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C A N C E R

Radiotranscriptomics in papillary thyroid carcinoma 
complement current noninvasive risk 
stratification system
Dong Hyun Seo1†, Eunjung Lee2†, Jung Hyun Yoon3†, Eun Gyeong Park1†, Sunmi Park1,  
Hwa Young Lee4, Joon Ho5, Cho Rok Lee5, Kyunghwa Han3, Jandee Lee4*,  
Jin Young Kwak3*, Young Suk Jo1*

Papillary thyroid carcinoma (PTC) generally has a favorable prognosis; however, overtreatment persists because 
of the lack of reliable noninvasive risk stratification tools. This study developed a radiomics-based approach to 
enhance the preoperative assessment of PTC. Imaging features from 255 patients were analyzed, and three tumor 
clusters were identified via unsupervised clustering, with one cluster (Cluster 2) displaying favorable clinical and 
molecular profiles. A radiomics score was constructed and validated internally and externally, achieving high di-
agnostic accuracy (area under the curve of 0.98) and independently predicting benign features such as a lower N 
stage and favorable treatment responses. Transcriptomic analysis revealed immune activation and survival-
related gene expression in Cluster 2. The model demonstrated robust performance in stratifying patients for ac-
tive surveillance and may complement current diagnostic frameworks, offering a precise, noninvasive tool to 
guide clinical decision-making.

INTRODUCTION
Although the global incidence of thyroid cancer has been on the 
rise, in some countries, it has stabilized, largely due to widespread 
high-quality imaging refining detection practices (1). Advance-
ments in ultrasound (US) techniques have considerably increased 
the early detection of cancer, particularly in the microcarcinoma 
stage (2). However, 90% of patients with thyroid cancer are diag-
nosed with papillary thyroid carcinoma (PTC), which is associated 
with a favorable prognosis and a 5-year survival rate of 90 to 99% 
(3–5). This high rate of early detection can sometimes lead to over-
treatment, as many cases of PTC may not require aggressive inter-
vention given their favorable survival outcomes.

Considering these clinical outcomes, overtreatment remains a 
notable concern for clinicians, leading to the widespread acceptance 
of active surveillance (AS) for low-risk PTC, particularly papillary 
thyroid microcarcinoma (<1 cm) (6, 7). Recent studies, including 
those by Altshuler et al. and Ho et al., have broadened the scope of 
AS for low-risk PTC, demonstrating its safety for nodules ≥2 cm, 
with minimal progression and effective rescue surgery when neces-
sary (8, 9). However, accurately predicting which nodules will prog-
ress remains a challenge, highlighting the importance of advanced 
tools, such as radiomics, for improved risk stratification in AS can-
didates (2, 10).

Extensive bioinformatics analyses have defined different molecular 
subtypes of PTC and uncovered numerous genomic markers associ-
ated with aggressive prognosis (11–13). Among these, the BRAFV600E 
mutation and telomerase reverse transcriptase (TERT) promoter mu-
tations are two renowned genomic markers that are closely linked to 
increased mortality (14–16). Developing feasible and noninvasive 
methods to predict such aggressive genomic indicators is of important 
value in advancing precision medicine.

Lymph node metastasis (LNM), occurring in 30 to 70% of pa-
tients with PTC, is a crucial prognostic factor (5, 17) owing to its 
strong association with poor outcomes, including reduced survival 
and increased metastasis, which markedly influence treatment deci-
sions (18, 19). However, some studies have suggested that the prog-
nostic value of LNM staging, particularly in central neck node 
metastasis, remains unclear in terms of survival or disease progres-
sion (20–22). Regarding tumor heterogeneity, classifications of LNM 
based on distinct tumorigenic characteristics and varying outcomes 
have been proposed, raising doubts about the prognostic impact of 
LNM (23, 24). This highlights the need for alternative diagnostic 
tools to accurately identify “high-risk” patients with LNM, as those 
with suspected LNMs are recommended for invasive examinations 
(10). However, previous artificial intelligence (AI) models for thy-
roid cancer have primarily focused on predicting LNM and have 
demonstrated noteworthy performance using radiomics across US, 
computed tomography, and magnetic resonance imaging (25–27).

In this study, we introduced three novel radiomics-assisted unsu-
pervised clusters with distinct biological and clinical outcomes. We 
identified one specific cluster (Cluster 2) with notably favorable 
characteristics and developed a cluster-specific radiomics scoring 
system for Cluster 2 using machine learning. Our scoring system 
significantly identified high-risk patients with PTC, influencing 
treatment options and predicting recurrence. To interpret the bio-
logical relevance of our scoring system, we integrated genomic and 
transcriptomic analyses, revealing that the Cluster 2 score is sig-
nificantly associated with RAS-like biology and gene enrichment 
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crucial for cell differentiation and adaptive immune responses. Our 
findings were independently validated in a dataset of patients with 
PTC, mostly including those with microcarcinomas, reflecting the 
actual clinical scenario of low-risk PTC (28). Furthermore, the ex-
ternal validation of our data reinforced these results, highlighting 
the importance of standardizing diagnostic values to facilitate the 
integration of radiomics into clinical practice.

RESULTS
Study pipeline
A schematic workflow of the research process is shown in  Fig.  1. 
Briefly, our exploratory dataset consisted of retrospectively collected 
clinicopathological and radiological data from 255 patients with 
PTC who underwent thyroidectomy between 2014 and 2018 at our 
institution. For validation purposes, we enrolled independent exter-
nal data (n =  203) and an in-house cohort of patients with small 
PTC (n =  150). The baseline patient characteristics are presented 
in Table 1.

A total of 730 radiomic features were extracted per US image using 
in-house texture analysis algorithms. Information on the extracted 

radiomic features and their intraclass correlation coefficient (ICC) 
values is provided in data S1.

To investigate the underlying molecular mechanisms of radiomic 
clusters, we analyzed bulk RNA sequencing data from 255 patients 
with PTC in our exploratory dataset. For validation, tissue samples 
and paraffin-embedded slides from the validation cohorts were col-
lected, and immunohistochemistry (IHC) and quantitative poly-
merase chain reaction (qPCR) were performed on internal and 
external validation datasets, respectively, to measure gene expression.

