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Abstract

Ample evidence suggests that a-synuclein (aSyn) accumulation in the endoplasmic reticulum (ER) leads to ER stress, resulting in
neurodegeneration in Parkinson’s disease (PD). Selective degradation of accumulated aSyn through ER-phagy can alleviate ER stress and rescue
neurodegeneration. In the present study, we investigated whether mesenchymal stem cells (MSCs) exert neuroprotective effects against PD by
modulating ER-phagy. In a cellular model overexpressing aSyn specifically in the ER (ER-aSyn), co-culture with MSCs promoted ER-aSyn clear
ance through selective ER-phagy and also recovered cell viability. Injection of MSCs to an animal model using adeno-associated virus vectors
to overexpress aSyn in the ER (AAV-ER- aSyn), also decreased the expression of aSyn in the ER and attenuated the dopaminergic neuronal loss
in substantia nigra (SN) and denervation in striatum (ST), followed by functional improvement of motor deficits. In vitro screening identified that
MSCs promoted family with sequence similarity 134 member B (FAM134B)-mediated ER-phagy via regulating transcription factor of nuclear sub-
family 4 group A member 1 (NR4A1), and it underwent in vivo validation. This study suggests that MSCs modulate FAM134B-mediated ER-phagy
under the regulation of NR4A1, promoting the clearance of ER-accumulated aSyn in PD cellular and murine models.
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MSCs modulate FAM134B-mediated ER-phagy under the regulation of NR4A1, promoting the clearance of ER-accumulated aSyn in PD cellular

and murine models.

Significance statement

strategy for the clearance of ER-accumulating aSyn.

This is the first study to investigate the involvement of nuclear subfamily 4 group A member 1 (NR4A1) in selective endoplasmic
reticulum (ER)-phagy. Through the regulation of NR4A1, a family with sequence similarity 134 member B (FAM134B)-mediated ER-phagy
enhancement occurs, subsequently promoting the clearance of a-synuclein (aSyn). The present study offers a promising therapeutic

Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder, characterized by motor symptoms
such as rigidity, resting tremor, bradykinesia, and pos-
tural instability.! Pathologically, PD involves the pro-
gressive loss of dopaminergic neurons in the substantia

nigra (SN) and the presence of Lewy bodies, which are
cytoplasmic inclusions primarily composed of aggregated
alpha-synuclein (aSyn).>? Typically, aSyn exists in a mon-
omeric form* however, when it aggregates, it disrupts cel-
lular homeostasis, including impairing lysosomal clearance
systems.>*
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Among cellular organelles, the endoplasmic reticulum (ER)
plays a crucial role in protein homeostasis. Accumulation of
misfolded proteins within the ER triggers ER stress. Numerous
studies have demonstrated the involvement of ER stress in PD.
For instance, in a 6-hydroxydopamine (6-OHDA)-induced
cellular Parkinson’s model, the ER stress marker C/EBP ho-
mologous protein (CHOP) was upregulated, accompanied
by neurite degeneration and somal shrinkage.” Conversely,
CHOP knockout protected dopaminergic neurons in the SN
in a 6-OHDA murine PD model.® The dopaminergic system’s
specific sensitivity to ER stress is evident, as deficiency in
XBP1, a major transcription factor of the unfolded protein
response, triggers the upregulation of ER stress response
proteins in SN dopaminergic neurons but not in other brain
regions.’” Recent studies also link ER stress to aSyn accumu-
lation in the ER, with observations of aSyn oligomers and
aggregates in murine models of synucleinopathy!® and human
patients with PD." These accumulations manifest as chronic
ER stress followed by neurodegeneration; however, treatment
with the anti-ER stress agent Salubrinal attenuates these path-
ological signs and reduces aSyn accumulations in the ER.!'%!!
Therefore, modulating ER-accumulated aSyn and subsequent
ER stress is a promising strategy for PD treatment.

