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CANCER

Radiotranscriptomics in papillary thyroid carcinoma
complement current noninvasive risk

stratification system

Dong Hyun Seo't, Eunjung Lee’t, Jung Hyun Yoon>3t, Eun Gyeong Park'+, Sunmi Park’,
Hwa Young Lee?, Joon Ho®, Cho Rok Lee®, Kyunghwa Han?, Jandee Lee?*,

Jin Young Kwak3*, Young Suk Jo'*

Papillary thyroid carcinoma (PTC) generally has a favorable prognosis; however, overtreatment persists because
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of the lack of reliable noninvasive risk stratification tools. This study developed a radiomics-based approach to
enhance the preoperative assessment of PTC. Imaging features from 255 patients were analyzed, and three tumor
clusters were identified via unsupervised clustering, with one cluster (Cluster 2) displaying favorable clinical and
molecular profiles. A radiomics score was constructed and validated internally and externally, achieving high di-
agnostic accuracy (area under the curve of 0.98) and independently predicting benign features such as a lower N
stage and favorable treatment responses. Transcriptomic analysis revealed immune activation and survival-
related gene expression in Cluster 2. The model demonstrated robust performance in stratifying patients for ac-
tive surveillance and may complement current diagnostic frameworks, offering a precise, noninvasive tool to

guide clinical decision-making.

INTRODUCTION

Although the global incidence of thyroid cancer has been on the
rise, in some countries, it has stabilized, largely due to widespread
high-quality imaging refining detection practices (1). Advance-
ments in ultrasound (US) techniques have considerably increased
the early detection of cancer, particularly in the microcarcinoma
stage (2). However, 90% of patients with thyroid cancer are diag-
nosed with papillary thyroid carcinoma (PTC), which is associated
with a favorable prognosis and a 5-year survival rate of 90 to 99%
(3-5). This high rate of early detection can sometimes lead to over-
treatment, as many cases of PTC may not require aggressive inter-
vention given their favorable survival outcomes.

Considering these clinical outcomes, overtreatment remains a
notable concern for clinicians, leading to the widespread acceptance
of active surveillance (AS) for low-risk PTC, particularly papillary
thyroid microcarcinoma (<1 c¢cm) (6, 7). Recent studies, including
those by Altshuler et al. and Ho et al., have broadened the scope of
AS for low-risk PTC, demonstrating its safety for nodules >2 cm,
with minimal progression and effective rescue surgery when neces-
sary (8, 9). However, accurately predicting which nodules will prog-
ress remains a challenge, highlighting the importance of advanced
tools, such as radiomics, for improved risk stratification in AS can-
didates (2, 10).
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Extensive bioinformatics analyses have defined different molecular
subtypes of PTC and uncovered numerous genomic markers associ-
ated with aggressive prognosis (11-13). Among these, the BRAF'*"*®
mutation and telomerase reverse transcriptase (TERT) promoter mu-
tations are two renowned genomic markers that are closely linked to
increased mortality (14-16). Developing feasible and noninvasive
methods to predict such aggressive genomic indicators is of important
value in advancing precision medicine.

Lymph node metastasis (LNM), occurring in 30 to 70% of pa-
tients with PTC, is a crucial prognostic factor (5, 17) owing to its
strong association with poor outcomes, including reduced survival
and increased metastasis, which markedly influence treatment deci-
sions (18, 19). However, some studies have suggested that the prog-
nostic value of LNM staging, particularly in central neck node
metastasis, remains unclear in terms of survival or disease progres-
sion (20-22). Regarding tumor heterogeneity, classifications of LNM
based on distinct tumorigenic characteristics and varying outcomes
have been proposed, raising doubts about the prognostic impact of
LNM (23, 24). This highlights the need for alternative diagnostic
tools to accurately identify “high-risk” patients with LNM, as those
with suspected LNMs are recommended for invasive examinations
(10). However, previous artificial intelligence (AI) models for thy-
roid cancer have primarily focused on predicting LNM and have
demonstrated noteworthy performance using radiomics across US,
computed tomography, and magnetic resonance imaging (25-27).

In this study, we introduced three novel radiomics-assisted unsu-
pervised clusters with distinct biological and clinical outcomes. We
identified one specific cluster (Cluster 2) with notably favorable
characteristics and developed a cluster-specific radiomics scoring
system for Cluster 2 using machine learning. Our scoring system
significantly identified high-risk patients with PTC, influencing
treatment options and predicting recurrence. To interpret the bio-
logical relevance of our scoring system, we integrated genomic and
transcriptomic analyses, revealing that the Cluster 2 score is sig-
nificantly associated with RAS-like biology and gene enrichment
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crucial for cell differentiation and adaptive immune responses. Our
findings were independently validated in a dataset of patients with
PTC, mostly including those with microcarcinomas, reflecting the
actual clinical scenario of low-risk PTC (28). Furthermore, the ex-
ternal validation of our data reinforced these results, highlighting
the importance of standardizing diagnostic values to facilitate the
integration of radiomics into clinical practice.

RESULTS
Study pipeline
A schematic workflow of the research process is shown in Fig. 1.
Briefly, our exploratory dataset consisted of retrospectively collected
clinicopathological and radiological data from 255 patients with
PTC who underwent thyroidectomy between 2014 and 2018 at our
institution. For validation purposes, we enrolled independent exter-
nal data (n = 203) and an in-house cohort of patients with small
PTC (n = 150). The baseline patient characteristics are presented
in Table 1.

A total of 730 radiomic features were extracted per US image using
in-house texture analysis algorithms. Information on the extracted

radiomic features and their intraclass correlation coefficient (ICC)
values is provided in data S1.

To investigate the underlying molecular mechanisms of radiomic
clusters, we analyzed bulk RNA sequencing data from 255 patients
with PTC in our exploratory dataset. For validation, tissue samples
and paraffin-embedded slides from the validation cohorts were col-
lected, and immunohistochemistry (IHC) and quantitative poly-
merase chain reaction (qPCR) were performed on internal and
external validation datasets, respectively, to measure gene expression.