Clinicogenomic characterization of radiomics-based 
unsupervised clusters
To ensure feature robustness, we set an ICC cutoff value of 0.5 
and identified 285 reliable radiomic features. We reduced multi-
collinearity by removing features with a Pearson correlation coeffi-
cient of >0.9. Consequently, 75 radiomic features were selected for 
the downstream analysis (Fig. 2A). Unsupervised clustering using 
nonmatrix factorization (NMF) was performed, and clustering 
quality was assessed using the cophenetic coefficient. We identified 
the optimal number of clusters to be three (K = 3), which yielded 
the highest cophenetic coefficient of 0.9958 (Fig. 2B). A heatmap of 

Fig. 1. Workflow pipeline used in the study. In our exploratory study dataset, 255 in-house patients with PTC who underwent surgery before 2019 were enrolled. For 
validation, 150 independent in-house PTC patients who underwent surgery after 2019 were included. The external validation set consisted of 203 patients with PTC from 
the Yongin Severance Hospital. In total, 608 patients with PTC were enrolled in this study. Preoperative US images were acquired for each patient, and the cancerous region 
was segmented by a specialized radiologist. Radiomic features were extracted from the region of interest, followed by a comprehensive feature-selection process to en-
sure the reproducibility of the findings. A risk score model was built using radiomics and validated in two independent PTC cohorts. RNA sequencing was performed 
during the exploratory phase to elucidate underlying molecular mechanisms. Subsequently, quantitative polymerase chain reaction (qPCR) and immunohistochemistry 
(IHC) were used in samples from the validation dataset to validate our molecular mechanisms and assess the clinical significance of our proposed radiomic model. FFPE, 
formalin-fixed, paraffin-embedded; ICC, intraclass correlation coefficient; NME, nonmatrix factorization.
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the normalized values for the 75 radiomic features was plotted to 
identify three clusters (K = 3; Fig. 2C).

To evaluate the clinical relevance of these radiomic clusters, we com-
pared key clinical variables and driver mutation statuses across the clus-
ters, with the results summarized in Table 2. Significant differences were 
observed in the distribution of BRAFV600E mutations, TERT promoter 
mutations, as well as T and M stages among the clusters.

Cluster 1 exhibited the largest tumors, with a median size of 2.15 cm 
(P < 0.001), and a higher incidence of gene fusions (10.5%), although 
this difference was not statistically significant (P  =  0.1667). In 
contrast, Cluster 3 showed the highest prevalence of BRAFV600E 
mutations (92.5%, P = 0.0099). TERT promoter mutations (P = 0.0363) 
and distant metastasis (M1) (P = 0.0326) were more frequent in 
Cluster 1, although LNM did not reach statistical significance.

The American Thyroid Association (ATA) risk classification dif-
fered significantly across the clusters (P < 0.001), with Cluster 2 pre-
dominantly consisting of intermediate-risk patients (72.0%) and 
Cluster 1 containing a larger share of high-risk patients (42.1%). In 
addition, significant radiological feature differences were observed in 
calcification patterns (P = 0.0039) and nodule appearance under US, 
with heterogeneous echotexture being most prevalent in Cluster 3 
(P = 0.0085). These findings highlight the distinct clinical and molecu-
lar characteristics of each radiomic cluster while acknowledging vari-
ables without statistical significance, supporting the potential use of 
this stratification approach in thyroid cancer risk assessment (Table 2).

Developing Cluster 2 specific scoring system using a 
machine learning algorithm
We assessed the likelihood of predicting radiomics-defined clusters 
using selected features. Least absolute shrinkage and selection op-
erator (LASSO) was used to select the most effective features for 
scoring each cluster likelihood. A lambda value was selected to min-
imize binomial deviance in each cluster and facilitate the selection 
of radiomic features with nonzero coefficients at these optimal val-
ues for model development (fig. S1, A to F). As a result, 27, 23, and 
15 radiomic features with nonzero LASSO coefficients were identi-
fied for Clusters 1 to 3, respectively. The performance of the construct-
ed radiomic model was assessed using a test dataset. We observed an 
equivocal area under the curve (AUC) value of 0.98 when predicting 
all three clusters and ensured significant performance when compared 
with other known machine learning algorithms (fig. S1, G to I).

Association between radiologist interpretations and 
Cluster 2 score
A previous analysis identified Cluster 2 as having favorable clinico-
pathological features, warranting further investigation. To capture 
this “Cluster 2–like” signature for each patient, we developed a Cluster 
2 score, a radiomics-based metric derived from a set of optimized 
features weighted by LASSO coefficients. This score reflects the likeli-
hood that an individual tumor shares the defining characteristics of 
Cluster 2. We then applied the score to every patient in our dataset to 

Table 1. Baseline clinicopathological characteristics of patients with PTC for exploratory and validation sets. Continuous variables are presented as 
means ± standard deviation. Categorical variables were summarized as the number of patients and their corresponding percentages. TNM stage was classified 
according to the eighth edition of the American Joint Committee on Cancer Cancer Staging Manual. Significant demographic differences between the patient 
cohorts were evaluated using one-way analysis of variance (ANOVA) for continuous variables and the chi-square test for proportions of categorical variables. 
Statistical significance was set at P < 0.05. *P < 0.05; **P < 0.01. NA, not applicable; EBV, Epstein-Barr virus; NTRK, neurotrophic tyrosine receptor kinase; pTERT, 
TERT promoter; RAITx, radioiodine therapy.

Variables Exploratory data  
(n = 255) (~2018)

Internal validation data  
(n = 150) (2018 ~ 2023)

External validation data  
(n = 203) (2018 ~ 2023)

﻿Age*﻿ 50.5 ± 14.4 41.1 ± 12.6 41.4 ± 11.6

﻿Sex﻿ ﻿ ﻿ ﻿

  Male 66 (25.9%) 39 (26%) 42 (20.7%)

  Female 189 (74.1%) 111 (74%) 161 (79.3%)

﻿Tumor size (cm)**﻿ 1.92 ± 0.85 1.11 ± 0.18 1.30 ± 0.36

﻿T stage**﻿ ﻿ ﻿ ﻿

 T 1–2 46 (18%) 137 (91.3%) 75 (36.9%)

 T 3–4 209 (82%) 13 (8.7%) 128 (63.1%)

﻿N stage**﻿ ﻿ ﻿ ﻿

 N 0 82 (32.1%) 48 (32%) 86 (42.3%)

 N 1a 78 (30.5) 38 (25.3%) 86 (42.3%)

 N 1b 95 (37.4%) 64 (44.7%) 31 (13.4%)

﻿M stage (M1, distant metastasis)﻿ 4 (1.5%) 1 (0.7%) 0

  BRAF  V600E  mutation*﻿ 221 (88.4%) 90 (60%) 180 (88.6%)