Ample evidence suggests that deficient organelles and
misfolded proteins are selectively degraded through
autophagy.!>!3 Selective autophagy is a cellular quality control
network that involves several pathways classified according to
the targets: mitophagy (mitochondria), lysophagy (lysosomes),
aggrephagy (protein and RNA aggregates), xenophagy (intra-
cellular pathogens), ER-phagy, pexophagy (peroxisomes), or
ribophagy (ribosomes).!'%15 This process requires specific
receptors that bind to cargoes and LC3 on autophagosomal
membranes. In the case of ER-phagy involving selective rec-
ognition of the ER, known receptors include FAM134B,
RTNL3, ATL3, SEC62, CCPG1, and TEX264.152 Our pre-
vious study demonstrated that FAM134B is a significant
contributor to aSyn clearance in cellular and animal models
overexpressing aSyn in the ER (ER-aSyn). Conversely, knock-
down of FAM134B resulted in significant loss of dopamin-
ergic neurons in the SN and striatal postsynaptic neurons in a
Parkinsonian mouse model.??

Mesenchymal  stem  cells (MSCs) have shown
neuroprotective effects in various neurological disorders,
mediated by cytotropic factors such as neurotrophic growth
factors, chemokines, cytokines, and extracellular ma-
trix proteins.>*?” Previous studies have demonstrated that
MSCs contribute to the degradation of misfolded proteins
by modulating autophagy.?®** However, most studies on
autophagy modulation have focused on macroautophagy,
with a lack of research on the role of selective autophagy
in regulating misfolded proteins. In the present study, we
hypothesized that MSCs would promote aSyn clearance
by modulating selective ER-phagy in parkinsonian models.
Therefore, we evaluated whether MSCs exert neuroprotective
effects through the modulation of ER-phagy in cellular and
murine models of PD with aSyn accumulation in the ER.

Materials and methods
MSCs and PC12 culture

In this study, frozen vials of human bone marrow-derived
mesenchymal stem cells (MSCs) were obtained from the
Korean Cell Line Bank (South Korea). MSCs were maintained

in low glucose Dulbecco’s Modified Eagle Medium (DMEM;
HyClone) supplemented with 10% fetal bovine serum (FBS;
HyClone) and an antibiotic mixture of 1% penicillin and
streptomycin (P/S; Corning). The rat pheochromocytoma
cell line, PC12, was maintained in high glucose DMEM
(HyClone) supplemented with 10% FBS (GeneDEPOT) and
1% P/S. When cells reached over 80% confluency, they were
trypsinized and subcultured. MSCs were kept under passage
10 to preserve their capacity and stemness,*® as a prolonged
subculture and later passage reduce these qualities. Cells were
cultivated in a humidified incubator at 37 °C and 5% CO,.
To evaluate the effects of MSCs, they were cultured on the
permeable membrane of a transwell insert, while PC12 cells
were cultured at the bottom of a 6-well plate.

Plasmid transfection

For transfection, we cloned aSyn into a vector containing the
ER retention signal sequence (ER-0Syn) with Keima protein
(ER-Keima-aSyn),?* and NR4A1 and empty plasmids were
generously provided by Prof. Yong Jun Choi (Ajou University,
South Korea).’! PC12 cells were seeded 24 hours before
transfection and grown to 70%-80% confluence. Cells were
transfected using jetPrime transfection reagent (Polyplus) ac-
cording to the manufacturer’s instructions. To knock down
NR4A1 in PC12 cells, small interfering RNA (siRNA)
constructs (Bioneer) were purchased and tested for knock-
down efficiency. siRNA transfection into PC12 cells was also
performed using jetPrime transfection reagent according to
the manufacturer’s protocol.

Cell viability analysis

Cell viability was measured using the MTS cell proliferation
assay (Promega). Right before the measurement, MTS and
PMS were mixed in a 1 mL:50 pL ratio and incubated for
10 min. Then, 20 pL of the mix was added to each well. Plates
were incubated at 37°C for 1 hour, and absorbance was meas-
ured at 490 nm using a spectrophotometer. All experiments
were repeated at least 3 times.

Western blotting

Equal amounts of total protein were separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to hydrophobic polyvinylidene
difluoride (PVDF) membranes (GE Healthcare). Membranes
were blocked in 5% skim milk in PBST and probed with
the following primary antibodies: mouse anti-aSyn (Santa
Cruz, sc-12767), mouse anti-actin (Santa Cruz, sc-47778),
mouse anti-Keima (MBL, M182-3M), mouse anti-CHOP
(Santa Cruz, sc-7351), rabbit anti-FAM134B (Proteintech,
21537-1-AP), rabbit anti-CCPG-1 (Proteintech, 13861-
1-AP), rabbit anti-LC3B (MilliporeSigma, L7543), mouse
anti-rab7 (Abcam, ab50533), rabbit anti-LAMP1 (Abcam,
ab24170), and mouse anti-NR4A1 (Santa Cruz, sc-365113).
As secondary antibodies, 1:5000 dilutions of horseradish
peroxidase-conjugated antibody (GenDEPOT) were used.
Antigen-antibody complexes were visualized with ECL solu-
tion (GenDEPOT). For quantitative analysis, immunoblotting
band densities were measured using Image] software.