Clinicogenomic characterization of radiomics-based
unsupervised clusters

To ensure feature robustness, we set an ICC cutoff value of 0.5
and identified 285 reliable radiomic features. We reduced multi-
collinearity by removing features with a Pearson correlation coeffi-
cient of >0.9. Consequently, 75 radiomic features were selected for
the downstream analysis (Fig. 2A). Unsupervised clustering using
nonmatrix factorization (NMF) was performed, and clustering
quality was assessed using the cophenetic coefficient. We identified
the optimal number of clusters to be three (K = 3), which yielded
the highest cophenetic coefficient of 0.9958 (Fig. 2B). A heatmap of

Total n = 255 in-house PTC patients - RNA
(~2019) v sequencing
Thyroid ultrasound image
' 1) Total n = 150 PTC patients for internal validation Ly
2) Total n = 203 PTC patients for external validation
First-order statistics:
Radiomic feature extraction > A
and tumor segmentation Thyroid ultrasound image FFPE and
y Texture: e — : - Hssue
sample
Reliable feature selection _
using ICC and pairwise correlation n=132
Wavelets:

y
Unsupervised NMF clustering

730 features

Radiomic feature extraction
and tumor segmentation

\ 4
Risk score building N Risk score I Biological
and training validation interpretation
Exploratory Validation

Fig. 1. Workflow pipeline used in the study. In our exploratory study dataset, 255 in-house patients with PTC who underwent surgery before 2019 were enrolled. For
validation, 150 independent in-house PTC patients who underwent surgery after 2019 were included. The external validation set consisted of 203 patients with PTC from
the Yongin Severance Hospital. In total, 608 patients with PTC were enrolled in this study. Preoperative US images were acquired for each patient, and the cancerous region
was segmented by a specialized radiologist. Radiomic features were extracted from the region of interest, followed by a comprehensive feature-selection process to en-
sure the reproducibility of the findings. A risk score model was built using radiomics and validated in two independent PTC cohorts. RNA sequencing was performed
during the exploratory phase to elucidate underlying molecular mechanisms. Subsequently, quantitative polymerase chain reaction (qQPCR) and immunohistochemistry
(IHC) were used in samples from the validation dataset to validate our molecular mechanisms and assess the clinical significance of our proposed radiomic model. FFPE,
formalin-fixed, paraffin-embedded; ICC, intraclass correlation coefficient; NME, nonmatrix factorization.
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Table 1. Baseline clinicopathological characteristics of patients with PTC for exploratory and validation sets. Continuous variables are presented as
means + standard deviation. Categorical variables were summarized as the number of patients and their corresponding percentages. TNM stage was classified
according to the eighth edition of the American Joint Committee on Cancer Cancer Staging Manual. Significant demographic differences between the patient
cohorts were evaluated using one-way analysis of variance (ANOVA) for continuous variables and the chi-square test for proportions of categorical variables.
Statistical significance was set at P < 0.05. *P < 0.05; **P < 0.01. NA, not applicable; EBV, Epstein-Barr virus; NTRK, neurotrophic tyrosine receptor kinase; pTERT,

TERT promoter; RAITX, radioiodine therapy.

Variables Exploratory data Internal validation data External validation data
(n = 255) (~2018) (n = 150) (2018 ~ 2023) (n=203) (2018 ~ 2023)
Age* 505+ 14.4 411 +126 414+116
e
Male 166 (25.9%) 39 (26%) 2007%
Female 189 (741%) 111 (74%) 161(793%)
Tumorsize (cm)** 1921085 """"""""""""""""""""""""""""""""" 111+018 130+036
s MERSEQED e SIS o —— OSSO
T1-2 46 (18%) 137 (91.3%) 75 (36.9%)
T3-4 1200(82%) 13 (8.7%) 128 (63.1%)
e
NO 82(321%) 48 32%) 86423%)
Nla 78305 38 (25.3%) 86(423%)
N o5 (374%) 64(447%) 31(134%)
M stage (M1, distant metastasisw 4 (1 5%) o 1(0.7%) 0
BRAFV*%F mutation* 21(884%) 90 (60%) 180 (88.6%)
pTERT mutation* 290113%) 5(3.3%) 200%
Genefusion (EBV,NTRK) 1766% NA NA
Adjuvant RAITx** U
No RAITx 67(263%) 73 (48.6%) 168(828%)
Lowdose (<60mc) 49092% 067% 105%
Intermediate dose (100 ~ 120 mCi C46018%) 66 (44%) 19(9.3%)
High dose (>150 mCi) ‘93@65% 1(0.7%) 15 (7.4%)

the normalized values for the 75 radiomic features was plotted to
identify three clusters (K = 3; Fig. 2C).

To evaluate the clinical relevance of these radiomic clusters, we com-
pared key clinical variables and driver mutation statuses across the clus-
ters, with the results summarized in Table 2. Significant differences were
observed in the distribution of BRAF"*** mutations, TERT promoter
mutations, as well as T and M stages among the clusters.

Cluster 1 exhibited the largest tumors, with a median size of 2.15 cm
(P <0.001), and a higher incidence of gene fusions (10.5%), although
this difference was not statistically significant (P = 0.1667). In
contrast, Cluster 3 showed the highest prevalence of BRAF" "
mutations (92.5%, P = 0.0099). TERT promoter mutations (P = 0.0363)
and distant metastasis (M1) (P = 0.0326) were more frequent in
Cluster 1, although LNM did not reach statistical significance.

The American Thyroid Association (ATA) risk classification dif-
fered significantly across the clusters (P < 0.001), with Cluster 2 pre-
dominantly consisting of intermediate-risk patients (72.0%) and
Cluster 1 containing a larger share of high-risk patients (42.1%). In
addition, significant radiological feature differences were observed in
calcification patterns (P = 0.0039) and nodule appearance under US,
with heterogeneous echotexture being most prevalent in Cluster 3
(P=0.0085). These findings highlight the distinct clinical and molecu-
lar characteristics of each radiomic cluster while acknowledging vari-
ables without statistical significance, supporting the potential use of
this stratification approach in thyroid cancer risk assessment (Table 2).

Seoetal., Sci. Adv. 11, eadv6697 (2025) 29 August 2025

Developing Cluster 2 specific scoring system using a
machine learning algorithm

We assessed the likelihood of predicting radiomics-defined clusters
using selected features. Least absolute shrinkage and selection op-
erator (LASSO) was used to select the most effective features for
scoring each cluster likelihood. A lambda value was selected to min-
imize binomial deviance in each cluster and facilitate the selection
of radiomic features with nonzero coefficients at these optimal val-
ues for model development (fig. S1, A to F). As a result, 27, 23, and
15 radiomic features with nonzero LASSO coefficients were identi-
fied for Clusters 1 to 3, respectively. The performance of the construct-
ed radiomic model was assessed using a test dataset. We observed an
equivocal area under the curve (AUC) value of 0.98 when predicting
all three clusters and ensured significant performance when compared
with other known machine learning algorithms (fig. S1, G to I).