﻿pTERT mutation*﻿ 29 (11.3%) 5 (3.3%) 2 (1.0%)

﻿Gene fusion (EBV, NTRK)﻿ 17 (6.6%) NA NA

﻿Adjuvant RAITx**﻿ ﻿ ﻿ ﻿

 N o RAITx 67 (26.3%) 73 (48.6%) 168 (82.8%)

 L ow dose (<60 mCi) 49 (19.2%) 10 (6.7%) 1 (0.5%)

 I ntermediate dose (100 ~ 120 mCi) 46 (18%) 66 (44%) 19 (9.3%)

 H igh dose (>150 mCi) 93 (36.5%) 1 (0.7%) 15 (7.4%)
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explore its relationship with high-risk US findings as interpreted by 
specialized radiologists. To evaluate the clinical relevance of this 
score in relation to high-risk US findings identified by specialized 
radiologists, we designated those in the top 33% of scores as the Clus-
ter 2 high group and those in the bottom 33% as the Cluster 2 low 
group from the entire dataset. The evaluated US features included 
composition, echogenicity, shape, margin, calcification, vascularity, 
nodule appearance, and final Thyroid Imaging Reporting and Data 
System (TI-RADS) classification (graded on a 1 to 5 scale). Among 

these variables, “margin” (e.g., smooth, irregular, lobulated, or extra-
thyroidal extension) and the overall TI-RADS grading demonstrated 
significant differences between the high and low Cluster 2 scoring 
groups. Both radiologists observed a higher proportion of smooth 
margins in the high-score group and more prominent extrathyroidal 
extension in the low-score group. In addition, radiologist 2 reported 
a significantly lower incidence of TI-RADS 5 in the high-score group 
compared to radiologist 1 (Fig. 3, A to H). Representative US images 
of the high- and low-score groups, along with a heatmap contrasting 

Fig. 2. Selection of reliable features and unsupervised clustering reveals three unique radiomics-based clusters. (A) A total of 75 of 730 radiomic features were se-
lected after the feature selection process. A pairwise correlation plot was generated using Pearson’s correlation coefficient. (B) A cophenetic coefficient plot and relative 
heatmap were drawn after unsupervised clustering using the NMF algorithm. K = 3 has a maximum coefficient of 0.9958, indicating that it is the optimal clustering number. 
(C) Heatmap of 75 selected features across K = 3 radiomic clusters with colabeled clinical variables. Hierarchical clustering was performed on the rows for better visualization.
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Table 2. Baseline demographics and US feature comparison between proposed radiomic clusters. Significance was tested for clinical variables across 
defined radiomic clusters. One-way ANOVA was performed for numerical values, while the chi-square test was used for categorical variables. Statistical 
significance was set at P < 0.05. *P < 0.05; **P < 0.01; ***P < 0.001. ATA, American Thyroid Association; IQR, interquartile range; TI-RADS, Thyroid Imaging 
Reporting and Data System; TR, TI-RADS category.

Cluster 1  
(n = 95)

Cluster 2  
(n = 93)

Cluster 3  
(n = 67)

﻿Demographics﻿ ﻿ ﻿ ﻿ ﻿

 Age (median, IQR) ﻿ 51 (41–60.5) 52 (46–60) 52 (45–60)

 Age over 45 years
No 65 (68.4%) 61 (65.6%) 42 (62.7%)

Yes 30 (31.6%) 32 (34.4%) 25 (37.3%)

 Gender
Male 27 (28.4%) 20 (21.5%) 19 (28.4%)

Female 68 (71.6%) 73 (78.5%) 48 (71.6%)

T stage

T1 10 (10.5%) 15 (16.2%) 6 (9.0%)

T2 7 (7.4%) 7 (7.5%) 1 (1.5%)

T3 63 (66.3%) 64 (68.8%) 53 (79.1%)

T4 15 (15.8%) 7 (7.5%) 7 (10.4%)

N stage

N0 24 (25.3%) 37 (39.8%) 21 (31.3%)

N1a 30 (31.6%) 28 (30.1%) 20 (29.9%)

N1b 41 (43.2%) 28 (30.1%) 26 (38.8%)

 M stage*﻿﻿ M1 5 (5.3%) 0 (0%) 0 (0%)

Tumor size (cm)***﻿﻿ ﻿ 2.1 (IQR = 1.1) 1.4 (IQR = 0.4) 1.6 (IQR = 0.8)

 BRAFV600E mutation**﻿﻿ Detected 78 (82.1%) 81 (87.1%) 62 (92.5%)

 Gene fusion 

Not found 85 (89.5%) 88 (94.6%) 66 (98.5%)

NTRK 8 (8.4%) 3 (3.2%) 1 (1.5%)

RET 2 (2.1%) 2 (2.2%) 0 (05)

TERT promoter mutation 
(C228T and C250T)*﻿﻿

Detected 19 (20%) 5 (5.4%) 5 (7.5%)

TERT RNA expression Detected 20 (21.1%) 17 (18.2%) 11 (16.4%)

 Recurrence Yes 8 (8.4%) 2 (2.2%) 6 (9.0%)

 Follow- up period (median, 
IQR)

﻿ 88.5 months (IQR = 38.4 
months)

86.3 months (IQR = 22.8 
months)

87.7 months (IQR = 20.8 
months)

 ATA risk classification***﻿﻿

Low 15 (15.8%) 12 (12.9%) 5 (7.5%)

Intermediate 40 (42.1%) 67 (72.0%) 34 (50.7%)

High 40 (42.1%) 14 (15.1%) 28 (41.8%)

﻿US features﻿ ﻿ ﻿ ﻿ ﻿

Composition
Cystic or mixed 12 (12.6%) 4 (4.3%) 4 (6.0%)

Near solid 83 (87.4%) 89 (95.7%) 63 (94%)

Echogenicity
Anechoic ~ hyperechoic 85 (89.5%) 76 (81.7%) 56 (83.6%)

Hypoechoic 10 (10.5%) 17 (18.3%) 11 (16.4%)

 Margin
Smooth 56 (58.9%) 65 (69.9%) 41 (61.2%)

Irregular, ETE 39 (41.1%) 28 (30.1%) 26 (38.8%)

Calcification**﻿﻿
Negative 25 (26.3%) 46 (49.5%) 23 (34.3%)

Positive 70 (73.7%) 47 (50.5%) 44 (65.7%)

 Shape
Wide 58 (61.0%) 55 (59.1%) 40 (59.7%)

Tall 37 (39.0%) 38 (40.9%) 27(40.3%)

TI- RADS
TR 2–4 32 (33.7%) 33 (35.5%) 20 (29.9%)

TR 5 63 (66.3%) 60 (64.5%) 47 (70.1%)

Vascularity
Negative 28 (29.5%) 41 (44.1%) 29 (43.3%)

Positive 67 (70.5%) 52 (55.9%) 38 (56.7%)

Nodule appearance under 
echo**﻿﻿

Homogenous 38 (40.0%) 25 (26.9%) 12 (17.9%)

Heterogenous 57 (60.0%) 68 (73.1%) 55 (82.1%)
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the intensity of Cluster 2–specific radiomic features, are shown in 
Fig. 3 (I and J).