Immunocytochemistry and Immunohistochemistry
PC12 cells were fixed and permeabilized using a 3:1 meth-
anol and acetone mixture. The fixed cells were then rinsed
three times with 0.1 M glycine in PBS. Brain tissues were



fixed with 4% paraformaldehyde. Both the cells and brain
sections were blocked with 0.5% bovine serum albumin in
PBST. After blocking, the samples were incubated with the
following primary antibodies: mouse anti-PDI (Invitrogen,
MA3-019), rabbit anti-aSyn (Abcam, ab138501), mouse anti-
LC3B (MBL, M152-3), rabbit anti-FAM134B (Proteintech,
21537-1-AP), mouse anti-TH (Sigma, T2928), and rabbit
anti-dopamine transporter (DAT) (Sigma, AB1591P).
Immunofluorescence labeling was performed using mouse
anti-IgG Alexa Fluor-488 and rabbit anti-IgG Alexa Fluor-
647 (Invitrogen). Cell nuclei were counterstained with 4/,
6-diamidino-2-phenylindole (DAPI, Invitrogen). The anti-TH
and anti-DAT antibodies were detected with 0.05% DAB
staining (Vector Laboratories). Immunofluorescence-stained
samples were analyzed using confocal microscopy on a
Zeiss LSM 700 confocal imaging system, while DAB-stained
samples were analyzed using bright-field microscopy.

Adeno-associated viral vector preparation

The plasmids for recombinant AAV (rAAV) vector produc-
tion included the construct for the AAVS serotype, the AAV
transfer plasmid, and the pAdvDeltaF6 adenoviral helper
plasmid. The rAAV serotype 8 expressing human WT-aSyn
was driven by a mouse synapsin-1 promoter and enhanced
by a woodchuck hepatitis virus posttranscriptional regula-
tory element. The virus was produced by the Korea Institute
of Science and Technology (Seoul, South Korea). Animals
were injected with 2 pL of AAV8 ER-aSyn (approximately
2.5 x 10" genome copies per milliliter) into the right and left
SN at a flow rate of 0.5 pL/min.

Animal study

All animal experimental procedures were approved by the
Institutional Animal Care and Use Committee of the Yonsei
University Health System (no. YUHS-IACUC-2022-0031).
Male C57BL/6] mice (5 weeks old) were acclimated in a
climate-controlled room with a 12-hour light/dark cycle for
one week prior to the experiment. At 6 weeks of age, the mice
were randomly divided into 3 groups: Control group, AAV-
ER-aSyn group, and AAV-ER-aSyn + MSCs treatment group.
Briefly, the mice were anesthetized with isoflurane (Baxter),
and the viruses were slowly injected into the SN (-3.1 mm
posterior to bregma,= 1.2 mm lateral to midline, and
—4.3 mm ventral to the brain surface) using a stainless steel
26-gauge injection needle connected to a 1 mL microsyringe
(Hamilton). The needle was left in place for 10 minutes before
being slowly withdrawn. Three days after virus inoculation
(postoperative day 3), mice in the MSCs treatment group re-
ceived a tail vein injection of MSCs (1 x 10° cells per 100 pL).
Animals were sacrificed 4 d, 1 week, and 4 weeks after MSCs
injection, respectively.

Preparation of brain tissue

Upon completion of the animal experiment, mice
were sacrificed, and their brains were collected. For
immunohistochemistry, the mice were perfused with 4%
paraformaldehyde. The brains were then harvested, post-
fixed for 72 hours in 4% paraformaldehyde, and stored in
a 30% sucrose solution at 4 °C for 1-2 d until they sank.
Subsequently, 25-um coronal sections were obtained using a
cryostat. These sections were stored in a tissue storage so-
lution (30% glycerol, 30% ethylene glycol, 30% distilled
water, 10% 0.2 M PB) at 4 °C until needed. For western
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blot analysis, the striatum (ST) and midbrain were dissected,
and total protein was extracted using RIPA buffer (50 mM
Tris-HCI, pH 7.5, with 150 mM sodium chloride, 1% Triton
X-100, 1% sodium deoxycholate, 0.1% SDS, 2 mM EDTA;
Lugen Sci, Korea) with a protease inhibitor cocktail (Sigma).

