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ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA)
is a major cause of healthcare-associated infections including
bacteremia. The rapid detection of MRSA is essential for prompt
treatment and improved outcomes. However, traditional MRSA
screening and confirmatory tests based on bacterial cultures with
antimicrobial susceptibility tests and/or molecular diagnostics are
time-consuming (>2 days), labor-intensive, and costly. We report
that AMRQuest software, which was developed using logistic
regression-based machine learning and matrix-assisted laser
desorption/ionization-time-of-flight spectra of S. aureus isolates,
can be successfully implemented in clinical microbiology
laboratories to screen MRSA and identify bacterial species
simultaneously, with the cefoxitin disk diffusion test as a reference.
Analytical sensitivity, specificity, percent agreement, and Cohen’s kappa values were calculated to determine the accuracy of the
AMRQuest software. The minimum sample size of the testing set for statistical analysis was determined considering the local
prevalence of MRSA infections. MRSA screening was performed using 537 consecutive S. aureus isolates, including 231 MRSA and
306 methicillin-susceptible S. aureus isolates, from three tertiary-care hospitals. The results from the AMRQuest software were
similar to those obtained using the reference method, cefoxitin disk diffusion testing, making it a powerful method for the rapid
detection of MRSA prior to traditional antibiotic resistance testing.

Methicillin-resistant Staphylococcus aureus (MRSA) is a
major cause of healthcare-associated infections.1 In-

fectious diseases caused by MRSA tend to occur more
frequently in patients who undergo invasive procedures or
are immunocompromised. In hospitals, MRSA threatens the
lives of patients by causing bacteremia, pneumonia, surgical
wound infection, and skin diseases, even in healthy
individuals.2,3 There is a risk of harm to the patient due to
failure of the initial treatment when antibiotic-resistant bacteria
are determined to be susceptible. Additionally, this can lead to
unnecessary treatment costs and manpower usage because
antibiotic-susceptible bacteria are resistant. Therefore, rapid
detection of MRSA is essential for the prompt and appropriate
treatment of MRSA infections to improve treatment outcomes.

Broth dilution and disk diffusion tests are widely used for
MRSA screening and confirmatory testing.4 However, these
tests require at least 2 days to obtain results. Molecular
diagnostics involve same-day PCR, sequencing, and DNA chip
detection of the staphylococcal cassette chromosome mec
(SCCmec), a mobile genomic element containing the mecA
gene that induces methicillin resistance in S. aureus.5 However,
these methods are costly and labor-intensive.

Matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS) has recently been
used in clinical microbiology laboratories to identify various
pathogens based on protein and peptide profiles.6−8 Moreover,
MALDI-TOF MS can accelerate the detection of resistance
compared with conventional antibiotic susceptibility tests.9−12

A small peptide (PSM-mec), which is encoded by SCCmec
types II, III, and VIII and is visible at m/z 2415, can be used
for MRSA screening using MALDI-TOF MS.13 However, this
method was only effective for coagulase-negative staphylococci
because only 29.4% of MRSA isolates contained the PSM-mec
peptide.

In this study, AMRQuest software was developed to screen
for MRSA and identify bacterial species simultaneously. The
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AMRQuest software provides a score that represents the
likelihood that the bacterial isolate is MRSA by comparing the
MALDI-TOF spectra of S. aureus with the database using a
machine learning technique. We embedded the AMRQuest
software into the MALDI-TOF MS with a bacterial
identification system and used it to identify S. aureus isolates
from patients and perform methicillin-resistance testing
simultaneously, enabling faster treatment of patients with

severe MRSA infections and preventing unnecessary anti-
microbial overuse.