Cluster 2 score independently predicts advanced LNM and 
therapeutic indications
To assess the predictability of the Cluster 2 score for cancer stages 
and therapeutic indications, we performed ordinal regression analy-
sis, controlling for clinical variables such as age, tumor size, and sex. 
In addition, to benchmark current clinical practice, we included the 
US features of nodule appearance, vascularization, and the final TI-
RADS category as covariates (Table 3).

Tumor size (in centimeters) was the sole independent predictor 
of the T stage, with a beta estimate value of 0.301 ± 0.079 (P = 0.001). 
To predict the extent of thyroidectomy (event = total thyroidecto-
my), we used the Cluster 2 score, age, and tumor size as significant 
indicators, with beta estimate values of −0.691 ± 0.219 (P = 0.002), 
0.217 ± 0.096 (P = 0.025), and 0.211 ± 0.065 (P = 0.001), respec-
tively. We also assessed the ordinal prediction of Cluster 2 against 
the N stage, yielding a beta estimate value of −0.592  ±  0.261 
(P = 0.024). However, the extent of neck dissection (event = lateral 
neck dissection) was not significantly predicted by any of these 
variables. In addition, we evaluated patients indicated for high-dose 

Fig. 3. Association of TI-RADS components and Cluster 2 score. Patients in the lowest and highest 33% of Cluster 2 scores were classified as low and high Cluster 2 
groups, respectively. (A to H) The bar chart illustrates the proportions of each component comprising the TI-RADS and the final TI-RADS category (TR) as assessed by two 
specialized radiologists, as well as the proportions of vascularity and nodule appearance observed on US, with significant differences determined using the chi-square 
test. ETE, extrathyroidal extension. (I and J) Gross US images of tumor segmentation in Cluster 2 low and high groups are paired pixel intensities of Cluster 2 specific ra-
diomic features found by the LASSO machine learning algorithm. The results were considered significant if the P value was less than 0.05. *P < 0.05. ns, not significant.
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radioiodine therapy and revealed that the Cluster 2 score and tumor 
size were significant predictors, with beta estimate values of −0.985 
± 0.508 (P = 0.044) and 0.587 ± 0.151 (P < 0.001), respectively.

In our exploratory dataset, we compared the performance re-
gression models with and without the Cluster 2 scores using the F 
test. The predictive performance was significantly improved for thy-
roidectomy (P = 0.007) and N-stage prediction (P = 0.036) when 
the Cluster 2 score was included.

To validate this regression model, we assessed whether the inclu-
sion of the Cluster 2 score significantly enhanced its predictive per-
formance. Specifically, for T3 and T4 cancer stages, the inclusion of 
the Cluster 2 score did not improve predictability (Fig. 4A). How-
ever, its inclusion significantly enhanced the prediction of total thy-
roidectomy events, as reflected by AUC values of 0.768 (P = 0.024) 
in the internal validation dataset and 0.786 (P = 0.042) in the exter-
nal dataset (Fig. 4B). Similarly, the Cluster 2 score significantly im-
proved the prediction of lateral neck node metastasis (N1b stage), 
with AUC values of 0.781 (P = 0.030) internally and 0.808 (P = 0.005) 
externally (Fig. 4C). Although the prediction of distant pathological 
LNM improved, the Cluster 2 score did not significantly enhance 
the prediction of lateral neck dissection (Fig. 4D). Regarding adju-
vant radioiodine therapy, the inclusion of the Cluster 2 score signifi-
cantly improved the model’s ability to predict clinician decisions for 
identifying patients requiring high-dose therapy, with AUC values 
of 0.788 (P = 0.010) and 0.750 (P = 0.006) for the internal and exter-
nal validation datasets, respectively (Fig. 4E).

Cluster 2 score predicts poor outcomes and aggressive 
PTC features
We further investigated the prognostic significance of the Cluster 2 
score in patients with PTC. First, we evaluated the 1-year thyroglobulin 
(Tg) level as a reliable biomarker for assessing treatment response, 
recurrence risk, and residual disease. We selected patients who un-
derwent total thyroidectomy and collected their nonstimulated Tg 
from 1-year follow-up laboratory results. The detection cutoff was 
set at 1 μg/liter, and post–total thyroidectomy patients with Tg levels 
above this threshold were considered to have a biochemical in-
complete response. We observed that patients with detectable Tg levels 
showed lower Cluster 2 scores in both exploratory and internal vali-
dations. However, this finding was not replicated in the external vali-
dation dataset, although a similar trend was observed (Fig. 5A).

Considering that driver mutations are major indicators of tumor 
aggressiveness in PTC, we compared the representative mutations 
with their corresponding Cluster 2 scores (Fig. 5B). BRAFV600E mu-
tation alone was not significantly different from the wild type. How-
ever, its coexistence with the TERT promoter mutation was significant 
across all datasets.

Our exploratory dataset had an average follow-up period of 
7.2 years, allowing us to evaluate disease-free survival (DFS) in relation 
to the Cluster 2 score. Patients with high Cluster 2 scores demon-
strated significantly longer DFS than those with low Cluster 2 scores 
(Fig. 5C). Moreover, we were interested in benchmarking the pre-
dictive use of the Cluster 2 score with the established ATA risk 
stratification system; therefore, we conducted a multivariable Cox 
proportional hazards regression analysis incorporating both vari-
ables. In this model, the ATA risk classification remained a strong 
predictor of DFS [hazard ratio (HR) = 2.11, 95% confidence interval 
(CI): 0.92 to 4.83, P = 0.0784], while higher Cluster 2 scores demon-
strated a trend toward reduced recurrence risk (HR = 0.17, 95% 

Table 3. Ordinal logistic regression analysis of radiomics-specific 
cluster scores and clinical factors in exploratory patient datasets. 
Ordinal logistic regression analysis was conducted for the following 
variables: T stage (T1–2 = 0, T3–4 = 1), extent of thyroidectomy (partial 
thyroidectomy and lobectomy = 0, total thyroidectomy = 1), N stage 
(N0 = 0, N1a = 1, N1b = 2), extent of neck dissection (central neck node 
dissection = 0, modified lateral neck node dissection = 1), and dosage of 
adjuvant radioiodine therapy (none = 0, low dose <60 mCi = 1, 
intermediate dose 100 to 120 mCi = 2, high dose >150 mCi = 3). An F test 
was conducted to compare the predictive performance of the two 
models: one model used clinical factors, including demographic features 
and radiological interpretations, while the other model incorporated 
radiomic cluster scores in addition to clinical factors. Significant results 
from the F test indicated that predictive performance improved with the 
addition of radiomic cluster scores. The estimates were considered 
significant if the P value was <0.05. *P < 0.05; **P < 0.01; ***P < 0.001.

