from decreased activity [9], arthrogenic
muscle inhibition, which is a neural response that limits
the full activation of muscles around an injured joint [10],
and decreased physical function secondary to pain [11].
Periarticular muscle weakness compromises joint stabil-
ity and protection [12-18], leading to altered biomechan-
ics and abnormal joint loading [17,19], which perpetuates
cartilage degradation and further disability. This process
contributes to the exacerbation of OA pain and functional
limitations [20].

Previous animal and clinical studies have shown prom-
ising results for the Muscle Enhancement and Support
Therapy (MEST) device, which was recently approved by
the Korean Ministry of Food and Drug Safety. The MEST
device is designed to implant cog polydioxanone fila-
ments into the quadriceps to relieve knee OA pain [21-24].
One of the proposed mechanisms for the analgesic ef-
fect of MEST involves the restoration of atrophied and
weakened quadriceps, thus potentially enhancing joint
stability and biomechanics, while simultaneously reduc-
ing articular nociceptor sensitization [21,22,24]. In these
studies, muscle recovery from atrophy was observed
alongside pain relief. While this mechanism is plausible,
specific changes of the quadriceps condition such as total
muscle volume, structural components, function, and en-
ergy metabolism, as well as their direct correlation with
OA pain relief, have yet to be firmly determined.

This study aimed to evaluate the structural and func-
tional changes in the quadriceps (primary outcome) and
pain relief (secondary outcome) and to analyze their
correlation following MEST treatment in knee OA rats.

Five weeks post-MEST treatment, the quadriceps condi-
tion was evaluated through assessments of the whole
quadriceps volume, hindlimb torque, and structural and
functional biomarkers including a-actin, myosin, and cy-
tochrome c oxidase 4 (COX4). The correlations between
these individual measurements and pain-related behav-
iors were then evaluated.

MATERIALS AND METHODS

1. Animals

The experimental procedures were approved by the Insti-
tutional Animal Care and Use Committee of Yonsei Uni-
versity Health System (#2021-0285), ensuring adherence
to all pertinent regulations and guidelines. Conforming to
the Animal Research: Reporting of In Vivo Experiments
(ARRIVE) guidelines, meticulous reporting of the experi-
ments was ensured. Male Sprague-Dawley rats (Orient
Bio), aged 6-7 weeks at the commencement of the experi-
ments, were housed in groups of three to four. They had
unrestricted access to food and water within a 12-hour
light/dark cycle throughout the study period.

2. OA induction

The authors utilized the monoiodoacetate (MIA) model
of OA, which is recognized as a highly reliable and fre-
quently employed chemical model. This model is par-
ticularly suitable for investigating the efficacy of novel
treatments targeting OA-related pain [25]. Rats under-
went intra-articular knee injections of MIA (Sigma Al-
drich) in the left hindlimb while briefly anesthetized with
isoflurane. A 1 mg dose was delivered initially, followed
by a second injection of 3 mg two weeks later, both in 30
uL of saline solution. This protocol was selected based
on a previous study where a single MIA injection (1 mg)
did not produce significant impairments in certain pain
behaviors after two weeks [21]. Consequently, a second
injection was added in later studies [22,24], including the
present one.

3. MEST treatment

The detailed methodology for the MEST device (MEST-
B2375; OV MEDI) has been described previously [21].
The device includes a 23-gauge needle, a biodegradable
PDO filament (0.3 mm outer diameter) featuring bidi-
rectional cogs, and a protective catheter that shields the
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cogs during the insertion process. After inducing brief
anesthesia with pentobarbital (50 mg/kg, intraperitoneal
[i.p.]), the thigh of the left hindlimb was shaved and pre-
pared. The filament-loaded MEST needle was inserted
approximately at one-third of the length of the quadri-
ceps from the knee joint, then advanced toward the distal
femur. Once positioned, the needle and catheter were
retracted in sequence, leaving the cog filament securely
embedded in the quadriceps muscle. Five filaments were
evenly distributed across the quadriceps. Any exposed
portions of the filaments were trimmed, and the incision
was sutured. For the sham group, the same procedure
was followed, but an empty needle was used, without the
PDO filament insertion.