■ EXPERIMENTAL SECTION
Development of AMRQuest Software. AMRQuest

software was developed to screen for MRSA based on machine
learning techniques and statistical criteria for MRSA
classification (Figure 1). First, the AMRQuest software was
trained using a machine learning technique for MRSA

Figure 1. Workflow of the AMRQuest software which is the MALDI-TOF MS-based methicillin-resistant S. aureus (MRSA) screening system. (a)
Processing of MALDI-TOF mass spectra for machine learning. (b) Training process and structure of AMRQuest software. AMRQuest software was
designed as a module that can use MALDI-TOF spectra after S. aureus identification without additional MALDI process. (c) Randomized, single-
blind study design for clinical evaluation of AMRQuest software. Minimum number of MRSA and methicillin-susceptible S. aureus (MSSA) isolates
were calculated by using meta-analysis of the disease prevalence in Korea.
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screening. For training, 430 MRSA and 497 methicillin-
susceptible S. aureus (MSSA) isolates were identified using the
oxacillin disk diffusion test and SCCmec typing by PCR. Mass
spectra of each S. aureus isolate were obtained using
MicroIDSys LT MALDI-TOF system (ASTA, Suwon,
Korea), as described in Supporting Information. The mass
spectra of each isolate were processed in the following order:
quality control, smoothing, baseline correction, intensity
calibration, peak detection, and calculation of the intensity
matrix, using the MALDIquant package version 1.17 function
of R version 3.4.3.14 Subsequently, the feature matrix, which
was composed of the mass values and intensities of the
universal peaks, was obtained by binning the spectra in the m/z
range of 5. To evaluate the contribution of the features in
screening for MRSA, SHAP using the shap package15 and
ANOVA analyses for each binned mass range were performed
for both the MRSA and MSSA groups. Finally, the AMRQuest
software was configured to load the MALDI-TOF mass
spectrum of the S. aureus isolate and identify MRSA using the
AMRQuest score, which was determined as the likelihood of
the isolate being MRSA using a machine learning algorithm.
Collection of Bacterial Isolates for Testing Set. This

study was conducted between April 2020 and September 2020
at three university-affiliated teaching hospitals: Yonsei
University Severance Hospital (Seoul, Republic of Korea),
Hallym University Kangdong Sacred Heart Hospital (Seoul,
Republic of Korea), and Seoul National University Bundang
Hospital (Seongnam, Republic of Korea). In total, 537
Staphylococcus aureus strains were isolated from clinical blood
cultures from April 2011 to November 2019 at three hospitals,
as shown in the optimal sample size calculation described in
the Supporting Information. All S. aureus isolates were
identified by a MicroIDSys LT MALDI-TOF MS with
MicroID CoreDB version 1.27.04 (ASTA, Suwon, Korea).
To distinguish between MRSA and MSSA, antibiotic
susceptibility of each S. aureus isolate was determined using
the conventional methods including minimum inhibitory
concentration (MIC) for oxacillin or cefoxitin, conducting
the disk diffusion test with 30 μg of cefoxitin disk, or detecting
the mecA gene. According to the CLSI guideline,16 the isolates
were determined as MRSA if the MIC was greater than or
equal to 4 and 8 μg mL−1 for oxacillin and cefoxitin,
respectively, inhibition zone diameter around the cefoxitin
disk (30 μg) was less than or equal to 21 mm, or the mecA
gene were detected.

To conduct a randomized, single-blind study, S. aureus
isolates were randomly labeled and delivered to a different
“tester” hospital from the “collector” hospital that isolated the
S. aureus to conduct MRSA screening using AMRQuest, as
shown in Figure 1c.
MRSA Screening Using AMRQuest Software. Prior to

MRSA screening, the randomized S. aureus isolates were
identified again using the MALDI-TOF MS and stored at−80
°C in the tester hospital. For MALDI-TOF bacterial
identification, each isolate was grown on a blood agar
(Shinyang Diagnostics, Siheung, Korea) for 12−18 h at 35
°C. Mass spectra of each S. aureus isolate were obtained and
identified in the same way as for the training set.