Association between radiologist interpretations and

Cluster 2 score

A previous analysis identified Cluster 2 as having favorable clinico-
pathological features, warranting further investigation. To capture
this “Cluster 2-like” signature for each patient, we developed a Cluster
2 score, a radiomics-based metric derived from a set of optimized
features weighted by LASSO coefficients. This score reflects the likeli-
hood that an individual tumor shares the defining characteristics of
Cluster 2. We then applied the score to every patient in our dataset to
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Fig. 2. Selection of reliable features and unsupervised clustering reveals three unique radiomics-based clusters. (A) A total of 75 of 730 radiomic features were se-
lected after the feature selection process. A pairwise correlation plot was generated using Pearson’s correlation coefficient. (B) A cophenetic coefficient plot and relative
heatmap were drawn after unsupervised clustering using the NMF algorithm. K = 3 has a maximum coefficient of 0.9958, indicating that it is the optimal clustering number.
(C) Heatmap of 75 selected features across K = 3 radiomic clusters with colabeled clinical variables. Hierarchical clustering was performed on the rows for better visualization.
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explore its relationship with high-risk US findings as interpreted by
specialized radiologists. To evaluate the clinical relevance of this
score in relation to high-risk US findings identified by specialized
radiologists, we designated those in the top 33% of scores as the Clus-
ter 2 high group and those in the bottom 33% as the Cluster 2 low
group from the entire dataset. The evaluated US features included
composition, echogenicity, shape, margin, calcification, vascularity,
nodule appearance, and final Thyroid Imaging Reporting and Data
System (TI-RADS) classification (graded on a 1 to 5 scale). Among

29 August 2025

these variables, “margin” (e.g., smooth, irregular, lobulated, or extra-
thyroidal extension) and the overall TI-RADS grading demonstrated
significant differences between the high and low Cluster 2 scoring
groups. Both radiologists observed a higher proportion of smooth
margins in the high-score group and more prominent extrathyroidal
extension in the low-score group. In addition, radiologist 2 reported
a significantly lower incidence of TI-RADS 5 in the high-score group
compared to radiologist 1 (Fig. 3, A to H). Representative US images
of the high- and low-score groups, along with a heatmap contrasting
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Table 2. Baseline demographics and US feature comparison between proposed radiomic clusters. Significance was tested for clinical variables across
defined radiomic clusters. One-way ANOVA was performed for numerical values, while the chi-square test was used for categorical variables. Statistical
significance was set at P < 0.05. *P < 0.05; **P < 0.01; ***P < 0.001. ATA, American Thyroid Association; IQR, interquartile range; TI-RADS, Thyroid Imaging
Reporting and Data System; TR, TI-RADS category.
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the intensity of Cluster 2-specific radiomic features, are shown in
Fig. 3 (IandJ).

Cluster 2 score independently predicts advanced LNM and
therapeutic indications

To assess the predictability of the Cluster 2 score for cancer stages
and therapeutic indications, we performed ordinal regression analy-
sis, controlling for clinical variables such as age, tumor size, and sex.
In addition, to benchmark current clinical practice, we included the
US features of nodule appearance, vascularization, and the final TI-
RADS category as covariates (Table 3).

A Composition B Echogenecity
ns ns ns ns
100 100 100 100
g
§
£ 50 50 50 50
o
Q.
2]
o
0 T T 0 T T 0 T T 0 T T
Wt Wt Wwhad Wwhoad
Radiologist 1 Radiologist 2 Radiologist 1 Radiologist 2
E Calcification F TI-RADS .
ns ns ns | —
100 100 100 100
g
[ =
£ 50 50 50 50
2
o
o
0 T T 0 T T 0 T T 0
\,GN Y\‘é’(\ \,O‘N \(\\é(\ \,G“ﬂ \(\\‘3(\ \,O‘ﬂ y\\@“
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Composition Echogenecity Shape Margin
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| Representative US and feature intensity of Cluster 2 low patients

Tumor size (in centimeters) was the sole independent predictor
of the T stage, with a beta estimate value 0£0.301 + 0.079 (P =0.001).
To predict the extent of thyroidectomy (event = total thyroidecto-
my), we used the Cluster 2 score, age, and tumor size as significant
indicators, with beta estimate values of —0.691 + 0.219 (P = 0.002),
0.217 + 0.096 (P = 0.025), and 0.211 + 0.065 (P = 0.001), respec-
tively. We also assessed the ordinal prediction of Cluster 2 against
the N stage, yielding a beta estimate value of —0.592 + 0.261
(P = 0.024). However, the extent of neck dissection (event = lateral
neck dissection) was not significantly predicted by any of these
variables. In addition, we evaluated patients indicated for high-dose

C Shape D Margin
ns ns T 1 T 1
100 100 100 100
50 50 50 50
0 T T 0 T T 0 T T O T T
Wt Wt Wt Wt
Radiologist 1 Radiologist 2 Radiologist 1 Radiologist 2
G Vascularity H Nodule appearance
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100 100 100 100
50 H H 50 H H 50 50
0 T T 0 T T 0 T T 0 T T
\,G‘N \(\\‘3(\ \,O‘N \e\\é(\ \53‘“ \(\@(\ \,G‘N \(\\@(\
Radiologist 1 Radiologist 2 Radiologist 1 Radiologist 2
Calcification TI-RADS Vascularity Nodule appearance
J Negative 0 TR24 — None — Homogenous

[ Positive [ TR5 m Present @ Heterogenous

J Representative US and feature intensity of Cluster 2 high patients

Fig. 3. Association of TI-RADS components and Cluster 2 score. Patients in the lowest and highest 33% of Cluster 2 scores were classified as low and high Cluster 2
groups, respectively. (A to H) The bar chart illustrates the proportions of each component comprising the TI-RADS and the final TI-RADS category (TR) as assessed by two
specialized radiologists, as well as the proportions of vascularity and nodule appearance observed on US, with significant differences determined using the chi-square
test. ETE, extrathyroidal extension. (I and J) Gross US images of tumor segmentation in Cluster 2 low and high groups are paired pixel intensities of Cluster 2 specific ra-
diomic features found by the LASSO machine learning algorithm. The results were considered significant if the P value was less than 0.05. *P < 0.05. ns, not significant.
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radioiodine therapy and revealed that the Cluster 2 score and tumor
size were significant predictors, with beta estimate values of —0.985
+0.508 (P = 0.044) and 0.587 + 0.151 (P < 0.001), respectively.

In our exploratory dataset, we compared the performance re-
gression models with and without the Cluster 2 scores using the F
test. The predictive performance was significantly improved for thy-
roidectomy (P = 0.007) and N-stage prediction (P = 0.036) when
the Cluster 2 score was included.

To validate this regression model, we assessed whether the inclu-
sion of the Cluster 2 score significantly enhanced its predictive per-
formance. Specifically, for T3 and T4 cancer stages, the inclusion of
the Cluster 2 score did not improve predictability (Fig. 4A). How-
ever, its inclusion significantly enhanced the prediction of total thy-
roidectomy events, as reflected by AUC values of 0.768 (P = 0.024)
in the internal validation dataset and 0.786 (P = 0.042) in the exter-
nal dataset (Fig. 4B). Similarly, the Cluster 2 score significantly im-
proved the prediction of lateral neck node metastasis (N1b stage),
with AUC values of 0.781 (P = 0.030) internally and 0.808 (P = 0.005)
externally (Fig. 4C). Although the prediction of distant pathological
LNM improved, the Cluster 2 score did not significantly enhance
the prediction of lateral neck dissection (Fig. 4D). Regarding adju-
vant radioiodine therapy, the inclusion of the Cluster 2 score signifi-
cantly improved the model’s ability to predict clinician decisions for
identifying patients requiring high-dose therapy, with AUC values
0f0.788 (P =0.010) and 0.750 (P = 0.006) for the internal and exter-
nal validation datasets, respectively (Fig. 4E).