4. Experimental design

The timeline and flowchart of the experimental design,
including detailed sample sizes, are provided in Fig.
1. A total of 72 animals were randomly allocated to the
following 6 groups (n = 12 per group) using a manual
simple randomization technique, where group assign-
ments were determined by drawing lots: (i) naive group:
untreated; (ii) MIA group: received 1st and 2nd MIA in-
jections at weeks 0 and 2, respectively; (iii) MIA + MEST:
received MIA injections followed by MEST treatment at
week 3; (iv) MIA + sham: received MIA injections fol-
lowed by sham treatment at week 3; (v) naive + MEST:
received MEST treatment at week 3; (vi) naive + sham:
received sham treatment at week 3. Double blinding was
maintained throughout the experiment to prevent bias.

A
MEST treatment
1st MIA 2nd MIAl
v v
0 2 3 8 Week

I Muscle measurement
(volume, contraction,
biomarkers)

This included blinded experimental procedures, where
researchers administering treatments or performing
measurements were unaware of group assignments, and
blinded data analysis, where individuals conducting tis-
sue analysis and statistical evaluations were also blinded
to the group allocations. Data acquisition and analysis
were performed by separate experimenters to further en-
sure objectivity. Sample sizes were determined based on
prior studies that used the same animal model and MEST
treatment for pain relief [21,22,24]. Although statistical
power or effect sizes were not calculated beforehand,
the observed significant differences in key outcomes
across previous and current experiments indicate that the
sample sizes were adequate to detect meaningful effects.
Future studies will benefit from pre-calculated power
analyses to ensure rigorous validation.

All animals participated in behavioral experiments
conducted at weeks 0, 3, and 8. Following final behavioral
tests, magnetic resonance imaging (MRI) acquisition was
performed (n = 10-12 animals/group) at week 8. Subse-
quently, animals were evenly divided into two groups at
week 8: one for hindlimb torque experiments (n = 5-6
animals/group) and the other for immunohistochemistry
staining (n = 6 animals/group). For immunohistochem-
istry analysis, 8-9 slides per group were randomly se-
lected from each cohort, with at least one slide obtained
from each animal. Additional images were occasionally
included to ensure a sufficient number of high-quality,
analyzable images per group. The total number of images
used for cell count analysis was 17-18 per group, encom-
passing slides where a-actin and myosin were double-

Pain behavior
(12 animals/group; total 72 animals)

v

Muscle volume (MRI)
(10-12 animals/group)

X X

Muscle contraction (torque)

Muscle biomarkers (IHC)
(6 animals/group)

(5-6 animals/group)

v

a-actin/myosin double stained slides: 8—-9/group
COX4 stained slides: 9/group
(8-9 slides/group for biomarker expression)

v

All slides were included for cell counting
(17-18 slides/group)

Fig. 1. Timeline and flowchart of the experimental design. (A) Timeline of the experimental design. (B) Flowchart illustrating the ex-
perimental procedure and sample sizes. MEST: Muscle Enhancement and Support Therapy, MIA: monoiodoacetate, MRI: magnetic
resonance imaging, COX4: cytochrome ¢ oxidase 4, IHC: immunohistochemistry.
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stained (8-9 slides/group) and COX4 was independently
stained (9 slides/group). Detailed N numbers for indi-
vidual groups are indicated in the figure legends. Animals
not included in the data analysis were used to set the ex-
perimental conditions.

5. von Frey test

Mechanical pressure was applied to the plantar surface
of the left hind paw using an electronic von Frey appara-
tus (UGO Basile) to assess the paw withdrawal threshold
(PWT). Rats were placed in individual enclosures on
a perforated platform and allowed to acclimate to the
testing environment for 30 minutes prior to testing. The
probe was applied perpendicularly to the paw, and the
force required to elicit a withdrawal response was au-
tomatically recorded. The cut-off value was set at 300 g
to prevent tissue damage. Each rat underwent five trials
with a 3-minute interval between trials, and the PWT val-
ues were averaged to determine the final measurement.