Behavioral tests

To assess motor function, coordination, and balance, mice
were tested using the Rotarod apparatus (MEDAssociates).
Prior to testing, the mice were trained to run on the rotarod
at 20 rpm for 10 minutes daily for 5 consecutive days before
virus injection. During the test sessions, the mice ran on the
rotarod with increasing speeds from 5 to 50 rpm and at a
constant speed of 30 rpm (with a cutoff time of 600 seconds).
The latency time until the mice fell off the rotarod was re-
corded. For the pole test, we followed the protocol described
in a previous study.*> Each mouse was placed on top of a ver-
tical plastic pole (30 cm in height). On the day before testing,
mice were allowed to descend from the top of the pole three
times to become habituated to the apparatus. The total time
it took each mouse to reach the base of the pole and place its
front paws on the floor was recorded. Each mouse repeated
the test 3 times. All mouse groups were randomized and
performed blind to the experimenter.

Quantitative real-time PCR

Total RNA was isolated from PC12 cells using TRIzol rea-
gent (Lugen Sci) according to the manufacturer’s instructions.
Equal amounts of RNA (approximately 1 npg) were re-
verse transcribed using a ¢cDNA synthesis premix (Applied
Biosystems). A master mix of the following reaction
components was prepared to the indicated end concentra-
tion: 12.5 pL of 2X SYBR Green buffer, 2 uL of forward and
reverse primers (10 pmol each), and 2 uL of DNA template
(100 ng). Amplification conditions were as follows: initial
denaturation at 95 °C for 2 minutes, followed by 40 ampli-
fication cycles of 95 °C for 15s and 60 °C for 1 minutes
for annealing and extension, respectively. Quantitative PCR
experiments were performed using an Applied Biosystems
(Thermofisher Scientific) machine. The quantitative real-time
PCR reaction utilized 10 pmol each of the primers for rat
NR4A1, FAM134B, and GAPDH (Table 1).

Statistical analysis

To evaluate differences among the experimental groups,
Kruskal-Wallis nonparametric analysis followed by Dunn’s
multiple comparison tests were used. Mann-Whitney U test
was used to compare the 2 independent groups. Differences
were considered statistically significant at P <.05. Statistical
analysis was performed using SPSS v. 25 (Yonsei University).

Results

MSCs promote clearance of aSyn accumulated in
the ER and exert neuroprotective effects in PC12
cells

To investigate selective ER-phagy in an aSyn-overexpressing
Parkinsonian model, we created a construct cloning aSyn
into a vector containing the ER retention signal (ER-aSyn).
Using an ER marker, we confirmed that aSyn exclusively
accumulates in the ER (Figure 1A). We then cocultured MSCs
with ER-aSyn overexpressing PC12 cells to determine if MSCs
modulate aSyn accumulated in the ER (Figure 1B). To mimic
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Table 1. PCR primers.

Primer name

Sequence

NR4A1-F
NR4A1-R
FAM134B-F
FAM134B-R
GAPDH-F
GAPDH-R

5-GAA AGT TGG GGT AGT GTG CGA-3’
§5-GCT GGT TGC TGG TGT TCC ATA -3’
5-TGG AGG AGC CTC AGT GAA AG-3’
5-GTA GCT GAG AAT GAC CCC AGG-3’
§5-AGT GCC AGC CTC GTC TCA TA-37
§5-GGG TTT CCC GTT GAT GAC CA-3’

co-culture environment, transwell system was applied to sepa-
rate MSC and ER-aSyn overexpressing PC12 populations but
to enable paracrine signaling. However, control or ER-aSyn
overexpressing PC12 (used the term “aSyn” in figures) group
was cultured alone. In our previous studies, the controls used
in cellular experiments were cultured alone with no using
co-culture system.?»?7:2%33-3¢ Western blot analysis revealed
that co-culture with MSCs decreased the expression of aSyn
in the ER compared to the ER-aSyn group, with this effect
being dose- and time-dependent (Figure 1C). The MTS assay
demonstrated that cell viability was significantly reduced in
the ER-aSyn group compared to controls, whereas co-culture
with MSCs for 48 hour mitigated ER-aSyn-induced cell death
(Figure 1D). Based on these results, a 48-hour co-culture
period with 1 x 10° MSCs was established for this study.