Exploratory dataset

Estimate Standard error

﻿T stage﻿ ﻿ ﻿

Cluster 2 (score) −0.083 0.269 

 Age (year) 0.060 0.117 

Tumor size (cm)***﻿﻿ 0.301 0.079 

 Sex 0.017 0.131 

Nodule appearance −0.001 0.003 

Vascularity (%) −0.006 0.003 

TI- RADS category 0.186 0.158 

﻿F test P = 0.631 

﻿Extent of 
thyroidectomy﻿

Exploratory dataset

﻿ Estimate Standard error

Cluster 2 (score)**﻿﻿ 3.829 0.725 

 Age (year)* −0.691 0.219 

Tumor size (cm)**﻿﻿ 0.217 0.096 

 Sex 0.211 0.065 

Nodule appearance 0.092 0.107 

Vascularity (%) 0.001 0.002 

TI- RADS category*﻿﻿ −0.001 0.003 

﻿F test P = 0.007

﻿N stage﻿ Exploratory dataset

﻿ Estimate Standard error

Cluster 2 (score)*﻿ −0.592 0.261 

 Age (year) 0.093 0.114 

Tumor size (cm) 0.099 0.077 

 Sex −0.211 0.127 

Nodule appearance −0.001 0.003 

Vascularity (%) 0.002 0.004 

TI- RADS category 0.188 0.153 

﻿F test*﻿﻿ P = 0.036

﻿Extent of neck 
dissection﻿

Exploratory dataset

﻿ Estimate Standard error

Cluster 2 (score) −0.321 0.182 

 Age (year) −0.026 0.080 

Tumor size (cm) 0.065 0.054 

 Sex −0.063 0.089 
(Continued)



Seo et al., Sci. Adv. 11, eadv6697 (2025)     29 August 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

8 of 17

CI: 0.02 to 1.37, P = 0.0947), although this did not reach statistical sig-
nificance. Nonetheless, the combined model significantly enhanced 
predictive performance (P = 0.007, concordance = 0.708), suggest-
ing that integrating radiomics-based stratification with traditional 
ATA risk levels may improve clinical risk assessment (data S2).

In addition, histological variants, which also indicate tumor aggres-
siveness, showed significantly low Cluster 2 scores in the presence of rare 
but aggressive histological types (Fig. 5D). A summary of the aggressive 
histological variants found in our datasets is presented in a pie chart 
in Fig. 5E. In the exploratory dataset, we identified 11 cases: five solid 
variants, four diffuse sclerosing variants, one tall cell variant, and one 
oncocytic variant. In the internal validation set, we found nine cases: 
three diffuse sclerosing variants, five tall cell variants, and one oncocytic 
variant. Meanwhile, we found 12 cases in the external validation set: two 
solid variants, five diffuse sclerosing variants, and five tall cell variants.

Integration of transcriptomics analysis identifies distinct 
biology in Cluster 2
To explain the potential of our scoring system for predicting clinical 
outcomes in patients with PTC, we incorporated molecular inter-
pretations. We defined the biological characteristics of the three ra-
diomic clusters using gene set enrichment analysis (GSEA) of 51 
hallmark gene sets known to contribute to tumorigenesis (29). A heat-
map was plotted showing the average normalized enrichment scores 
of the significant gene sets (Fig. 6A). Specifically, Cluster 2 was up-
regulated in PANCREAS_BETA_CELLS, ANDROGEN_RESPONSE, 
ESTROGEN_RESPONSE_EARLY, and GLYCOLYSIS. Cluster 3 was 
up-regulated in UNFOLDED_PROTEIN_RESPONSE, UV_RESP
ONSE, APICAL_JUNCTION, INTERFERON_ALPHA_GAMMA_ 
RESPONSE, COMPLEMENT, PEROXISOME, BILE_ACID_
METABOLISM, ALLOGRAFT_REJECTION, EPITHELIAL_MESYN‑ 
CHYMAL_TRANSITION, and INFLAMMATORY_RESPONSE groups. 
Cluster 1 was down-regulated in all significant hallmark pathways.

Subsequently, we benchmarked well-known transcriptomic 
markers to analyze the aggressiveness of PTC. The thyroid differ-
entiation score, where a higher value indicates better differentia-
tion, was significant when directly comparing Clusters 2 and 3 
(Fig.  6B). However, no significant differences were found when 
comparing the highest (top 33%) and lowest (bottom 33%) Clus-
ter 2 scores (Fig. 6C). BRAF and RAS, two major driver mutations 
in thyroid cancer, tend to have opposing effects on tumorigenesis, 
with BRAF being more aggressive than RAS. The BRAF-RAS 
score was higher in Cluster 3, indicating a greater likelihood of 
BRAF mutations (Fig.  6D). Moreover, the Cluster 2 high group 
exhibited a significantly higher RAS-like profile than the Cluster 
2 low group (Fig. 6E).

We delineated the distinct biology of Cluster 2 by analyzing 
the differentially expressed genes (DEGs). DEGs with an adjusted 
P < 0.05 (log10 P value =1.301) and an absolute log2 fold change 
of >0.5 were considered significant. This analysis returned 306 
significant DEGs in the Cluster 2 high group and 198 DEGs in the 
Cluster 2 low group (Fig. 6F and data S3). We subsequently pro-
filed these DEGs using the Gene Ontology database, revealing 
that the Cluster 2 low group was associated with mitochondrial 
respiration and lipid metabolism (Fig. 6G and data S4), whereas 
the Cluster 2 high group was enriched with gene sets involved in 
immune response, lymphocyte activation, immunoglobulin com-
plexes, and cell differentiation (Fig. 6H and data S5).