6. Weight-bearing test

The rats were placed inside a plexiglass chamber, with
each hind paw positioned on separate force plates of an
incapacitance tester (Linton Instrumentation). The force
applied by each hindlimb was recorded over a 5-second
period, and the average force was used to calculate the
weight-bearing ratio (WBR), which reflects the load borne
by the left hindlimb compared to the right.

7. MRI acquisition

MRI scans of the left quadriceps were conducted under
isoflurane anesthesia (5% for induction and 1.5%-2% for
maintenance) using a 9.4-T horizontal Biospec small bore
scanner (Bruker BioSpin). The system was equipped with
an 86 mm volume coil for radio frequency transmission
and a four-channel array coil for signal reception. Follow-
ing tuning and shimming, initial T2 spin echo sequence
images were acquired to ensure accurate positioning, fol-
lowed by T1-weighted (T1IW) images at the correspond-
ing locations. High-resolution anatomical images were
captured using a rapid acquisition with relaxation en-
hancement (RARE) protocol, with the following param-
eters: effective echo time (TE) = 22 ms, repetition time
(TR) = 2,300 ms, matrix size = 512 x 256, and RARE factor
= 4. Additionally, 25 slices of T1W images were obtained
using the RARE protocol with a shortened TR and the
following settings: RARE factor = 4, TE/TR = 18.61/800

ms, matrix size = 192 x 192, and slice thickness = 1 mm.
Throughout the procedure, respiration rates of the ani-
mals were closely monitored. The hindlimb was segment-
ed on axial slices, and the mean area of the quadriceps
was measured. Image analysis was performed using 3D
Slicer software (version 5.2.1), and the analyzed 25 slices
encompassed the entire MEST-treated quadriceps region,
excluding the upper portions due to interference from fat
and intestinal organs.

8. Hindlimb torque evaluation

Maximum hindlimb torque generated by quadriceps con-
traction was assessed under urethane anesthesia (0.5 g/
kg, i.p.). For precise measurements, the left knee joint was
stabilized in an axial position, and a digital torque meter
(HP-100; HIOS) was employed. Quadriceps contraction
was induced by electrically stimulating the femoral nerve
using needle electrodes, with pulse durations set to 10 ms
and amplitudes of 1, 2, or 3 mA. Proper electrode place-
ment was confirmed by observing a series of isometric
twitches and isolated knee extensions.

9. Immunohistochemistry

The left quadriceps were harvested and cryosectioned
at a thickness of 20 um. These sections were then in-
cubated overnight with primary antibodies (Abcam)
against o-actin (1:100; ab184705; RRID:AB_3472024),
myosin (1:1,000; ab37484; RRID:AB_2921304), or COX4
(1:600; ab16056; RRID:AB_443304). This was followed
by incubation with secondary antibodies (Jackson Im-
munoResearch) Alexa Fluor 488 (1:1,000; #715-166-
151; RRID:AB_2341099) or Cy™3 (1:1,000; #711-545-152;
RRID:AB_2922842). Cell nuclei were counterstained with
DAPI. Immunofluorescent images were captured using
a confocal microscope (LSM700; Zeiss). Analysis was
conducted in a randomly selected region of interest (ROI)
from the tissue slide. Biomarker expression levels were
quantified based on intensity values, which were divided
by the number of cells in the ROI to estimate the intensity
per cell. Cells were included in the cell count if the ROI
covered approximately 70% or more of the cell area.

10. Data analysis
To assess group differences at a single time point, a
one-way analysis of variance (ANOVA) was applied,

with Tukey’s post-hoc test used for four groups and an
unpaired t-test for comparisons between two groups.
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Fig. 2. MEST restores MIA-induced muscle volume reduction. (A) Representative 3D reconstructions of the quadriceps based on 25
MRI slice images. (B) Cross-sectional images (slice #20) corresponding to panel (A), with yellow dotted lines indicating the quadri-
ceps area and thick black lines outlining the femur bone. (C, D) Cross-sectional area measurements. (E, F) AUC calculated from the
measurements in panel (C, D). Naive: N = 11, MIA: N = 11, MIA + Sham: N = 10, MIA + MEST: N = 10, Naive + Sham: N = 12, Naive
+ MEST: N = 12. *P < 0.05, **P < 0.01 vs. Naive. *P < 0.05 vs. MIA + Sham. Data are presented as mean + standard error of the
mean. Statistical analyses: one-way ANOVA followed by Tukey’s multiple comparison test (E) or unpaired t-test (F). MEST: Muscle
Enhancement and Support Therapy, MIA: monoiodoacetate, MRI: magnetic resonance imaging, AUC: area under the curve, ANOVA:

analysis of variance.