Cluster 2 score predicts poor outcomes and aggressive

PTC features

We further investigated the prognostic significance of the Cluster 2
score in patients with PTC. First, we evaluated the 1-year thyroglobulin
(Tg) level as a reliable biomarker for assessing treatment response,
recurrence risk, and residual disease. We selected patients who un-
derwent total thyroidectomy and collected their nonstimulated Tg
from 1-year follow-up laboratory results. The detection cutoft was
set at 1 pg/liter, and post-total thyroidectomy patients with Tg levels
above this threshold were considered to have a biochemical in-
complete response. We observed that patients with detectable Tg levels
showed lower Cluster 2 scores in both exploratory and internal vali-
dations. However, this finding was not replicated in the external vali-
dation dataset, although a similar trend was observed (Fig. 5A).

Considering that driver mutations are major indicators of tumor
aggressiveness in PTC, we compared the representative mutations
with their corresponding Cluster 2 scores (Fig. 5B). BRAF'*°*F mu-
tation alone was not significantly different from the wild type. How-
ever, its coexistence with the TERT promoter mutation was significant
across all datasets.

Our exploratory dataset had an average follow-up period of
7.2 years, allowing us to evaluate disease-free survival (DES) in relation
to the Cluster 2 score. Patients with high Cluster 2 scores demon-
strated significantly longer DFS than those with low Cluster 2 scores
(Fig. 5C). Moreover, we were interested in benchmarking the pre-
dictive use of the Cluster 2 score with the established ATA risk
stratification system; therefore, we conducted a multivariable Cox
proportional hazards regression analysis incorporating both vari-
ables. In this model, the ATA risk classification remained a strong
predictor of DFS [hazard ratio (HR) = 2.11, 95% confidence interval
(CI): 0.92 to 4.83, P = 0.0784], while higher Cluster 2 scores demon-
strated a trend toward reduced recurrence risk (HR = 0.17, 95%

Seoetal., Sci. Adv. 11, eadv6697 (2025) 29 August 2025

Table 3. Ordinal logistic regression analysis of radiomics-specific
cluster scores and clinical factors in exploratory patient datasets.
Ordinal logistic regression analysis was conducted for the following
variables: T stage (T1-2 = 0, T3-4 = 1), extent of thyroidectomy (partial
thyroidectomy and lobectomy = 0, total thyroidectomy = 1), N stage
(NO=0,N1a=1,N1b = 2), extent of neck dissection (central neck node
dissection = 0, modified lateral neck node dissection = 1), and dosage of
adjuvant radioiodine therapy (none = 0, low dose <60 mCi =1,
intermediate dose 100 to 120 mCi = 2, high dose >150 mCi = 3). An F test
was conducted to compare the predictive performance of the two
models: one model used clinical factors, including demographic features
and radiological interpretations, while the other model incorporated
radiomic cluster scores in addition to clinical factors. Significant results
from the F test indicated that predictive performance improved with the
addition of radiomic cluster scores. The estimates were considered
significant if the P value was <0.05. *P < 0.05; **P < 0.01; ***P < 0.001.

Exploratory dataset
Estimate Standard error
T stage
Cluster 2 (score) —0.083 0.269
Age (year) 0.060

P=0.631
Extent of Exploratory dataset
thyroidectomy
T
Cluster 2 (score)** 3.829 0.725
Age(year)* S T
Tumor5|ze(cm)** S L

92

Vascularity (%) 0001

TIRADScategory" L
T
N stage Exploratory dataset
T T
DUELDEDID o

93
0.099 Il

TI-RADS category 0188 0.153
P

Extent of neck Exploratory dataset

dissection

s
Cluster 2 (score) —0.321 0.182
Age(year) s
Tumor5|ze(cm) S

63

(Continued) -
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(Continued)
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CI: 0.02 to 1.37, P = 0.0947), although this did not reach statistical sig-
nificance. Nonetheless, the combined model significantly enhanced
predictive performance (P = 0.007, concordance = 0.708), suggest-
ing that integrating radiomics-based stratification with traditional
ATA risk levels may improve clinical risk assessment (data S2).

In addition, histological variants, which also indicate tumor aggres-
siveness, showed significantly low Cluster 2 scores in the presence of rare
but aggressive histological types (Fig. 5D). A summary of the aggressive
histological variants found in our datasets is presented in a pie chart
in Fig. 5E. In the exploratory dataset, we identified 11 cases: five solid
variants, four diffuse sclerosing variants, one tall cell variant, and one
oncocytic variant. In the internal validation set, we found nine cases:
three diffuse sclerosing variants, five tall cell variants, and one oncocytic
variant. Meanwhile, we found 12 cases in the external validation set: two
solid variants, five diffuse sclerosing variants, and five tall cell variants.

Integration of transcriptomics analysis identifies distinct
biology in Cluster 2

To explain the potential of our scoring system for predicting clinical
outcomes in patients with PTC, we incorporated molecular inter-
pretations. We defined the biological characteristics of the three ra-
diomic clusters using gene set enrichment analysis (GSEA) of 51
hallmark gene sets known to contribute to tumorigenesis (29). A heat-
map was plotted showing the average normalized enrichment scores
of the significant gene sets (Fig. 6A). Specifically, Cluster 2 was up-
regulated in PANCREAS_BETA_CELLS, ANDROGEN_RESPONSE,
ESTROGEN_RESPONSE_EARLY, and GLYCOLYSIS. Cluster 3 was
up-regulated in UNFOLDED_PROTEIN_RESPONSE, UV_RESP-
ONSE, APICAL_JUNCTION, INTERFERON_ALPHA GAMMA _
RESPONSE, COMPLEMENT, PEROXISOME, BILE_ACID_
METABOLISM, ALLOGRAFT_REJECTION, EPITHELIAL MESYN-
CHYMAL_TRANSITION, and INFLAMMATORY_RESPONSE groups.
Cluster 1 was down-regulated in all significant hallmark pathways.

Seoetal., Sci. Adv. 11, eadv6697 (2025) 29 August 2025

Subsequently, we benchmarked well-known transcriptomic
markers to analyze the aggressiveness of PTC. The thyroid differ-
entiation score, where a higher value indicates better differentia-
tion, was significant when directly comparing Clusters 2 and 3
(Fig. 6B). However, no significant differences were found when
comparing the highest (top 33%) and lowest (bottom 33%) Clus-
ter 2 scores (Fig. 6C). BRAF and RAS, two major driver mutations
in thyroid cancer, tend to have opposing effects on tumorigenesis,
with BRAF being more aggressive than RAS. The BRAF-RAS
score was higher in Cluster 3, indicating a greater likelihood of
BRAF mutations (Fig. 6D). Moreover, the Cluster 2 high group
exhibited a significantly higher RAS-like profile than the Cluster
2 low group (Fig. 6E).