MRSA screening using AMRQuest was performed at the
Yonsei University Severance Hospital and Hallym University
Kangdong Sacred Heart Hospital when the isolate was
identified as S. aureus. Mass spectra of the identified S. aureus
were exported to AMRQuest software and determined as

either MRSA or MSSA. The AMRQuest score of each S. aureus
isolate, which represents the likelihood of the sample being
MRSA according to the machine learning algorithm, was used
to distinguish between MRSA and MSSA isolates. S. aureus
isolates with an AMRQuest score ≥ 0.5, were classified as
MRSA, while isolates with a score <0.5, were classified as
MSSA. To indicate uncertainty about scores around the cutoff
score, the gray zone (i.e., low-confidence prediction range) was
set to the range of cutoff score ± 0.1, i.e., 0.4−0.6.
Evaluation of Clinical Performance of AMRQuest

Software. To evaluate the clinical performance of AMRQuest,
diagnostic performance parameters, including PPV, NPV,
sensitivity, specificity, and Cohen’s kappa (K), were calculated
from the results of AMRQuest and compared to those of
conventional tests and the cefoxitin disk test, following the
Evaluation Guideline of Clinical Performance for In Vitro
Diagnostic Device from the Korean National Institute of Food
and Drug Safety Evaluation.17 The clinical evaluation was
conducted in two stages. First, the PPV and NPV of
AMRQuest were calculated to determine its applicability in
clinical microbiology laboratories to screen for MRSA. The
targeted PPV was 84.8%, and the lower bound of the 95%
confidence interval was greater than or equal to 70.3%.
Similarly, the targeted NPV was 80.3% and the lower bound of
the 95% confidential interval needed to be greater than or
equal to 73.7%. Second, the PPA (sensitivity), PNA
(specificity), and overall percent agreement were compared
with the cefoxitin disk diffusion test results, which served as the
standard for the AMRQuest software test results, and were
performed by the tester hospital after sample randomization
and anonymization. Then, the clinical performance of
AMRQuest was evaluated using Cohen’s kappa (K) that was
obtained by using the following equations and the parameters:

= + + +t a b c d (1)

= +a a d tPr( ) ( )/ (2)

= + + + + +e a c b d t a b c d tPr( ) ( )( )/ ( )( )/2 2 (3)

= [ ] [ ]K a e ePr( ) Pr( ) / 1 Pr( ) (4)

Here, a, b, c, and d represent the true-positive, false-positive,
false-negative, and true-negative values, respectively.
SCCmec Typing PCR. Isolates that were identified as false

negatives or false positives were inspected using SCCmecA
typing PCR, as described previously.18 Briefly, DNA was
isolated from S. aureus colonies using a HiYield Genomic DNA
Mini Kit (Real Biotech Corporation, Banqiao City, Taiwan),
according to the manufacturer’s instructions. PCR was
performed using QIAGEN Multiplex PCR Master Mix
(QIAGEN, Hilden, Germany) and SCCmec element-type
primers.19

Statistical Analysis. All experiments were randomized and
single-blinded using the same setup. Potential biomarkers were
identified by ANOVA and the SHAP method using the Shap
package, which ranked the significance of the feature m/z
ranges.4,15 MedCalc software version 20.019 for Windows
(MedCalc Software Ltd.) and OriginPro 2022 software version
9.9.0.225 for Windows (OriginLab Corp.) were used for all the
statistical analyses. The Mann−Whitney unpaired test was
used to examine the differences in scores between MRSA and
MSSA. AUC and PR curves were used to evaluate the
diagnostic ability of the AMRQuest score as a criterion for
MRSA screening.
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Ethical Approval. The research protocol was approved by
the Institutional Review Board (IRB) of Severance Hospital
(IRB number: 4-2019-1195). All study procedures were
performed in accordance with the relevant guidelines and
regulations. All clinical samples were anonymized before the
cefoxitin disk diffusion test and clinical evaluation using the
AMRQuest software for a single-blinded study.