For analysis involving repeated measurements across
multiple time points or under different experimental
conditions at a given time, a two-way repeated measures
ANOVA was conducted, followed by Tukey’s test for
four groups or Sidak’s test when comparing two groups.
Pearson’s correlation coefficients were used to evaluate
the relationships between muscle conditions and pain
behaviors. Data are presented as mean + standard error
of the mean. Statistical significance was set at P < 0.05. All
statistical analyses were performed using Prism 7.0 soft-
ware (GraphPad Software; RRID:SCR_002798).

248  https://doi.org/10.3344/kjp.24364

RESULTS

1. MEST-induced restoration of muscle volume

The authors examined whether the MEST treatment af-
fected the entire quadriceps volume using MRI scans at
week 8 (Fig. 2). Representative reconstructed 3D (Fig.
2A) and cross-sectional (Fig. 2B) images of the quadri-
ceps illustrate a decrease in muscle volume due to MIA
injections and restoration with MEST treatment. Further
analysis of cross-sectional areas reveals that the area un-
der the curve (AUC) of the quadriceps in the MIA group
is smaller than that of the naive quadriceps (Fig. 2C,
E). The MIA + MEST group exhibited an increased AUC
compared to the MIA + sham group, demonstrating the
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Fig. 3. MEST restores MIA-induced reduction in hindlimb torque. (A, B) The maximal torque force of the hindlimb elicited by electri-
cal stimulation of quadriceps. Electrical stimulation with 10-ms pulse durations at amplitudes of 1, 2, or 3 mA was delivered to elicit
quadriceps contraction and hindlimb torque. Naive: N = 6, MIA: N = 6, MIA + Sham: N = 6, MIA + MEST: N = 6, Naive + Sham: N =
5, Naive + MEST: N = 5. *P < 0.05, **P < 0.01, ***P < 0.001 vs. Naive. ""P < 0.01 vs. MIA. *P < 0.05 vs. MIA + Sham. Data are
presented as mean + standard error of the mean. Statistical analyses: two-way repeated measures ANOVA followed by Tukey’s (A) or
Sidak’s (B) multiple comparison test. MEST: Muscle Enhancement and Support Therapy, MIA: monoiodoacetate.

restoration of quadriceps volume due to MEST treatment
(Fig. 2C, E). However, neither MEST nor sham treatment
in the naive group resulted in significant changes in AUC
(Fig. 2D, F).

2. MEST-induced restoration of muscle function

At week 8, quadriceps strength was evaluated by measur-
ing hindlimb torque (Fig. 3). Both the MIA and MIA +
sham groups exhibited a marked reduction in maximum
torque force generated by electrical stimulation at vary-
ing intensities (1, 2, or 3 mA), compared to the naive
group (Fig. 3A). This reduction was significant across
all stimulation levels for the MIA group, while the MIA +
sham group only showed a significant decline at 3 mA.
In contrast, the MIA + MEST group showed an improved
torque force at 3 mA when compared to both the MIA
and MIA + sham groups (Fig. 3A), indicating that MEST
treatment successfully restored quadriceps strength in
the MIA group. However, no significant differences were
found at the 1 and 2 mA stimulation levels. Additionally,
the comparison between naive animals treated with ei-
ther the sham procedure or MEST revealed no significant
difference in maximum torque force at any of the stimu-
lation intensities (Fig. 3B).