We delineated the distinct biology of Cluster 2 by analyzing
the differentially expressed genes (DEGs). DEGs with an adjusted
P < 0.05 (logjo P value =1.301) and an absolute log, fold change
of >0.5 were considered significant. This analysis returned 306
significant DEGs in the Cluster 2 high group and 198 DEGs in the
Cluster 2 low group (Fig. 6F and data S3). We subsequently pro-
filed these DEGs using the Gene Ontology database, revealing
that the Cluster 2 low group was associated with mitochondrial
respiration and lipid metabolism (Fig. 6G and data S4), whereas
the Cluster 2 high group was enriched with gene sets involved in
immune response, lymphocyte activation, immunoglobulin com-
plexes, and cell differentiation (Fig. 6H and data S5).

Among the top 20 DEGs found in both the Cluster 2 high and
low groups, we validated five representative DEGs from each clus-
ter in a validation dataset using qPCR (Fig. 7, A to J). Validated
DEGs were significantly associated with prognosis. The expres-
sion of Cluster 2 high-specific DEGs correlated with better DFS
(Fig. 7K), whereas higher expression of Cluster 2 low DEGs was
associated with worse DFS (Fig. 7L). Likewise, we were able to
validate the uniform prognostic value of Cluster 2—defined DEGs
in The Cancer Genome Atlas (TCGA) thyroid cancer patient data-
set (fig. S2, A and B).

From the validated DEGs, we selected paired box 5 (PAX5), a B
cell transcription factor, and activating transcription factor 5 (ATF5),
which is known to mediate mitochondrial unfolded protein respons-
es, for further protein expression validation (30, 31). Fresh frozen
paraffin slides from surgical specimens of the Cluster 2 high
(n = 15) and low (n = 15) groups were used for this validation
(fig. S2, C and D). THC was conducted to evaluate the expression
levels of PAX5 and ATF5, which revealed significant differences in
the proportion of positively stained cells between the groups
(Fig. 7, M and N).

For PAX5 expression, the Cluster 2 low group had 0.2% high
positive, 0.4% moderate positive, 5.3% low positive, and 94.1% neg-
ative expression, while the Cluster 2 high group exhibited 1.4%
high positive, 5.6% moderate positive, 17.2% low positive, and
75.8% negative expression (Fig. 70). For ATF5 expression in the
Cluster 2 low group, 2.9% were highly positive, 20.8% moderately
positive, 40.7% low positive, and 35.6% negative. In contrast, the
Cluster 2 high group showed 0.1% positive, 4.1% moderate positive,
25.6% low positive, and 70.2% negative expression (Fig. 7P). In
addition, staining of normal thyroid tissues for ATF5 and PAX5
showed no detectable expression, suggesting that their expression
was likely tumor specific (fig. S2E).
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Fig. 4. Validation of the prognostic value of Cluster 2 score using ordinal logistic regression model. Predictions were assessed using receiver operating characteris-
tic (ROC) curves for (A) T stage (event: T3-4 stage), (B) extent of thyroidectomy (event: total thyroidectomy), (C) extent of neck dissection [event: modified lateral neck
node metastasis (MRND)], (D) N stage (event = N1b stage), and (E) indication of moderate radioiodine therapy (event: radioiodine therapy >100 mCi). The regression
model from the internal validation patient dataset is depicted in red, whereas the external validation dataset is depicted in blue. The dotted line represents the model
performance with only clinicopathological variables, and the solid line represents the model with the inclusion of the Cluster 2 score in both the internal and external
models. The significance of the improved model performance with the inclusion of Cluster 2 was assessed using the DeLong test, and the results are shown in the legend

(analysis between solid and dotted lines). Results were considered significant if the P value was lower than 0.05.

DISCUSSION

To date, various studies have used radiomics to identify thyroid US
imaging biomarkers as predictors of thyroid cancer outcome or prog-
nosis. However, most of these studies have primarily focused on dis-
tinguishing malignant tumors from normal tissue or detecting possible
LNM (32). Radiomics studies on thyroid cancer typically targeted a
known, single-aggressive clinical factor as the end point of the
study; however, no satisfactory model has been proposed. In the ini-
tial stage of the study, we aimed to enhance our investigation by enroll-
ing only highly correlated radiomic features with clinical factors.
However, this approach returned comparatively poor clustering
performance, and the characterization of formed clusters was un-
satisfactory (fig. S3).

Seo et al., Sci. Adv. 11, eadv6697 (2025) 29 August 2025

For genomic markers, the performance of the previous radiomic
prediction models was not significant, with an average AUC value of
~0.7 (33, 34). Similarly, we failed to predict the BRAF'*"°F mutation
alone. However, recent bioinformatics analysis revealed a distinct
behavior for the BRAF'*** mutation in PTC, which may function
as a lurking variable for prediction models (24). However, the coex-
istence of BRAF'*F and TERT promoter mutations defines the
most aggressive form of PTC, with distinct biological characteris-
tics, which our scoring system successfully identified (16, 35, 36).

Predicting malignancy is not a pressing need at the screening US
examination stage, as specialized radiologists effectively fulfill their
roles (37). Particularly, current radiological algorithms, such as TI-
RADS, achieve sensitivities of >90% in diagnosing thyroid nodules.
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Fig. 5. Association of Cluster 2 score with response to therapy and aggressive biological features. Measurements were conducted separately for each dataset.
(A) Comparison of Cluster 2 scores between patients with nonstimulated Tg levels in 1-year follow-up laboratory results greater than 1 and those without. sTg, stimulated
thyroglobulin. (B) Comparison of Cluster 2 scores between patients who were intact from the mutation, those with the BRAF®%%F mutation (BRAFmt), and those with both
TERT promoter (pTERT) mutation and BRAF'%F mutation. WT, wild type. (C) The Kaplan-Meier survival curve of disease-free survival (DFS) was generated based on the
Cluster 2 score, with high and low groups defined by the 33rd and 66th percentiles, respectively. Statistical significance was evaluated using the log-rank test. (D) Com-
parison of Cluster 2 scores between patients diagnosed with classical variant PTC, follicular variant PTC, and other aggressive histology of PTC. (E) The layout of the number
and types of aggressive histologies in each dataset is presented in a pie chart. The Mann-Whitney U test was used to discern the significance of numerical values. Results
were considered significant if the P value was lower than 0.05. Every bar chart in this figure represents the average values, with error bars indicating standard deviations.
*P < 0.05; #*P < 0.01; ***P < 0.001.