MSCs promote clearance of aSyn in the ER and
attenuate ER stress through modulating selective
ER-phagy

Keima, a fluorescent protein whose excitation spectrum
changes with pH, allows monitoring the conversion of an
autophagosome to an autolysosome through color change.’”
To determine whether aSyn clearance occurred via the se-
lective ER-phagy pathway, rather than general autophagy,
we cloned aSyn into a vector containing the ER retention
signal sequence with Keima protein (ER-Keima-aSyn) and
transfected PC12 cells with the ER-Keima-aSyn plasmid.
Confocal imaging showed that co-culture with MSCs induced
ER-phagy (Figure 2A).

Western blot analysis under EBSS-induced starvation
conditions, used as a positive control for ER-phagy induc-
tion,*® showed that co-culture with MSCs for 48 h signif-
icantly increased the cleaved form of Keima compared to
the aSyn group, indicating that MSCs promoted selective
ER-phagy (Figure 2A and B). The level of CHOP, an ER
stress marker, was increased in the aSyn group compared
to controls. However, co-culture with MSCs for 48 hours
successfully attenuated CHOP expression, which was
accompanied by decreased aSyn expression (Figure 2C). To
identify the ER-phagy receptor involved in aSyn clearance, we
analyzed the expression levels of several ER-phagy receptors,
including FAM134B, CCPG1, SEC62, and TEX264. No sig-
nificant difference was observed in the expression levels of
SEC62 and TEX264 (data not shown). The expression level
of FAM134B was decreased in the aSyn overexpressing
group compared to controls. MSC co-culture for 48 h fur-
ther reduced FAM134B expression. No significant difference
was observed in CCPG1 levels between the control and aSyn
groups, but the MSC co-culture group showed a significantly
decreased CCPG1 level (Figure 2D). We examined autophagy

flux by assessing LC3 II and Rab7. The autophagosome
marker LC3 II was already decreased in both the aSyn and
MSC cocultured groups. Similarly, Rab7, a late endosome
marker, was increased in both the aSyn and MSC cocultured
groups compared to the control group (Figure 2E). Based on
these data, we concluded that a 48-hours MSC co-culture ef-
fectively degraded ER-accumulated aSyn via the ER-phagy
receptor FAM134B, indicating the endpoint of the autophagy
process.

MSCs promote degradation of aSyn accumulated
in the ER through FAM134B-mediated ER-phagy

Since coculture with MSCs for 48 hours completely degraded
aSyn accumulated in the ER, we investigated earlier time
points to monitor changes in ER-phagy receptors. Coculture
with MSCs for 6 hours slightly degraded aSyn in the ER,
but there was no significant difference compared to the aSyn
group. Additionally, there was no significant difference in
CHOP expression between the ER-aSyn group and the MSC
coculture group. LC3 I levels were significantly increased
in the MSC coculture group compared to the aSyn group
(Figure 3A). Under these conditions, there were no significant
differences in the FAM134B and CCPG1 expression between
the control and aSyn groups, but MSCs elevated FAM134B
and CCPG1 levels relative to the aSyn group (Figure 3B).
Immunofluorescence staining showed that coculture with
MSCs for 6 hours led to increased co-localization of LC3
puncta with FAM134B (Figure 3C). These results suggest that
MSCs may regulate FAM134B-mediated ER-phagy early on,
with aSyn clearance by ER-phagy occurring later.