3. MEST-induced restoration of muscle density and
biomarkers

At week 8, quadriceps muscle condition was evaluated
by examining both cell density and the expression lev-
els of key biomarkers, including a-actin, myosin, and
COX4 within the ROI (Fig. 4). The number of muscle cells
was notably higher in the MIA and MIA + sham groups

compared to the naive group (Fig. 4B). Treatment with
MEST led to a significant reduction in cell numbers in
MIA animals, compared to both the MIA and MIA + sham
groups (Fig. 4B), suggesting effective reversal of muscle
atrophy. Additionally, a-actin expression per cell was
lower in the MIA and MIA + sham groups relative to naive
controls (Fig. 4D). However, this reduction was signifi-
cantly restored in the MIA + MEST group, as compared to
both the MIA and MIA + sham groups (Fig. 4D). Similar
trends were observed for myosin and COX4 expression:
both were reduced in the MIA and MIA + sham groups
compared to naive animals, but the MIA + MEST group
showed a significant recovery in these biomarker levels
(Fig. 4F, H). In naive animals, neither MEST nor sham
treatments had any notable effect on cell numbers or the
expression of g-actin, myosin, or COX4 (Fig. 4C, E, G, I).

4, MEST-induced pain relief

The effects of MEST on MIA-induced pain behaviors
were evaluated (Fig. 5). In naive animals, PWT and WBR
remained stable throughout the duration of the study.
In contrast, MIA injections caused a significant decrease
in both PWT and WBR by week 3, indicating the onset of
pain hypersensitivity compared to naive controls. This
heightened sensitivity persisted through to week 8. Re-
markably, animals treated with MEST at week 3 showed
a significant recovery in both PWT and WBR by week 8,
when compared to both the MIA and MIA + sham groups.
In naive animals, neither MEST nor sham treatment had
any effect on PWT or WBR.
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Fig. 4. MEST restores MIA-induced increase in muscle cell number and reduction in biomarker expression in the ROI. (A) Represen-
tative images of immunostaining. Scale bar, 100 um. (B, C) Number of cells. Slide numbers used for analysis are as follows: Naive:
N =18, MIA: N = 17, MIA + Sham: N = 17, MIA + MEST: N = 18, Naive + Sham: N = 17, Naive + MEST: N = 18. (D-I) Immunohisto-
chemical analysis of muscle biomarkers. The expression intensity per cell of a-actin (D, E), myosin (F, G), and COX4 (H, I). Slide num-
bers used for analysis are as follows: For a-actin and myosin, N = 9 for all groups except Naive + Sham, where N = 8. For COX4, N =
9 per group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. Naive. ‘P < 0.05, "P < 0.01, ""P < 0.001, ™*P < 0.0001
vs. MIA. *P < 0.05, #*P < 0.0001 vs. MIA + Sham. Data are presented as mean + standard error of the mean. Statistical analyses:
one-way ANOVA followed by Tukey’s multiple comparison test (B, D, F, H) or unpaired t-test (C, E, G, |). MEST: Muscle Enhancement
and Support Therapy, MIA: monoiodoacetate, ROI: region of interest, COX4: cytochrome ¢ oxidase 4, ANOVA: analysis of variance.
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variance.
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mum hindlimb torque elicited by 3 mA electrical stimulation with PWT (A, B) and WBR (C, D). (E, F) Correlation analysis relating the
expression intensity, divided by cell numbers, of a-actin, myosin, and COX4 to PWT (E) and WBR (F). N numbers are the same as
indicated in Figs. 2, 3, and 4. ***P < 0.001, ****P < 0.0001. Statistical analyses: Pearson’s correlation coefficients test. MEST:
Muscle Enhancement and Support Therapy, MIA: monoiodoacetate, PWT: paw withdrawal threshold, WBR: weight-bearing ratio,
COX4: cytochrome ¢ oxidase 4.

5. Correlation between quadriceps condition and
pain behaviors

tion, assessed by muscle volume, hindlimb torque, and
biomarker expression, and pain behaviors was evaluated
(Fig. 6). Quadriceps volume assessed by AUC exhibited