However, this comes with a trade-oft of lower specificity, which can
lead to unnecessary concerns about overtreatment (38, 39). In addi-
tion, visual analysis by physicians is highly subjective, leading to
both interobserver and intraobserver variations (40, 41). In contrast,
radiomics serves as an objective imaging biomarker by extracting
quantitative features from images, providing insights into underly-
ing pathophysiology that are impossible to discern through visual

Seoetal., Sci. Adv. 11, eadv6697 (2025) 29 August 2025

interpretation alone (42). Although US-fine-needle aspiration or
biopsy helps determine the need for surgery, the increasing use of
high-quality imaging methods facilitates the detection of even small
thyroid cancers, thereby increasing the risk of overtreatment. This
has prompted the application of AS in recent years (43-45). How-
ever, it remains unclear which cancers may progress or have poor
outcomes during AS. To address this gap, we characterized radiomic
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Fig. 6. Molecular characterization of radiomic clusters. (A) A heatmap of enrichment scores (ES) retrieved after conducting GSEA in radiomic clusters using hallmark
gene sets of tumorigeneses registered in the molecular signature database (mSigDB). Only gene sets with significant differences in one-way ANOVA analysis are shown.
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used to discern the significance of numerical values. Results were considered significant if the P value was lower than 0.05. All bar charts are depicted as averages, and

error bars indicate standard deviations. *P < 0.05.

clusters, a biomarker that predicts PTC with favorable characteris-
tics, which could provide notable improvement in clinical practice
by reducing unnecessary treatments.

Our scores successfully predicted the pathological N stage of
cancer, although their performance was suboptimal for predicting
the extent of neck dissection required. These findings suggest a potential
role for radiomics screening in aiding physicians in surgical decision-
making. We observed a significant difference in tumor size among
radiomic clusters and hypothesized that tumor size could be a pri-
mary determinant of Cluster 2 score. However, its predictive role in
the T stage was limited when tumor size was analyzed as a covariate,
suggesting that Cluster 2 was influenced by different, unmeasured
radiological factors indicative of indolence.

Seoetal., Sci. Adv. 11, eadv6697 (2025) 29 August 2025

The “black box issue” is an inherent limitation of radiomics method-
ology as it lacks transparency and is not readily interpretable by clinicians
(46). This issue is prevalent among Al techniques applied in medicine
and is often scrutinized because of the critical need for understanding
before these methods can be confidently used in clinical decisions (47).

To address these limitations, we integrated a multiomics ap-
proach to gain biological insights into the association between our
Cluster 2 score and clinical outcomes. GSEA results using hallmark
gene sets revealed enrichment of inflammatory and epithelial-to-
mesenchymal transition (EMT) signals in Cluster 3. This aligns with
our previous findings, where we identified a significant association
between the consistent up-regulation of immune response and EMT
signals in suspicious nodules identified by radiologists, features that
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Fig. 7. Validation of molecular features correlated with Cluster 2 scores. Among the DEGs with the highest significance, five DEGs from each (A to E) Cluster 2 high
and (F to J) Cluster 2 low were validated in our patient tissue samples using qPCR (n = 7 tissue samples for each Cluster 2 high and low patient group). Kaplan-Meier sur-
vival curves for DFS were plotted using validated DEG markers from our data. The association of five Cluster 2 high-specific DEGs with DFS is depicted in (K), while the
association of five Cluster 2 low-specific DEGs with DFS is depicted in (L). The log-rank test was used to assess statistical significance. (M and N) Representative images
from IHC staining for PAX5 and ATF5 are shown in 10x and 40x (scale bar in 40x represent 200 um), (O and P) and the percent contribution of pixels with differing staining
intensity analyzed via ImageJ was compared between the Cluster 2 high and low groups. The definitions of the Cluster 2 low and high signature groups were determined
by 33 and 66% cutoffs, respectively. The Mann-Whitney U test was applied to discern the significance of numerical values. Results were considered significant if the P
value was lower than 0.05. All bar charts are depicted as averages, and error bars indicate standard deviations. *P < 0.05; **P < 0.01; ***P < 0.001.

closely resemble those of Cluster 3 identified in the current study.
(48). In Cluster 2, an increase in different hormonal responses and
gene set enrichment, which are important for cell development, was
observed. In contrast, Cluster 1 showed no significantly enriched
gene sets, indicating a “silent biology” We interpret this lack of tran-
scriptional activity as reflective of a heterogeneous PTC population.
Although the overall cohort was genomically homogeneous, with

Seo et al., Sci. Adv. 11, eadv6697 (2025) 29 August 2025

~85% of patients harboring the BRAF'**** mutation, Cluster 1 ex-
hibited a comparatively higher proportion of fusion genes and
TERT promoter mutations. This subtle molecular heterogeneity
highlights the need for further subclassification within this group.
Summarizing our overall genomic and transcriptomic analyses,
our radiomic clusters can be characterized as follows: Cluster 1 is as-
sociated with a silent but heterogeneous genetic background, Cluster
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2 exhibits an RAS-like profile, and Cluster 3 exhibits a BRAF-like
profile. This classification aligns with the genomic characterization of
PTC as defined in a TCGA study (11).

We also explored whether differences in cell proportions could
be detected using radiomic features. To this end, we calculated the
immune, stromal, and ESTIMATE scores using the xCell algorithm.
However, we did not find any significant associations, suggesting
that the infiltration of immune cells, cells of mesenchymal origin,
and tumor purity may not affect our scoring model (fig. $4, A to C).
Nonetheless, specific immune cell types were differentially infiltrat-
ed with respect to the Cluster 2 score, indicating that distinct im-
mune responses may drive each tumor condition (fig. S4, D to I).

Recent epidemiological data indicate that microcarcinomas may
comprise over half of newly diagnosed PTC, underscoring the im-
portance of improved risk stratification in lower-risk populations
(49). By validating our model in demographically distinct cohorts,
we confirmed its performance across a broader clinical spectrum.
This highlights the potential of the Cluster 2 score to guide more
personalized treatment decisions, including AS. However, addition-
al multicenter validation is necessary, particularly considering the
relevance of BRAF mutation status and other molecular markers.
We plan to conduct future prospective studies in collaboration with
various other institutions. However, most medical institutions ad-
here to their own formats to save radiological databases, which com-
plicates data sharing (50). Therefore, establishing a universal guideline
for database storage is crucial to facilitate seamless data communi-
cation. Furthermore, benchmarking strategies and combinatorial
studies involving deep-learning algorithms in conjunction with our
radiomics approach are warranted. These tools are pivotal in the
emerging Al-medicine paradigm and can enhance the accuracy and
applicability of our model. Establishing standardized practices and
incorporating advanced AI techniques are essential for advancing
the integration of radiomics into routine clinical use.

We acknowledge a limitation of this study due to the exclusive
use of the American College of Radiology (ACR) TI-RADS. The
reason for selecting ACR-TI-RADS was based on studies showing a
correlation between the US phenotype and prognosis, where fewer
concerning appearances were associated with better outcomes (51, 52).
Although TI-RADS is widely used in the United States, a global con-
sensus on thyroid imaging reporting systems is under consider-
ation, with variations such as the EU TI-RADS (European Thyroid
Imaging Reporting and Data System), K TI-RADS (Korean Thyroid
Imaging Reporting and Data System), and C TI-RADS (Chinese
Thyroid Imaging Reporting and Data System) (53). Addressing
these regional differences is an important perspective for future re-
search. In addition, we acknowledge the potential risk of overfitting
in our model owing to the relatively small sample size and the inclu-
sion of a large number of radiomic features. To mitigate this, we
used rigorous feature selection techniques, incorporated multiple
validations with external datasets, and integrated the clinical and mo-
lecular interpretations. Nonetheless, further evaluation with larger
and more diverse cohorts is required to ensure broader applicability
and robustness.