Enhancement of ER-phagy by MSCs has
neuroprotective effects and improves motor
deficits in the AAV-ER-aSyn model

To examine the effects of MSC-modulated ER-phagy in an-
imal models, we constructed viral vectors overexpressing
aSyn in the ER (ER-aSyn virus), confirmed to specifically
overexpress aSyn in the ER in our previous study.?* The virus
was directly injected into the SN region of mice, followed by
tail vein injection of MSCs. The in vivo experimental design
is illustrated (Figure 4A). We confirmed ER-aSyn expres-
sion in the midbrain tissue of mice (Supplementary Figure
1). Western blot analysis 4 d after MSC administration in
ER-aSyn mice showed about a 50% reduction in aSyn ex-
pression compared to aSyn-only mice. Protein analysis at
4-week post-MSC administration showed a marked decrease
in aSyn levels. CHOP expression was significantly increased
in ER-aSyn mice compared to control mice, and CHOP ex-
pression was decreased 1 and 4 weeks after MSC treatment
compared to the ER-aSyn group (Figure 4B).


https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szaf019#supplementary-data
https://academic.oup.com/stcltm/article-lookup/doi/10.1093/stcltm/szaf019#supplementary-data

6 Stem Cells Translational Medicine, 2025, Vol. 14, No. 6

A B

ER-asyn
Plasmid DNA

| Tranfection

— =t = — e

) 24hr . 24hr ‘ 24 or 48hr
seeding transfection MSC
co-culture
(3x104 or 1x105)
C 24hr co-culture 48hr co-culture
c c
.9 80~ *% .9 _
32 = 387 -
[ Q 1
CTRL aSyn MSC 24hr 50 © L 56 “
5 8 § 9 30
uSyn e D G . —— — ‘:040— co
32 e
P-actin | == w e e ——————— g%z‘" -g%w-
@ o @ o
-] -]
CTRL aSyn MSC 48hr asyn - + + asyn - + +
aSyn PRp———— Msc - - 4 MSC - - +
B-actin | e e am = - - o - - w—-— - 48hr co-culture
c
0 *
MSC MSC - n_:l 409 M
CTRL aSyn 3x10% 1x105 2 .
[- (&)
3
| — . — (] 2 hd
asSyn - a e o
|83
B-actin 8 ® " I I
S
e
aSyn - + + +
D MSC - - + ++
24hr co-culture 48hr co-culture
1.5 1.5+
- 1—|'l | * *
E 2 " * EE 8 b -. :
8 E B 8 E 0.5
e (4
0.0 T T T 0.0 T T T
aSyn - + o+ asSyn - + 4
MSC - - + MSC - - +
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Figure 3. MSCs promote the degradation of aSyn accumulated in the ER through FAM134B-mediated ER-phagy. (A) Western blot analysis for aSyn

and LC3 Il in control, ER-aSyn, and co-culture with MSCs groups (n = 4 per group). Quantification of aSyn and LC3 Il western blot analysis. (B) Western
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Further, we examined whether enhanced ER-phagy by MSCs
would affect dopaminergic neurons in the SN and presynaptic
neurons in the ST. Mice injected with ER-aSyn viruses in the SN
showed a significant decrease in TH-positive cells in the SN and
presynaptic dopaminergic neurons in the ST compared to control
mice. However, mice sacrificed four weeks after MSC adminis-
tration showed successful recovery of both nigral dopaminergic
neurons and striatal presynaptic dopaminergic neurons, with
DAT staining density comparable to control mice four weeks
after MSC administration (Figure 4C). Behavioral analysis
showed that ER-aSyn virus inoculation led to progressively
decreased latency to fall times on the Rotarod test compared to
control mice. However, MSC treatment in ER-aSyn mice signif-
icantly improved performance at 3 weeks and 4 weeks at the
ramp and constant testing on the Rotarod, respectively (Figure
4D). Additionally, in the pole test, control mice descended the
pole stably using all four paws, while virus-injected mice showed
impaired hind limb use, slid, and some even fell from the pole.
MSC administration improved the posture and stability of mice
while descending from the pole (Figure 4E).

MSCs promote FAM134B-mediated ER-phagy in
AAV-ER-aSyn model

To determine whether MSCs promote selective ER-phagy, we
analyzed ER-phagy-related proteins in the AAV-ER-aSyn an-
imal model. Western blot analysis four days after MSC admin-
istration in ER-aSyn mice showed an increased expression of
FAM134B compared to aSyn-only mice, reaching levels com-
parable to the control group. These results are consistent with
the in vitro 6-hours coculture data. No significant difference
was observed in FAM134B expression in animals sacrificed
at one week. However, mice sacrificed 4 weeks after MSC ad-
ministration unexpectedly showed decreased FAM134B ex-
pression compared to the ER-aSyn group (Figure 5A).