At week 8, the correlation between quadriceps condi- significant correlations with both PWT (r = 0.6489, P <
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0.001, 95% confidence interval [CI]: 0.4827 to 0.7700;
Fig. 6A) and WBR (r = 0.6277, P < 0.001, 95% CI: 0.4548
to 0.7550; Fig. 6C). Similarly, maximum torque of the
hindlimb elicited by 3 mA stimulation of quadriceps
correlated with both PWT (r = 0.5931, P < 0.001, 95% CI:
0.3188 to 0.7757; Fig. 6B) and WBR (r = 0.5518, P < 0.001,
95% CI: 0.2627 to 0.7500; Fig. 6D). The expression inten-
sity, divided by cell numbers, of a-actin (r = 0.5107, P <
0.001, 95% CI: 0.2790 to 0.6863), myosin (r = 0.5606, P <
0.001, 95% CI: 0.3422 to 0.7216), and COX4 (r = 0.5025,
P < 0.001, 95% CI: 0.2712 to 0.6789) showed significant
correlations with PWT (Fig. 6E), as did their correlations
with WBR (q-actin: r = 0.5323, P < 0.001, 95% CI: 0.3061
to 0.7017; myosin: r = 0.5933, P < 0.001, 95% CI: 0.3847
to 0.7442; COX4: r = 0.4784, P < 0.001, 95% CI: 0.2415 to
0.6614) (Fig. 6F).

DISCUSSION

The findings of this study demonstrate that MEST not
only effectively alleviates knee OA pain but also promotes
recovery in the atrophied and weakened quadriceps
muscles. This is evident from the observed increases in
whole muscle volume, improved contractile function,
and the restoration of key biomarkers associated with
muscle structure, function, and energy metabolism. The
strong correlation between enhanced muscle condition
and reduced knee OA pain suggests an association be-
tween MEST-induced improvements in the quadriceps'
structural and functional state and the observed allevia-
tion of OA-associated pain.

Previous studies have shown that MEST reverses quad-
riceps weakness and atrophy in MIA-induced OA models
[20,23]. However, these studies assessed the reversal of
muscle atrophy and reduced muscle weight through the
weight ratio of a 3-mm thick slice of quadriceps tissue [24]
or a portion of the quadriceps (rectus femoris muscle) [21]
relative to body weight, supported by data from cross-
sectional tissue sections [21,24]. Furthermore, restoration
of quadriceps contractile function was evaluated only in
the early stages to trace the recovery process [24]. Impor-
tantly, key changes in muscle composition, particularly
those related to muscle structure and function, were not
explored, leaving gaps in understanding the full extent
of muscle recovery. Overcoming these limitations, this
study confirms that MEST restores total quadriceps vol-
ume as well as structural and functional properties in OA
models, as demonstrated by MRI, electrophysiological,
and immunohistochemical assessments 5 weeks post-
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treatment.

The restoration of quadriceps volume observed in Fig.
2 suggests that muscle recovery occurs throughout the
entire quadriceps. The recovery of quadriceps volume
in areas containing the MEST filaments appears to result
from muscle fiber regeneration. Mechanical injury from
MEST induces a mild, temporary inflammatory response
that activates macrophages and muscle stem cells (satel-
lite cells), promoting muscle growth [24]. Macrophages
[26,27] and satellite cells [28,29] play critical roles in mus-
cle regeneration following injury. The presence of small
muscle fibers around the MEST insertion site (Fig. 7)
suggests regeneration, with these new fibers forming and
maturing over time. Additionally, a decrease in muscle
cell density within the ROI (Fig. 4A-C), suggesting in-
creased individual muscle fiber thickness [21], indicates
that MEST contributes to the repair and strengthening of
atrophied fibers. Notably, MEST’s effects may extend be-
yond the localized regeneration of muscle fibers around
the filaments. The treatment may also promote overall
quadriceps hypertrophy, potentially driven by increased
activity enabled through pain relief [21]. While fibrosis,
marked by excessive extracellular matrix accumulation
(especially collagen), may contribute somewhat to mus-
cle volume increase post-injury, it is unlikely to be the
primary driver here. Fibrosis generally leads to fibrous
scar tissue formation, which replaces functional muscle
and can hinder regeneration [30,31]. Thus, an increase in
muscle volume due solely to non-functional connective
tissues such as scar or fat would contradict the findings
of both this study (Fig. 3) and prior research [24], which
showed improvements in muscle regeneration and con-
traction force.