■ RESULTS AND DISCUSSION
Development and Training of AMRQuest Software. S.

aureus isolates for the development and training of a machine
learning-based MRSA screening software, AMRQuest, were
collected as a training set containing 927 S. aureus isolates,
independent of the testing set. The feature matrix from the
MALDI-TOF mass spectra of the training set−430 isolates of
MRSA and 497 isolates of MSSA was used to train the
machine-learning-based MRSA screening software AMRQuest.
MALDI-TOF MS was performed in the mass range of 2,000−
20 000 Da to identify S. aureus. After identification, each
spectrum was prepared as a feature matrix for training via peak
adjustment, merging, and binning with an m/z range of 5
(Figure 1a). The binned spectrum samples were randomly split
into training and testing data sets in a ratio of 4:1 to train the
logistic regression machine learning algorithm. The AMR-
Quest software, as an independently operating clinical software
tool, was configured to load the MALDI-TOF mass spectra of
the S. aureus isolate, as shown in Figure 1b. For the testing set,
537 S. aureus isolates were collected from three tertiary care
hospitals according to the calculation of the minimum sample
size based on a meta-analysis20 and disease prevalence in
Korea21 as described in Supporting Information. In total, 98,
70, and 369 S. aureus isolates were collected at Yonsei
University Severance Hospital, Hallym University Kangdong
Sacred Heart Hospital, and Seoul National University Bundang
Hospital, respectively. A total of 231 MRSA isolates were
identified using the cefoxitin disk diffusion test, according to
the CLSI guidelines.16 All MRSA and MSSA isolates were
numbered randomly and delivered from the “collector”
hospital to the “tester” hospital for MRSA screening and
clinical performance evaluation by AMRQuest software, as
shown in Figure 1c.

Twenty features of m/z range with the highest contribution
to distinguishing between MRSA and MSSA from logistic
regression were extracted using the Shapley additive
explanation (SHAP) method and ANOVA, as shown in Figure
2. The SHAP value, based on the Shapley value in game
theory, indicates the contribution of each feature in the
machine learning model to the prediction.15 The SHAP value
for each spot indicated the contribution of the feature value or
average peak intensity of that mass range to the determination
of MRSA using AMRQuest. As shown in Figure 2a, the m/z
ranges of 3005−3010, 3010−3015, and 4810−4815, which
indicated the highest average absolute SHAP values, were
effectively used for MRSA screening by logistic regression.
Most of the feature m/z values with the highest contributions
were distributed below 10 000 Da. Analysis of variance
(ANOVA) was performed to analyze the upregulation of the
average intensity in the individual feature mass range. As
shown in Figure 2b, the average intensities in the m/z ranges
2410−2425, 2430−2445, 2450−2460, 3890−3900, 4045−
4050, 4810−4820, and 5240−5245 were upregulated in
MRSA, whereas the average intensity in the m/z range
5500−5530 was upregulated in MSSA. Among the features

Figure 2. Contribution of feature m/z ranges to MRSA screening. (a)
Shapley additive explanations (SHAP) values of the 20 most impactful
feature m/z ranges. A positive SHAP value represents the
contribution to the determination of MRSA. (b) ANOVA results of
the top 20 features ordered by magnitude of upregulation in MRSA or
MSSA and their SHAP plot. * Previously identified m/z features. § m/
z features in the top 20 for both ANOVA and SHAP analysis.
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determined to be upregulated in MRSA and MSSA by
ANOVA, m/z 2410−2420, 3890−3900, 4045−4050, 4810−
4820, and 5510−5525 showed similar contributions in
determining MRSA and MSSA in the SHAP plot. These
results suggest that individual features with significant
upregulation in MRSA or MSSA can be used as effective
features in logistic regression-based MRSA screening. How-
ever, only three features were found to contribute significantly
to both individual marker (ANOVA) and multimarker
(SHAP) screening.