Among the top 20 DEGs found in both the Cluster 2 high and 
low groups, we validated five representative DEGs from each clus-
ter in a validation dataset using qPCR (Fig.  7, A to J). Validated 
DEGs were significantly associated with prognosis. The expres-
sion of Cluster 2 high–specific DEGs correlated with better DFS 
(Fig.  7K), whereas higher expression of Cluster 2 low DEGs was 
associated with worse DFS (Fig.  7L). Likewise, we were able to 
validate the uniform prognostic value of Cluster 2–defined DEGs 
in The Cancer Genome Atlas (TCGA) thyroid cancer patient data-
set (fig. S2, A and B).

From the validated DEGs, we selected paired box 5 (PAX5), a B 
cell transcription factor, and activating transcription factor 5 (ATF5), 
which is known to mediate mitochondrial unfolded protein respons-
es, for further protein expression validation (30, 31). Fresh frozen 
paraffin slides from surgical specimens of the Cluster 2 high 
(n  =  15) and low (n  =  15) groups were used for this validation 
(fig. S2, C and D). IHC was conducted to evaluate the expression 
levels of PAX5 and ATF5, which revealed significant differences in 
the proportion of positively stained cells between the groups 
(Fig. 7, M and N).

For PAX5 expression, the Cluster 2 low group had 0.2% high 
positive, 0.4% moderate positive, 5.3% low positive, and 94.1% neg-
ative expression, while the Cluster 2 high group exhibited 1.4% 
high positive, 5.6% moderate positive, 17.2% low positive, and 
75.8% negative expression (Fig.  7O). For ATF5 expression in the 
Cluster 2 low group, 2.9% were highly positive, 20.8% moderately 
positive, 40.7% low positive, and 35.6% negative. In contrast, the 
Cluster 2 high group showed 0.1% positive, 4.1% moderate positive, 
25.6% low positive, and 70.2% negative expression (Fig.  7P). In 
addition, staining of normal thyroid tissues for ATF5 and PAX5 
showed no detectable expression, suggesting that their expression 
was likely tumor specific (fig. S2E).

 (Continued)

Exploratory dataset

Estimate Standard error

Nodule appearance −0.001 0.002 

Vascularity (%) 0.002 0.003 

TI- RADS category −0.001 0.107 

﻿F test P = 0.327

﻿RAITx dosage﻿ Exploratory dataset

﻿ Estimate Standard error

Cluster 2 (score)*﻿﻿ −0.985 0.508 

 Age (year) −0.051 0.223 

Tumor size (cm)***﻿﻿ 0.587 0.151 

 Sex −0.298 0.248 

Nodule appearance 0.000 0.006 

Vascularity (%) 0.004 0.008 

TI- RADS category −0.171 0.299 

﻿F test P = 0.089
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DISCUSSION
To date, various studies have used radiomics to identify thyroid US 
imaging biomarkers as predictors of thyroid cancer outcome or prog-
nosis. However, most of these studies have primarily focused on dis-
tinguishing malignant tumors from normal tissue or detecting possible 
LNM (32). Radiomics studies on thyroid cancer typically targeted a 
known, single-aggressive clinical factor as the end point of the 
study; however, no satisfactory model has been proposed. In the ini-
tial stage of the study, we aimed to enhance our investigation by enroll-
ing only highly correlated radiomic features with clinical factors. 
However, this approach returned comparatively poor clustering 
performance, and the characterization of formed clusters was un-
satisfactory (fig. S3).

For genomic markers, the performance of the previous radiomic 
prediction models was not significant, with an average AUC value of 
~0.7 (33, 34). Similarly, we failed to predict the BRAFV600E mutation 
alone. However, recent bioinformatics analysis revealed a distinct 
behavior for the BRAFV600E mutation in PTC, which may function 
as a lurking variable for prediction models (24). However, the coex-
istence of BRAFV600E and TERT promoter mutations defines the 
most aggressive form of PTC, with distinct biological characteris-
tics, which our scoring system successfully identified (16, 35, 36).

Predicting malignancy is not a pressing need at the screening US 
examination stage, as specialized radiologists effectively fulfill their 
roles (37). Particularly, current radiological algorithms, such as TI-
RADS, achieve sensitivities of >90% in diagnosing thyroid nodules. 

Fig. 4. Validation of the prognostic value of Cluster 2 score using ordinal logistic regression model. Predictions were assessed using receiver operating characteris-
tic (ROC) curves for (A) T stage (event: T3–4 stage), (B) extent of thyroidectomy (event: total thyroidectomy), (C) extent of neck dissection [event: modified lateral neck 
node metastasis (MRND)], (D) N stage (event = N1b stage), and (E) indication of moderate radioiodine therapy (event: radioiodine therapy >100 mCi). The regression 
model from the internal validation patient dataset is depicted in red, whereas the external validation dataset is depicted in blue. The dotted line represents the model 
performance with only clinicopathological variables, and the solid line represents the model with the inclusion of the Cluster 2 score in both the internal and external 
models. The significance of the improved model performance with the inclusion of Cluster 2 was assessed using the DeLong test, and the results are shown in the legend 
(analysis between solid and dotted lines). Results were considered significant if the P value was lower than 0.05.
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However, this comes with a trade-off of lower specificity, which can 
lead to unnecessary concerns about overtreatment (38, 39). In addi-
tion, visual analysis by physicians is highly subjective, leading to 
both interobserver and intraobserver variations (40, 41). In contrast, 
radiomics serves as an objective imaging biomarker by extracting 
quantitative features from images, providing insights into underly-
ing pathophysiology that are impossible to discern through visual 

interpretation alone (42). Although US–fine-needle aspiration or 
biopsy helps determine the need for surgery, the increasing use of 
high-quality imaging methods facilitates the detection of even small 
thyroid cancers, thereby increasing the risk of overtreatment. This 
has prompted the application of AS in recent years (43–45). How-
ever, it remains unclear which cancers may progress or have poor 
outcomes during AS. To address this gap, we characterized radiomic 

Fig. 5. Association of Cluster 2 score with response to therapy and aggressive biological features. Measurements were conducted separately for each dataset. 
(A) Comparison of Cluster 2 scores between patients with nonstimulated Tg levels in 1-year follow-up laboratory results greater than 1 and those without. sTg, stimulated 
thyroglobulin. (B) Comparison of Cluster 2 scores between patients who were intact from the mutation, those with the BRAFV600E mutation (BRAFmt), and those with both 
TERT promoter (pTERT) mutation and BRAFV600E mutation. WT, wild type. (C) The Kaplan-Meier survival curve of disease-free survival (DFS) was generated based on the 
Cluster 2 score, with high and low groups defined by the 33rd and 66th percentiles, respectively. Statistical significance was evaluated using the log-rank test. (D) Com-
parison of Cluster 2 scores between patients diagnosed with classical variant PTC, follicular variant PTC, and other aggressive histology of PTC. (E) The layout of the number 
and types of aggressive histologies in each dataset is presented in a pie chart. The Mann-Whitney U test was used to discern the significance of numerical values. Results 
were considered significant if the P value was lower than 0.05. Every bar chart in this figure represents the average values, with error bars indicating standard deviations. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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clusters, a biomarker that predicts PTC with favorable characteris-
tics, which could provide notable improvement in clinical practice 
by reducing unnecessary treatments.