The recovery of maximal hindlimb torque generated
by quadriceps contraction (Fig. 3) demonstrates that
MEST induces muscle recovery beyond just increases in
volume (Fig. 2), weight, or fiber thickness [21,24], thereby
enhancing the muscle's overall functional capacity. Data
from Fig. 3, collected 5 weeks after MEST treatment, to-
gether with previously observed early-stage recovery pat-
terns (showing no improvement at 1 week but recovery at
3 weeks post-treatment to levels similar to those seen in
this study) [24], indicate a potential timeframe for peak
recovery in muscle contraction, possibly followed by sus-
tained benefits. A clinical trial supports these findings,
showing a significant increase in maximum isometric
force in the affected leg of OA patients after 4 weeks of
MEST treatment [23], with similar benefits observed at 8
weeks post-MEST treatment in another, larger-scale clini-
cal trial (unpublished data). The restored contractile abil-
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Fig. 7. Representative tile scans of immunohistochemically stained quadriceps around the hole generated by the MEST filament in
the MIA + MEST group at 5 weeks after treatment. Scale bar = 500 pm. Staining: Blue = DAPI; Red = a-actin; Green = myosin. MEST:

Muscle Enhancement and Support Therapy, MIA: monoiodoacetate.

ity of the quadriceps, a fundamental function of skeletal
muscle, demonstrates a marked improvement in muscle
quality and condition after MEST treatment. Although
increases in muscle volume and mass are generally
linked to improvements in muscle force and functional
strength, factors such as the amount of non-functional
muscle components, neuromuscular activation, and
the proportion of type II fibers—which produce greater
force than type I fibers—may affect functional recovery
[32-34]. While further studies are needed to clarify how
or even whether MEST influences these factors, MEST
may trigger a more natural muscle repair process [24] and
encourage physical activity [21], similar to the injury and
over-recovery responses seen in exercise-induced muscle
hypertrophy [35], rather than targeting specific pathways.

Beyond measures of volume and strength, examining
biomarker expression in the quadriceps (Fig. 4) offers
deeper insight into muscle recovery at a molecular level
following MEST treatment. o-actin and myosin, two es-
sential muscle proteins, are central to skeletal muscle
structure and function as they form the scaffold required
for stability, contraction, and force generation [36,37].
a-actin, a primary component of the thin filament in the
sarcomere, offers structural support and stability by an-
choring other proteins, ensuring sarcomere alignment,
and allowing it to withstand tension during contraction
and relaxation [38]. Increased levels of o-actin strengthen

the contractile apparatus by providing more binding sites
for myosin, enhancing muscle integrity and function.
Myosin, the main motor protein in muscle cells, forms
thick filaments that interact with ¢-actin to generate force
through contraction [38]. This force-generating interac-
tion [39] not only facilitates movement but also preserves
muscle fiber stability under stress. Thus, the observed
recovery of a-actin and myosin levels (Fig. 4D, F) after
MEST treatment likely contributes to the restoration of
muscle volume, structure, and strength. Additionally, as
ATP, the primary energy currency, is essential for muscle
contraction and relaxation cycles, particularly the interac-
tion between actin and myosin [39], the increased COX4
levels (Fig. 4H, I), a marker of mitochondrial function
[40], likely indicate enhanced mitochondrial biogenesis
or activity. These adaptations may represent an effort to
enhance overall energy output and improve the muscle's
oxidative capacity [41], potentially linked to increased
physical activity made possible by MEST’s pain-relieving
effects [21].

Despite the availability of various treatment options,
pain management in OA remains suboptimal for many
patients, reflecting a significant unmet clinical need [4].
Current therapies, which largely focus on addressing joint
pathology, have limitations that highlight the promise of
MEST, a novel approach that targets the weakened quad-
riceps muscles often associated with knee OA. The ob-
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served reversal of both decreased PWT and WBR in MIA-
treated OA animals at 5 weeks post-MEST treatment (Fig.
5) provides compelling evidence of the pain-relieving
effects of MEST in knee OA. These results are consistent
with previous studies [21,22,24], which demonstrated
MEST'’s ability to reduce knee OA pain across different
time points, ranging from 1 to 5 weeks post-treatment,
by improving mechanical pain sensitivity, limb loading
balance, exploratory activity, and rotarod performance.
Moreover, MEST treatment has been shown to reduce
sensitization of nociceptors innervating the OA-affected
knee joint [22]. These findings are further supported by
a randomized, blinded clinical trial, which reported sig-
nificant reductions in weight-bearing pain at 4, 8, 20, and
30 weeks following MEST treatment in patients with Kell-
gren and Lawrence grade 2 or 3 knee OA [23]. Therefore,
MEST demonstrates long-term efficacy as a standalone
treatment and, with its distinct mechanism of action,
holds potential for integration with existing therapies, of-
fering a more holistic approach to OA pain management.