Various proteins have been suggested as markers for
distinguishing between MRSA and MSSA. The targets
identified for the feature m/z ranges that showed a high
contribution to SHAP and ANOVA analyses are listed in Table
S2, Supporting Information. Among the 38 significant features
(top 20 feature m/z ranges in SHAP and ANOVA), 17
features, including the phenol-soluble modulin (PSM)-mec
peptide,6,22,23 formylated delta-toxin,22,24−26 50S ribosomal
proteins L30, L32, and L36,25−27 DNA-binding protein
HU,27,28 uncharacterized proteins,25,27 and unidentified mass
peaks indicating differences in MRSA and MSSA,28−33 were
reported in previous studies. In particular, the uncharacterized
protein SA2420.1 (m/z 3890−3895), PSM-mec peptide (m/z
2415−2420), and SAS049 (m/z 5505−5510) were ranked
second, fourth, and fifth, respectively, in ANOVA analysis,
whereas the DNA-binding protein HU (m/z 4810−4815) was
ranked second only in SHAP analysis. The PSM-mec peptide
(m/z 2415), a known signature biomarker of MRSA, ranked
10th in the SHAP analysis, and 13 of the top 20 features
identified by SHAP analysis have not yet been identified.
These results indicate the existence of additional biomarkers or
the possibility of mass shifts by modification of existing
biomarkers due to methicillin resistance, which are important
for multifeature-based MRSA screening.
MRSA Screening of Testing Set Using AMRQuest

Software. AMRQuest software was installed on the Micro-
IDSys LT MALDI-TOF MS system to enable loading of mass
spectra within the m/z range 2,000−20,000 which were used
for microbial identification of S. aureus. The results of the
AMRQuest test were obtained with scores ranging from 0.0 to
1.0. The AMRQuest scores represent the likelihood of MRSA
detection using a machine learning model. The results of

MRSA screening using the AMRQuest score were compared
with those of the cefoxitin disk diffusion test as a standard
MRSA screening test, as shown in Figure 3. A violin plot was
prepared using the AMRQuest scores of the test set, which
included 231 MRSA and 306 MSSA isolates. The AMRQuest
scores of MRSA isolates had a higher median value (0.99995)
than those of MSSA isolates (1.82498 × 10−4). The Mann−
Whitney unpaired test confirmed that MRSA and MSSA were
clearly categorized using the AMRQuest score (P < 0.0001),
with only seven isolates being classified differently using the
cefoxitin disk diffusion test. Three S. aureus isolates were found
to be in the gray zone: one false negative, one true positive,
and one true negative according to a cutoff score. Receiver
operating characteristic (ROC) and precision-recall (PR)
curves were obtained using the AMRQuest score, and the
results of MRSA determination were obtained using reference
methods. The S. aureus isolates with a score in the gray zone
were considered false positives or false negatives. The areas
under the ROC curve (AUROC) and PR curve (AUPRC)
were estimated to be 0.979 and 0.973, respectively (Figure 3c,
d). In addition, when the cutoff value for screening MRSA
using AMRQuest was set to >0.5, the sensitivity, specificity,
precision, and recall of AMRQuest for the testing set were
98.7%, 97.7%, 97.4%, and 98.7%, respectively. Using the
cefoxitin disk diffusion test as a reference method, the PPVs
and NPVs of the AMRQuest test using 537 S. aureus isolates
were 97.4% and 99.7%, respectively. The percent positive
agreement (PPA; sensitivity), percent negative agreement
(PNA; specificity), and overall percent agreement of
AMRQuest were 98.7%, 97.7%, and 98.1%, respectively.
Cohen’s kappa coefficient, which evaluates the level of
agreement between AMRQuest and the reference method,
was 0.96. These results show that the AMRQuest test can be
used for rapid MRSA screening with high clinical performance,
consistent with the reference MRSA screening method.