To investigate the autophagy flux over time, we analyzed
autophagy markers such as LAMP1, LC3, and the late
endosome marker Rab7. The expression of LAMP1 showed
no change among the groups at 4 days. However, 1 week after
MSC administration, ER-aSyn mice showed elevated LAMP1
expression compared to control mice (Figure 5B). These data
suggest that FAM134B expression increases at earlier time
points, followed by LAMP1 elevation later on.

Further, we analyzed LC3 protein to monitor autophagy
flux. Four days after MSC administration, LC3 II expres-
sion significantly increased compared to ER-aSyn and con-
trol mice, lasting until the one-week post-injection (wpi)
time point. However, one week after ER-aSyn injection, mice
showed increased LC3 1II protein as well, which may repre-
sent a cellular defense mechanism against misfolded protein
accumulation, and it was continued to the four-week post-
injection time point (Figure 5C). The late endosome marker
Rab7 was already increased 4 days after MSC administration
compared to the ER-aSyn and control mice. Rab7 expression
decreased over time, with significant difference at 1-week post-
injection. Four weeks after ER-aSyn injection, Rab7 expres-
sion decreased compared to control mice, with MSC-treated
groups showing even less expression than the ER-aSyn group,
correlating with FAM134B expression data (Figure 5D).

MSCs promote FAM134B-mediated ER-phagy by
modulating transcription factor NR4A1

To investigate the underlying mechanism of ER-phagy modu-
lation by MSCs, we screened known FAM134B transcription

Stem Cells Translational Medicine, 2025, Vol. 14, No. 6

factors, including myocyte enhancer factor 2D (MEF2D),
nuclear receptor subfamily 4 group A member 1 (NR4A1),
BTB domain, and CNC homolog 1 (BACH1), and zinc
finger and BTB domain containing 10 (ZBTB10).> Among
them, the mRNA level of NR4A1 in PC12 cells was signif-
icantly elevated with MSC coculture compared to ER-aSyn
overexpressing cells, followed by an elevation in FAM134B
(Figure 6A). Next, using NR4A1 siRNA, we tested whether
knockdown of NR4A1 would inhibit the effect of MSCs on
ER-phagy enhancement. Control siRNA-treated MSC groups
showed increased mRNA levels of FAM134B, whereas
NR4A1 siRNA-treated MSC groups showed significantly
decreased FAM134B levels. A triple siRNA sequence combi-
nation produced a higher knockdown of NR4A1 than single
siRNA knockdown, resulting in greater downregulation of
FAM134B (Figure 6B). Furthermore, the direct regulatory
relationship between NR4A1 and FAM134B, and the sub-
sequent enhancement of aSyn degradation was confirmed
(Figure 6C). We also analyzed NR4A1 protein expression
in the AAV-ER-aSyn animal model. As expected, four days
after MSC administration, there was an elevation in NR4A1
expression compared to ER-aSyn injected mice (Figure 6D).
These data suggest that MSCs promote FAM134B-mediated
ER-phagy through the regulation of the transcription factor
NR4AT1 in cellular and murine Parkinsonian models.

Discussion

This study aimed to elucidate the mechanisms by which
MSCs promote selective ER-phagy to clear ER-aSyn, the
accumulated aSyn in ER of parkinsonian models. The major
findings are: (1) MSCs enhance ER-aSyn clearance and restore
ER and cellular function by inducing FAM134B-mediated
selective ER-phagy; (2) MSC-enhanced ER-phagy exhibits
neuroprotective effects in a PD model with nigral injection of
AAV-ER-aSyn; and (3) MSCs regulate ER-phagy through the
transcription factor NR4A1. These results suggest that MSCs
modulate ER-aSyn via selective ER-phagy, demonstrating
neuroprotective properties in PD models.

Several studies have reported that aSyn accumulates
in the ER in synucleinopathies,!' causing ER stress and
dysfunction.!®!4042 Qur previous work also supports the ac-
cumulation of aSyn in the ER of patients with PD and aSyn
transgenic mice.”* Misfolded proteins in the ER are typi-
cally processed through either ER-associated degradation
(ERAD) or autophagy.* ERAD involves the retranslocation
of accumulated proteins into the cytosol for proteasomal
degradation, whereas autophagy involves lysosomal degra-
dation.*** ER stress-induced autophagy can be selective or
nonselective. Although many studies have detailed the selec-
tive autophagic process and its receptors, specific research
on ER-phagy in neurodegenerative diseases such as PD and
Alzheimer’s disease (AD) is limited. Our previous study
demonstrated that enhancing selective ER-phagy can pro-
mote the clearance of ER-aSyn, resulting in neuroprotective
effects.”