Here, we refined the radiomic features by reducing and selecting
75 robust features to address the complexity issues inherent in ra-
diomics. As a result, we identified three distinct radiomic profiles,
each resembling distinct PTC molecular subtypes, which offer a to-
pologically advantageous framework for predicting tumor charac-
teristics, particularly in discerning indolent tumors that may be

Seoetal., Sci. Adv. 11, eadv6697 (2025) 29 August 2025

suitable for AS, an area often underexplored in conventional imag-
ing assessments. Our radiomic Cluster 2 scoring model is designed
to complement, rather than replicate, TI-RADS predictions, provid-
ing an additional, data-driven metric to support nuanced clinical
decision-making. This approach highlights the potential of radiomics
to refine patient selection for AS, thereby reducing overtreatment in
cases where the 5-year overall survival exceeds 95%. Ultimately, this
study provides a perspective on the prognostic effect of radiomics in
general oncology and calls for further prospective research and vali-
dation with a larger patient cohort, incorporating multicenter trials
for practical application.

MATERIALS AND METHODS

Patient enrollment

A total of 255 patients with PTC who underwent thyroidectomy at
the Yonsei Cancer Center (Seoul, South Korea) between May 2014
and January 2018 were enrolled. For internal validation, we enrolled
an independent cohort of 150 patients with PTC, including those
diagnosed with microcarcinoma, who underwent thyroidectomy
between January 2018 and January 2023. External validation included
203 patients with PTC who underwent thyroidectomy at the Yongin
Severance Hospital (Yongin-si, Gyeonggi-do, South Korea) between
January 2018 and January 2023. All tissue samples were snap-frozen
in liquid nitrogen immediately after surgical removal and stored at
—80°C until further use. Prior to surgery, all of the included patients
had cytology classified as Bethesda V or VI. Risk stratification of
patients regarding ATA was done using the 2015 ATA Management
Guidelines for Adult Patients with Thyroid Nodules and Differenti-
ated Thyroid Cancer, which provide evidence-based criteria for cat-
egorizing patients into low, intermediate, and high-risk groups based
on clinicopathologic features (54).

US imaging and assessment by radiologists
At our institution, all patients undergo preoperative staging US be-
fore thyroid surgery. During the study period, these examinations
were performed by one of 23 radiologists. This group comprised five
radiologist staff members with 3 to 25 years of experience and 18
fellows with 1 to 2 years of experience, all specializing in thyroid
imaging. High-frequency linear transducers (5 to 12 MHz) (iU22 or
EPIQ 5, Philips Healthcare, Bothell, WA, USA) were used. During
staging examinations, individual US features of cancers were pro-
spectively analyzed and recorded in our institutional database (55, 56).
Thyroid nodules were classified as solid, predominantly solid (cys-
tic portion <50%), or predominantly cystic (cystic portion >50%).
Echogenicity was classified as hyperechoic, isoechoic, hypoechoic
(compared with the surrounding thyroid parenchyma), or markedly
hypoechoic (compared with the adjacent strap muscle). Margins were
categorized as circumscribed or noncircumscribed (microlobulated
or irregular). Calcifications were classified as absent, macro- or egg-
shell, and micro- or mixed calcifications. Shape was classified as paral-
lel or nonparallel, with parallel shapes being taller-than-wide, where
the anteroposterior dimension exceeded the transverse dimension.
Echotexture of the thyroid parenchyma was assessed as homogeneous
or heterogeneous (coarse-appearing echotexture, marginal nodulari-
ty, increased/decreased anteroposterior diameter of the gland, or in-
creased/decreased parenchymal echogenicity) (57). On the basis of
the individual US features, two staff radiologists (J.H.Y. and J.Y.K.)
with 15 and 27 years of experience in thyroid imaging, respectively,
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independently provided assessments according to the ACR TI-RADS
(58). Vascularity was assessed using two-dimensional Doppler scans
and categorized into three patterns: reduced or absent, indicating the
absence of Doppler signals within the thyroid nodule; peritumoral,
indicating the presence of Doppler signals around the periphery of the
nodule; and intratumoral, indicating the presence of Doppler signals
within the thyroid nodule despite peripheral vascularity.

High-throughput radiomics feature extraction and

feature selection

Prior to radiomics extraction, the representative US image of the
PTC mass was selected by the radiologist (J.Y.K.) in this study. A
polygonal region of interest was drawn along the border of the PTC
using US images selected by the two radiologists.

Radiomics is a technique in which quantitative features and
characteristics are extracted from medical images. Medical images
can exhibit variability in terms of intensity values owing to differ-
ences in imaging devices, institutions, and clinical settings, which
affects reproducibility. To ensure consistency of intensity values in
images obtained across various settings, we use min-max normal-
ization, which not only standardizes the images but also enhances
the performance of the machine learning processes by improving
pattern recognition and estimation accuracy. Once the images are
normalized, pixel-intensity distribution-based features (e.g., entropy,
energy, kurtosis, skewness, and median) and texture features (de-
rived from gray-level co-occurrence and gray-level run-length ma-
trices) are collected. In addition, wavelet transformation with the
Coiflet family was used to decompose the image into low-to high-
frequency modes along the x and y directions, and the same features
were subsequently gathered from the resulting subimages. As a re-
sult, 730 features were returned for downstream analysis

To ensure the reliability of the measured features, we computed
the ICC for each radiomic feature by changing wavelets using the
“irr” R package. Two-way random effects with a single measurement
and absolute agreement were applied. Given that our average ICC
value was ~0.4 (Q1 = 0.058 and Q3 = 0.537), we considered features
with an ICC >0.5 to be optimally reliable (fig. S5). To improve the
efficacy of unsupervised clustering, we reduced multicollinearity
by removing radiomic features with high correlations with other
features. Pearson correlation analysis was performed for all candi-
date radiomic features, and features were considered redundant if
they shared a correlation coefficient of >0.9. Among the redundant
features, the feature with the greatest variance was selected for unsu-
pervised clustering.