In terms of screening, a high PPV is required to decrease the
false-positive ratio, because a high false-positive ratio is one of
the reasons for unnecessary overtreatment and the induction of
antibiotic resistance. In a previous study based on a
mathematical model simulation, the importance of PPV as a
diagnostic criterion increased with a higher prevalence of the
disease.34 The simulation showed that the PPV increased from

Figure 3. MRSA screening performance of AMRQuest software. (a) Confusion matrix, (b) Violin plot, (c) the receiver operating characteristic
curve, and (d) the precision-recall curve of analysis results using AMRQuest software from testing set including MRSA (n = 231) and MSSA (n =
306). The whiskers in violin plot indicated the 5th and 95th percentiles. The horizontal dotted line (score = 0.5) represents the cutoff AMRQuest
score. The score range of 0.4 to 0.6, indicated by the gray zone, represents the low-confidence prediction range. The ROC curve and the PR curve
were plotted considering that the S. aureus isolates with the AMRQuest score in the gray zone were false positives or false negatives. AUROC, area
under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve.
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50% to 90% when the prevalence increased from 5% to 50%.
The prevalence of MRSA infection in Korea from 2016 to
2017 was reported to be 43.25% according to the Korea
Disease Control and Prevention Agency.21 The results of this
study, including 97.4% PPV and 99.7% NPV, indicate that the
AMRQuest software fulfills the PPV and NPV calculated from
the meta-analysis. Moreover, the AMRQuest software showed
high PPV and NPV regardless of where the bacteria were
collected and evaluated. The PPV of the AMRQuest MRSA
screening test using S. aureus isolates collected at Yonsei
University Severance Hospital, Hallym University Kangdong
Sacred Heart Hospital, and Seoul National University Bundang
Hospital were 98.3%, 97.1%, and 97.1%, respectively, whereas
the NPV were 100%, 97.1%, and 100%, respectively, indicating
consistent clinical performance regardless of the collection and
testing location (Table S3, Supporting Information). The
AMRQuest software, which was embedded into the Micro-
IDSys LT MALDI-TOF MS system, loaded the mass spectrum
of bacteria directly. Then, S. aureus identification and MRSA
screening can then be performed simultaneously. In terms of
turnaround time, conventional phenotypic antimicrobial
susceptibility testing methods, including broth microdilution,
disk diffusion testing, modified Hodge testing, and automated
devices, require more than 1 day after bacterial identification.
In the case of molecular diagnostics, it cannot be used when
the resistance gene is not well characterized. However, in the
case of SCCmec in S. aureus, antimicrobial susceptibility testing
is possible within 2 to 4 h after bacterial identification and
initial culture. In this study, methicillin-susceptibility testing
using AMRQuest could be completed within a few seconds,
immediately after MALDI-TOF MS bacterial identification.
These results indicate that the AMRQuest software can be

used for the rapid and accurate screening of MRSA infections
before conventional antimicrobial susceptibility testing.
SCCmecA PCR Gel Electrophoresis. To confirm the

discrepancy between the cefoxitin disk diffusion test and
AMRQuest MRSA screening, the mecA gene was detected
using PCR gel electrophoresis. Among 231 MRSA isolates,
117, 4, 39, and 70 mecA genes of types II, III, IV, and IVA,
respectively, were detected. The SCCmec type of cefoxitin-
resistant S. aureus strain, which was identified as MSSA by
AMRQuest, was confirmed to be MRSA with SCCmec type IV.
In addition, six cefoxitin-susceptible S. aureus strains screened
for MRSA using AMRQuest were confirmed to be MSSA. For
S. aureus in the gray zone, the results of the cefoxitin disk
diffusion test and the SCCmec test were consistent.
Evaluation of Clinical Performance of AMRQuest

Software. Recently, various studies on MRSA screening using
MALDI-TOF MS based on machine learning models have
been conducted (Table 1). To apply machine learning to mass
spectrometry data, significant mass peaks can be selected to
remove potential noise peaks that may induce a lower
discriminating power. Wang et al. selected a feature peak set
consisting of 193 mass peaks ranging from m/z 2000 to 20000,
using the sequential forward selection method after evaluating
all mass peaks using the Pearson correlation coefficient and
one-rule strategy.31 Similarly, Liu et al. selected 38 mass peaks
using least absolute shrinkage and selection operator
regression.35 The selection of a small number of feature mass
peaks for MRSA screening requires consistent updating and
evaluation of the feature list to ensure that the emerging MRSA
groups can be screened. In contrast, in several studies,
including the present one, the mass spectrum ranging from
m/z 2000 to 20000 was binned into fixed m/z intervals, and
the sums4 or normalized averages36 of the bins were used as