Our scores successfully predicted the pathological N stage of 
cancer, although their performance was suboptimal for predicting 
the extent of neck dissection required. These findings suggest a potential 
role for radiomics screening in aiding physicians in surgical decision- 
making. We observed a significant difference in tumor size among 
radiomic clusters and hypothesized that tumor size could be a pri-
mary determinant of Cluster 2 score. However, its predictive role in 
the T stage was limited when tumor size was analyzed as a covariate, 
suggesting that Cluster 2 was influenced by different, unmeasured 
radiological factors indicative of indolence.

The “black box issue” is an inherent limitation of radiomics method-
ology as it lacks transparency and is not readily interpretable by clinicians 
(46). This issue is prevalent among AI techniques applied in medicine 
and is often scrutinized because of the critical need for understanding 
before these methods can be confidently used in clinical decisions (47).

To address these limitations, we integrated a multiomics ap-
proach to gain biological insights into the association between our 
Cluster 2 score and clinical outcomes. GSEA results using hallmark 
gene sets revealed enrichment of inflammatory and epithelial-to-
mesenchymal transition (EMT) signals in Cluster 3. This aligns with 
our previous findings, where we identified a significant association 
between the consistent up-regulation of immune response and EMT 
signals in suspicious nodules identified by radiologists, features that 

Fig. 6. Molecular characterization of radiomic clusters. (A) A heatmap of enrichment scores (ES) retrieved after conducting GSEA in radiomic clusters using hallmark 
gene sets of tumorigeneses registered in the molecular signature database (mSigDB). Only gene sets with significant differences in one-way ANOVA analysis are shown. 
(B and D) Thyroid differentiation scores and (C and E) BRAF-RAS scores were calculated using single-sample GSEA and compared across the three radiomic clusters, as well 
as between Cluster 2 high and low patient subgroups, defined by the top and bottom 33% of the Cluster 2 score distribution, respectively. (F) Significant differentially 
expressed genes (DEGs) found between Cluster 2 high and low patient groups in the exploratory dataset are depicted as volcano plots. (G and H) DEGs from each Cluster 
2 high and low patient group were profiled using gene ontology gene sets, and the top six significant gene sets are shown in bar charts. The Mann-Whitney U test was 
used to discern the significance of numerical values. Results were considered significant if the P value was lower than 0.05. All bar charts are depicted as averages, and 
error bars indicate standard deviations. *P < 0.05.
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closely resemble those of Cluster 3 identified in the current study. 
(48). In Cluster 2, an increase in different hormonal responses and 
gene set enrichment, which are important for cell development, was 
observed. In contrast, Cluster 1 showed no significantly enriched 
gene sets, indicating a “silent biology.” We interpret this lack of tran-
scriptional activity as reflective of a heterogeneous PTC population. 
Although the overall cohort was genomically homogeneous, with 

~85% of patients harboring the BRAFV600E mutation, Cluster 1 ex-
hibited a comparatively higher proportion of fusion genes and 
TERT promoter mutations. This subtle molecular heterogeneity 
highlights the need for further subclassification within this group.

Summarizing our overall genomic and transcriptomic analyses, 
our radiomic clusters can be characterized as follows: Cluster 1 is as-
sociated with a silent but heterogeneous genetic background, Cluster 

Fig. 7. Validation of molecular features correlated with Cluster 2 scores. Among the DEGs with the highest significance, five DEGs from each (A to E) Cluster 2 high 
and (F to J) Cluster 2 low were validated in our patient tissue samples using qPCR (n = 7 tissue samples for each Cluster 2 high and low patient group). Kaplan-Meier sur-
vival curves for DFS were plotted using validated DEG markers from our data. The association of five Cluster 2 high–specific DEGs with DFS is depicted in (K), while the 
association of five Cluster 2 low–specific DEGs with DFS is depicted in (L). The log-rank test was used to assess statistical significance. (M and N) Representative images 
from IHC staining for PAX5 and ATF5 are shown in 10× and 40× (scale bar in 40× represent 200 μm), (O and P) and the percent contribution of pixels with differing staining 
intensity analyzed via ImageJ was compared between the Cluster 2 high and low groups. The definitions of the Cluster 2 low and high signature groups were determined 
by 33 and 66% cutoffs, respectively. The Mann-Whitney U test was applied to discern the significance of numerical values. Results were considered significant if the P 
value was lower than 0.05. All bar charts are depicted as averages, and error bars indicate standard deviations. *P < 0.05; **P < 0.01; ***P < 0.001.
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2 exhibits an RAS-like profile, and Cluster 3 exhibits a BRAF-like 
profile. This classification aligns with the genomic characterization of 
PTC as defined in a TCGA study (11).

We also explored whether differences in cell proportions could 
be detected using radiomic features. To this end, we calculated the 
immune, stromal, and ESTIMATE scores using the xCell algorithm. 
However, we did not find any significant associations, suggesting 
that the infiltration of immune cells, cells of mesenchymal origin, 
and tumor purity may not affect our scoring model (fig. S4, A to C). 
Nonetheless, specific immune cell types were differentially infiltrat-
ed with respect to the Cluster 2 score, indicating that distinct im-
mune responses may drive each tumor condition (fig. S4, D to I).

Recent epidemiological data indicate that microcarcinomas may 
comprise over half of newly diagnosed PTC, underscoring the im-
portance of improved risk stratification in lower-risk populations 
(49). By validating our model in demographically distinct cohorts, 
we confirmed its performance across a broader clinical spectrum. 
This highlights the potential of the Cluster 2 score to guide more 
personalized treatment decisions, including AS. However, addition-
al multicenter validation is necessary, particularly considering the 
relevance of BRAF mutation status and other molecular markers. 
We plan to conduct future prospective studies in collaboration with 
various other institutions. However, most medical institutions ad-
here to their own formats to save radiological databases, which com-
plicates data sharing (50). Therefore, establishing a universal guideline 
for database storage is crucial to facilitate seamless data communi-
cation. Furthermore, benchmarking strategies and combinatorial 
studies involving deep-learning algorithms in conjunction with our 
radiomics approach are warranted. These tools are pivotal in the 
emerging AI-medicine paradigm and can enhance the accuracy and 
applicability of our model. Establishing standardized practices and 
incorporating advanced AI techniques are essential for advancing 
the integration of radiomics into routine clinical use.