Risk score development using machine learning
For an unbiased evaluation, the internal exploratory dataset was
split into training and test datasets at a 7:3 ratio. The LASSO algo-
rithm was adopted to select the most relevant radiomic features for
predicting the proposed radiomic cluster. Standard 10-fold cross-
validation was used in the regression to tune the parameters for the
risk score construction. After model construction, the score was for-
mulated as follows
S =P+ Plx; +Prx, + ... + B

Bo is the intercept from the LASSO model, B;_y are the nonzero co-
efficients, and x;_y are the feature values for the observation. The final
performance was evaluated in the test dataset using the AUC metrics.
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RNA sequencing and transcriptome analysis

RNA was isolated from the tissue samples using TRIzol (Invitrogen,
Waltham, MA, USA). The concentration of the extracted RNA was
determined using the Quant-IT RiboGreen assay (no. R11490,
Thermo Fisher Scientific, Waltham, MA, USA), and RNA quality
was evaluated using a TapeStation RNA ScreenTape (no. 5067-5576,
Agilent Technologies, Santa Clara, CA, USA). Only RNA with an
RNA integrity number of >7.0 was selected for subsequent library
preparation. For each sample, 1 pg of RNA was used to prepare li-
braries using the Illumina TruSeq Stranded mRNA Sample Prep
Kit (no. RS-122-2101, Illumina, Inc., San Diego, CA, USA),
which included the initial step of mRNA isolation using poly(T)-
attached magnetic beads. The mRNA was subsequently fragment-
ed using divalent cations at high temperatures. The fragmented
mRNA was converted into first-strand cDNA using SuperScript 11
reverse transcriptase (no. 18064014, Thermo Fisher Scientific) and
random primers, followed by synthesis of second-strand cDNA
using DNA polymerase I, ribonuclease H, and deoxyuridine tri-
phosphate. The cDNA was then processed for end repair, A-tailing,
adapter ligation, and enrichment by PCR. The final cDNA library
was quantified using KAPA Library Quantification Kits (no. KK4854,
Kapa Biosystems, Wilmington, MA, USA) and assessed for quality
using TapeStation D1000 ScreenTape (no. 5067-5582, Agilent Tech-
nologies). Indexed libraries were sequenced on an Illumina Nova-
Seq 6000 platform to generate paired-end reads [2 X 100 bp (base
pairs)]. Postsequencing data quality was verified using FastQC
v0.11.7, and reads were cleaned of adapters and low-quality se-
quences using Trimmomatic 0.38. The cleaned reads were aligned to
the reference genome GRCh37 (hgl9) using HISAT2 v2.1.0, and
transcripts were reconstructed using StringTie v2.1.3b. The read
counts and fragment per kilobase of transcript per million mapped
reads (FPKM) were obtained. The list of primers used for qPCR for
the validation samples is provided in data S6.

GenePattern, an open web server for bioinformatics, was used
for the downstream analysis of bulk transcriptomic data (59). DEG
analysis and GSEA were performed with default parameters, as
outlined in the software documentation. DEG profiles were config-
ured based on gene set lists from the molecular signature database
(29, 60).

IHC staining

Formalin-fixed, paraffin-embedded tissue blocks were sectioned at
4-pm thickness using a microtome to generate nonstained slides.
The slides were deparaffinized in xylene and rehydrated using a
graded series of ethanol solutions. Antigens were retrieved using
the heat-induced epitope retrieval method. The slides were im-
mersed in tris-EDTA buffer (pH 9.0) and heated in a steamer
for 20 min at 95°C. Following heat treatment, the slides were al-
lowed to cool to room temperature for 30 min to facilitate the
proper unfolding of the epitopes. The slides were then incubated
with primary antibodies against ATF5 and PAXS5. The ATF5 anti-
body (no. ab184923, Abcam, Cambridge, UK) was diluted 1:1000,
and the PAX5 antibody (no. ab109443, Abcam) was diluted 1:100.
After incubation with the primary antibody, the slides were washed
three times with phosphate-buffered saline (PBS) to remove un-
bound antibodies. Subsequently, a secondary antibody, goat anti-rabbit
immunoglobulin G H&L (no. ab205718, Abcam), was applied at
1:500 dilution. The slides were then incubated with secondary an-
tibodies for 1 hour at room temperature in a humidified chamber,
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followed by three additional washes with PBS to eliminate excess
secondary antibodies.

For image analysis, four images per slide were captured from dif-
ferent regions using the LoupLite program at 40X magnification.
Considering the use of the two antibodies, images were consistently
obtained from the same regions for each analysis to ensure normal-
ization across slides. The border areas of the slides were excluded to
minimize noise from the background staining. Each image consist-
ed of 6,291,456 pixels (3072 X 2048 resolution). Images were pro-
cessed using Image] software, and the IHC Profiler plugin was used
to analyze the pixel intensity (61). The percentage of positive staining
was quantified by calculating the proportion of pixels correspond-
ing to different intensity levels, thereby providing a robust assess-
ment of protein expression.

Identification of BRAF, RAS, and TERT promoter mutations
DNA extraction was performed using the QIAamp DNA Mini Kit
(QIAGEN, Inc., Hilden, Germany) according to the manufacturer’s
instructions. Genomic DNA was then amplified by PCR using the
primers detailed in data S6 on a C1000 Thermal Cycler (Bio-Rad
Laboratories, Hercules, CA, USA). After electrophoresis on a 2%
agarose gel, the products were visualized using the Gel Doc EZ Sys-
tem (Bio-Rad) and purified using the QIAquick Gel Extraction Kit
(QIAGEN, Inc., Hilden, Germany). Sequencing was conducted on
an ABI 3730XL DNA Analyzer using the BigDye Terminator v3.1
Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Waltham,
MA, USA). deFuse v0.8.1, FusionCatcher v1.00, and Arriba v1.2.0
were applied to expression data to detect fusion oncogenes. Only the
results consistently identified by all three analyses were considered
significant (62-64).

Statistical analysis

All statistical analyses were performed using the R program v4.3.2
(R project, The R Foundation for Statistical Computing, Vienna,
Austria) or GraphPad Prism v10 (GraphPad Software, San Diego, CA,
USA). Continuous variables were compared across multiple groups
using analysis of variance (ANOVA) and between two groups using
an unpaired ¢ test. The proportion of categorical variables was evalu-
ated for independence using the chi-square test. Heatmaps and den-
drograms were plotted using the “ComplexHeatmap” R package.
The potential multicollinearity of the variables used for ordinal
regression analysis was confirmed by calculating the variance infla-
tion factor (VIF). VIF >5 was considered to indicate significant mul-
ticollinearity, and the results are provided in data S7. To ensure the
robustness of our regression model, we systematically evaluated and
addressed multicollinearity among all clinical biomarkers included
in the analysis. The AUC of models developed in our regression anal-
ysis were compared using the DeLong test of the “pROC” R package.
Gene signature-based survival analysis in patients with PTC from
TCGA was conducted using GEPIA2 (http://gepia2.cancer-pku.cn)
(65). Statistical significance was set at P < 0.05.

Study approval

The study protocol was approved by the Institutional Review Board
(IRB) of Yonsei Cancer Center, Severance Hospital (IRB nos. 4-2021-
1487 and 4-2013-0546), Seoul, South Korea. Written informed con-
sent was obtained from all participants.
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