Table 1. Previous studies on MRSA screening using MALDI-TOF MS based on machine learninga

Sample sizeb

MRSA MSSA Feature size Machine learning model Sensitivity (%) Specificity (%) AUC Reference

Selected Mass Peak Features
732 788 193 DT 69.8 72.8 0.750 Wang et al. (2021)31

RF 76.5 76.5 0.849
KNN 75.3 75 0.829
SVM 74.2 74.2 0.811

194 258 38 RBF-SVM 84 88 0.89 Liu et al. (2021)35
RF 74 88 0.87

Features with Mass Spectra Binned into Fixed m/z Intervals
72 110 508c SVM 75.0 95.5 0.866 Kong et al. (2022)37

DT 72.2 80 0.796
RF 68.1 81.8 0.824
PR 51.4 91.8 0.824

NAd NA 6,000 (bin size 3) LightGBM NA NA 0.80 Weis et al. (2022)4
LR NA NA 0.75
MLP NA NA 0.79

8305e 6252 1,800 (bin size 10) LightGBM 72−83f 65−88 0.78−0.91 Yu et al. (2022)36
106 88 3,600 (bin size 5) RF 91.8 83.3 0.876 Jeon et al. (2022)18
231 306 3,600 (bin size 5) LR 98.7 97.7 0.979 This study

aFeatures for machine learning were selected from mass peaks or set as the sum of intensities of fixed-interval bins of mass spectra in the m/z
2,000−20,000 range. Abbreviations: MRSA, methicillin-resistant S. aureus; MSSA, methicillin-susceptible S. aureus; AUC, area under the receiver
characteristic curve; DT, decision tree; RF, random forest; KNN, K-nearest neighbor; SVM, support vector machine; LightGBM, light gradient
boosting machine; LR, logistic regression; MLP, multilayer perceptron; RBF, radial basis function; PR, polynomial regression; NA, not available.
bTesting set only. cVariable bin size according to the peak width. dData set over 300,000 mass spectra profiles and 750,000 antimicrobial resistance
phenotypes from four medical institutions; eSum of isolates collected from five hospitals in China and Taiwan. fClinical performance from
individual evaluations at five hospitals.
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features. Kong et al., used a modified binning method by
adjusting the bin size according to the peak width.37 Bin size
can be optimized to improve the clinical performance of
MRSA screening.31 However, reducing the bin size is not the
only strategy because of the low resolution of MALDI-TOF
MS, which can affect feature selection. Machine learning
models, including decision trees, random forests, k-nearest
neighbors, support vector machines, light gradient boosting
machines, logistic regression, multilayer perceptron, and
polynomial regression, have been evaluated in various
studies4,18,31,35−37 and all showed AUCs above 0.75, up to
0.91. The logistic regression-based AMRQuest software used
in this study showed significantly higher clinical performance
than previous studies and improved results compared to the
previous version based on the random forest model with small
cohorts.18