An important outcome of this study is the observed
strong correlation between knee OA pain and quadriceps
volume, hindlimb torque force, and biomarker levels (r
> 0.4, P < 0.001 for all; Fig. 6). This result reinforces the
association between muscle health and the pain relief
achieved with MEST treatment. Prior research has docu-
mented connections between quadriceps weakness and
OA progression [6-8], as well as the role of strengthening
exercises in pain reduction [42,43]. The findings of the
current study extend this knowledge by offering statistical
evidence for a more specific link between these individ-
ual muscle-related factors and OA pain. Overall, the con-
nection between MEST-induced pain relief and increased
muscle volume, contraction force, and biomarker levels
highlights the wide-ranging benefits of MEST treatment.

Mechanical loading is known to play a significant
role in the progression of OA [44,45]. For this reason,
increased quadriceps strength and structural volume
are essential in providing joint stability, improving joint
mechanics, and reducing mechanical stress on the OA-
affected knee [12-18, 20,46,47]. These improvements by
MEST together may help reduce pain and support overall
joint function.

While this study primarily focused on pain relief
through muscle recovery facilitated by PDO filaments,
the benefits of MEST may extend beyond the period of fil-
ament degradation and the time required for full muscle
regeneration. Pain relief from MEST may occur earlier [21]
than complete quadriceps recovery which takes several
weeks [24]. By stabilizing surrounding muscle tissue and
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reducing joint compression forces [23], a particularly
valuable effect in humans, where the knee experiences
high compressive forces due to bipedal weight-bearing,
MEST may improve pain and knee function early in
the recovery process. This stabilizing support could
promote knee stability and alleviate pain even before
muscle regeneration is fully achieved. Moreover, while
PDO filaments typically degrade within months [48],
the therapeutic effects of MEST, such as pain relief and
muscle recovery, may persist well beyond this period. By
potentially interrupting the vicious cycle of pain, limited
movement, and muscle weakness, MEST may support a
positive feedback loop associated with lasting pain relief,
increased activity, and muscle recovery. Thus, MEST's
ability to promote muscle regeneration and stabilize sur-
rounding muscle tissue together helps maintain knee
stability and function, contributing to OA pain relief with
both an immediate and long-term impact.

Taken together, this study suggests the promising thera-
peutic potential of MEST for alleviating knee OA pain by
effectively restoring weakened and atrophied quadriceps.
This restoration increases overall muscle volume and
strength, addressing essential aspects of muscle health
while enhancing key biomarkers related to muscle struc-
ture, function, and energy metabolism. Each of these fac-
tors may contribute to alleviating pain, as demonstrated
by their strong correlation with pain relief. However,
while significant correlations were observed between
quadriceps recovery and pain relief, these findings do
not establish a causal relationship. Further mechanistic
studies are necessary to confirm whether MEST-induced
muscle recovery directly mediates pain relief.

MEST’s unique focus on skeletal muscle recovery may
offer an encouraging standalone option for OA pain re-
lief, with potential to work synergistically alongside exist-
ing treatments. While these results provide a solid foun-
dation, further research is essential to refine treatment
protocols for human application, considering anatomical
differences. Long-term studies will also be critical to as-
sess the durability of MEST'’s effects and to identify any
potential long-term side effects. Additionally, compara-
tive studies are needed to evaluate MEST’s effectiveness
in promoting muscle recovery and reducing pain relative
to traditional muscle-strengthening therapies. Given its
potential, MEST also warrants investigation for treating
muscle-wasting diseases across various etiologies.
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