In this study, we evaluated whether MSCs enhance selec-
tive ER-phagy in PD models. Ample evidence indicates that
MSCs exert neuroprotective effects by secreting neurotropic
molecules that modulate the neurodegenerative microenviron-
ment.***”We previously reported that MSC treatment augments
autophagolysosome formation, providing neuroprotective
effects in PD?® and AD models.*® Here, we found that MSCs
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Figure 5. MSCs promote FAM134B-mediated ER-phagy in the AAV-ER-aSyn model. (A) Western blot analysis for FAM134B in control, ER-aSyn
virus, and MSC-treated groups (n = 5 per group). Quantification of FAM134B western blot analysis. (B) Western blot analysis for LAMP1 in control,
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promote ER-aSyn clearance and reduce ER stress through
selective ER-phagy, leading to neuroprotective effects in an
AAV-ER-aSyn animal model. When aSyn is overexpressed
in the ER, cell viability significantly decreases due to severe

ER stress, which is mitigated by MSC co-culture. Using the
Keima protein, we confirmed that ER-aSyn was degraded
through selective ER-phagy. While MSCs took about 48 h
to clear ER-aSyn, the modulation of the ER-phagy receptor
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FAM134B occurred as early as 6 hours post co-culture. At
this early time point, the effects of MSCs on ER-aSyn and
CHOP were not evident, implying that receptor modulation
is necessary before target protein degradation and subsequent
ER stress attenuation. In vivo, AAV-ER-aSyn virus inocula-
tion in the SN caused significant dopaminergic neuron loss
and motor deficits. Consistent with in vitro findings, MSC
administration increased FAM134B expression 4 d post-
injection, cleared ER-aSyn 1-week post-injection, and attenu-
ated CHOP expression 4 weeks post-injection. Dopaminergic
neuron loss in the SN and striatal denervation were signifi-
cantly reduced in MSC-treated animals, resulting in improved
performance on the rotarod and pole tests. Both cellular and
animal data imply that: (1) misfolded protein accumulation
in the ER triggers ER stress; (2) MSC treatment in ER-aSyn
conditions elevates ER receptor expression early on; and (3)
target protein is subsequently degraded through ER-phagy,
alleviating ER stress.

Although recent studies have identified several ER-phagy
receptors, their regulatory mechanisms are not well under-
stood. FAM134B isoform, FAM134B-2, is known to be
induced under amino acid starvation and regulated by tran-
scription factors such as MEF2D, NR4A1, BACH1, and
ZBTB10.3® Among these, NR4A1 was upregulated by MSCs
in both our cellular and animal PD models, followed by an
increase in FAM134B. Using NR4A1 siRNA, we confirmed
that NR4A1 suppression specifically counteracted the effect
of MSCs on FAM134B induction in ER-aSyn overexpressing
PC12 cells. This modulatory effect of NR4A1 was further
supported by in vivo samples, showing that MSC-injected
mice expressed higher levels of NR4A1 compared to
ER-aSyn mice. Thus, this study provides evidence that MSCs
promote FAM134B-mediated ER-phagy to clear aSyn via
modulation of the transcription factor NR4A1. NR4A1 is
an intracellular transcription factor known to play a key role
in inflammatory responses and attenuate oxidative stress in
PD models.* Additionally, NR4A1 is elevated in a 6-OHDA-
induced PD rat model, while genetic disruption of NR4A1
induces dopaminergic cell loss in the SN.°° Although several
studies have reported associations between NR4A1 and the
dopamine system in PD models, our study is the first to in-
vestigate the involvement of NR4A1 in selective ER-phagy.
The finding that MSCs enhance NR4Al-regulated and
FAM134B-mediated ER-phagy presents a promising thera-
peutic strategy for PD.

Conclusions

This study demonstrates that MSCs promote FAM134B-
mediated ER-phagy, providing a pro-survival effect in a PD
cellular model and a neuroprotective effect in a PD animal
model. These findings reveal a novel function of MSCs in
modulating FAM134B-mediated ER-phagy, suggesting it as a
promising therapeutic strategy for PD.
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