As shown in Figure 2, the feature m/z ranges for screening
MRSA using the logistic regression model were mainly
distributed from m/z 2410 to 9635. Among the feature m/z
ranges, m/z 3000−3010 and 3895−3900 had the highest AUC
of 0.641 (P < 0.0001), and the m/z 2,415−2,420 range,
including the PSM-mec peptide in some MRSA cases, had an
AUC of 0.599 (P = 0.0001), as shown in Table S4 (Supporting
Information). Any individual feature, including the m/z ranges
3010−3015 and 5510−5515, which exhibited the highest
contributions in the SHAP and ANOVA analyses, respectively,
was found to have an insufficient AUC (0.614 and 0.631,
respectively) for MRSA screening. Additionally, the sensitivity
and specificity of each individual feature m/z range were
calculated using Youden J statistics for each ROC curve.38 For
example, the sensitivity and specificity of m/z 3010−3015 were
45.45% and 74.51%, respectively, whereas those of m/z 5510−
5515 were 85.28% and 35.95%, respectively. As shown in
Figures S1−2 (Supporting Information), although MRSA and
MSSA could be distinguished by most feature m/z ranges with
significant p values, when any certain cutoff intensity was set,
significant false positives and false negatives were observed.
These results indicated that neither feature m/z range
possessed sufficient clinical performance for use as a single
marker for MRSA screening. In contrast, AMRQuest software
with a logistic regression model using multiple feature m/z
ranges showed excellent clinical performance, with an AUC of
0.979, sensitivity of 98.7%, specificity of 97.7%, and positive
and negative predictive values of 97.4% and 99.6%,
respectively, for the 537 S. aureus isolates in the testing set.
Moreover, to evaluate the agreement level between the
cefoxitin disk diffusion test as the reference MRSA screening
method and the AMRQuest software, Cohen’s kappa (K) was
used as a statistical method to evaluate agreement between 0
and 1.39 K = 0 indicates completely different evaluations, and K
= 1 indicates perfect agreement. In this study, Cohen’s kappa
for AMRQuest was 0.96, indicating near-perfect agreement.
Therefore, the AMRQuest, which is based on a logistic
regression model, can be considered an effective method for
MRSA screening.

Nevertheless, our study has some limitations that should be
considered. There were insufficient cases of discrepancy
identified from the SCCmec analysis to determine the cause
of false positives and false negatives in the AMRQuest
software. In all eight cases of discrepancy between the cefoxitin
disk diffusion test and the results of the AMRQuest MRSA
screening, the cefoxitin disk diffusion test was confirmed to be
correct by SCCmec type analysis. These results indicate that

the cefoxitin disk diffusion test can be used to correctly detect
MRSA; however, further studies are required to determine the
cause of this discrepancy. Although more S. aureus isolates
were collected for AMRQuest than the minimum number to
achieve statistical significance based on prevalence and meta-
analysis, further evaluation is needed on S. aureus samples from
various regions. The feasibility of AMRQuest to identify
resistant to methicillin for bacterial species other than S. aureus
has not yet been validated. In this study, MRSA screening was
performed using MALDI-TOF mass spectra that were
subsequently confirmed to be S. aureus after bacterial
identification, because AMRQuest software was trained with
only S. aureus. Consequently, it was essentially impossible for a
mass spectrum from a non-S. aureus isolate to be loaded into
the AMRQuest system. In the future, if the scope of
AMRQuest is expanded by adding other bacterial species
and other antimicrobial resistance testing algorithms, it is
necessary to assign the appropriate screening algorithm based
on the results of the bacterial identification.

■ CONCLUSION
In summary, we presented the AMRQuest software based on
MALDI-TOF MS and logistic regression as a rapid MRSA
screening method. The results of MRSA screening by
AMRQuest using 537 S. aureus isolates suggested that MRSA
could be successfully identified with a high clinical predictive
performance. Additionally, the AMRQuest results were similar
to those of the cefoxitin disk diffusion test, which was used as
the reference method. ANOVA and SHAP analyses were used
to determine the contribution of each feature m/z range, and it
was confirmed that multifeature-based screening with machine
learning was more suitable for MRSA discrimination than
single-marker analysis. Compared with previous studies that
used various machine learning techniques, the AMRQuest
software based on logistic regression showed significantly
better performance. In conclusion, it is suggested that the
AMRQuest software can be used as a rapid MRSA screening
method in a clinical laboratory, and further studies are needed
to determine the causes of the discrepancy from the reference
method as well as to identify unknown features.
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