We acknowledge a limitation of this study due to the exclusive 
use of the American College of Radiology (ACR) TI-RADS. The 
reason for selecting ACR-TI-RADS was based on studies showing a 
correlation between the US phenotype and prognosis, where fewer 
concerning appearances were associated with better outcomes (51, 52). 
Although TI-RADS is widely used in the United States, a global con-
sensus on thyroid imaging reporting systems is under consider-
ation, with variations such as the EU TI-RADS (European Thyroid 
Imaging Reporting and Data System), K TI-RADS (Korean Thyroid 
Imaging Reporting and Data System), and C TI-RADS (Chinese 
Thyroid Imaging Reporting and Data System) (53). Addressing 
these regional differences is an important perspective for future re-
search. In addition, we acknowledge the potential risk of overfitting 
in our model owing to the relatively small sample size and the inclu-
sion of a large number of radiomic features. To mitigate this, we 
used rigorous feature selection techniques, incorporated multiple 
validations with external datasets, and integrated the clinical and mo-
lecular interpretations. Nonetheless, further evaluation with larger 
and more diverse cohorts is required to ensure broader applicability 
and robustness.

Here, we refined the radiomic features by reducing and selecting 
75 robust features to address the complexity issues inherent in ra-
diomics. As a result, we identified three distinct radiomic profiles, 
each resembling distinct PTC molecular subtypes, which offer a to-
pologically advantageous framework for predicting tumor charac-
teristics, particularly in discerning indolent tumors that may be 

suitable for AS, an area often underexplored in conventional imag-
ing assessments. Our radiomic Cluster 2 scoring model is designed 
to complement, rather than replicate, TI-RADS predictions, provid-
ing an additional, data-driven metric to support nuanced clinical 
decision-making. This approach highlights the potential of radiomics 
to refine patient selection for AS, thereby reducing overtreatment in 
cases where the 5-year overall survival exceeds 95%. Ultimately, this 
study provides a perspective on the prognostic effect of radiomics in 
general oncology and calls for further prospective research and vali-
dation with a larger patient cohort, incorporating multicenter trials 
for practical application.

MATERIALS AND METHODS
Patient enrollment
A total of 255 patients with PTC who underwent thyroidectomy at 
the Yonsei Cancer Center (Seoul, South Korea) between May 2014 
and January 2018 were enrolled. For internal validation, we enrolled 
an independent cohort of 150 patients with PTC, including those 
diagnosed with microcarcinoma, who underwent thyroidectomy 
between January 2018 and January 2023. External validation included 
203 patients with PTC who underwent thyroidectomy at the Yongin 
Severance Hospital (Yongin-si, Gyeonggi-do, South Korea) between 
January 2018 and January 2023. All tissue samples were snap-frozen 
in liquid nitrogen immediately after surgical removal and stored at 
−80°C until further use. Prior to surgery, all of the included patients 
had cytology classified as Bethesda V or VI. Risk stratification of 
patients regarding ATA was done using the 2015 ATA Management 
Guidelines for Adult Patients with Thyroid Nodules and Differenti-
ated Thyroid Cancer, which provide evidence-based criteria for cat-
egorizing patients into low, intermediate, and high-risk groups based 
on clinicopathologic features (54).

US imaging and assessment by radiologists
At our institution, all patients undergo preoperative staging US be-
fore thyroid surgery. During the study period, these examinations 
were performed by one of 23 radiologists. This group comprised five 
radiologist staff members with 3 to 25 years of experience and 18 
fellows with 1 to 2 years of experience, all specializing in thyroid 
imaging. High-frequency linear transducers (5 to 12 MHz) (iU22 or 
EPIQ 5, Philips Healthcare, Bothell, WA, USA) were used. During 
staging examinations, individual US features of cancers were pro-
spectively analyzed and recorded in our institutional database (55, 56).

Thyroid nodules were classified as solid, predominantly solid (cys-
tic portion <50%), or predominantly cystic (cystic portion ≥50%). 
Echogenicity was classified as hyperechoic, isoechoic, hypoechoic 
(compared with the surrounding thyroid parenchyma), or markedly 
hypoechoic (compared with the adjacent strap muscle). Margins were 
categorized as circumscribed or noncircumscribed (microlobulated 
or irregular). Calcifications were classified as absent, macro- or egg-
shell, and micro- or mixed calcifications. Shape was classified as paral-
lel or nonparallel, with parallel shapes being taller-than-wide, where 
the anteroposterior dimension exceeded the transverse dimension. 
Echotexture of the thyroid parenchyma was assessed as homogeneous 
or heterogeneous (coarse-appearing echotexture, marginal nodulari-
ty, increased/decreased anteroposterior diameter of the gland, or in-
creased/decreased parenchymal echogenicity) (57). On the basis of 
the individual US features, two staff radiologists (J.H.Y. and J.Y.K.) 
with 15 and 27 years of experience in thyroid imaging, respectively, 
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independently provided assessments according to the ACR TI-RADS 
(58). Vascularity was assessed using two-dimensional Doppler scans 
and categorized into three patterns: reduced or absent, indicating the 
absence of Doppler signals within the thyroid nodule; peritumoral, 
indicating the presence of Doppler signals around the periphery of the 
nodule; and intratumoral, indicating the presence of Doppler signals 
within the thyroid nodule despite peripheral vascularity.

High-throughput radiomics feature extraction and 
feature selection
Prior to radiomics extraction, the representative US image of the 
PTC mass was selected by the radiologist (J.Y.K.) in this study. A 
polygonal region of interest was drawn along the border of the PTC 
using US images selected by the two radiologists.

Radiomics is a technique in which quantitative features and 
characteristics are extracted from medical images. Medical images 
can exhibit variability in terms of intensity values owing to differ-
ences in imaging devices, institutions, and clinical settings, which 
affects reproducibility. To ensure consistency of intensity values in 
images obtained across various settings, we use min-max normal-
ization, which not only standardizes the images but also enhances 
the performance of the machine learning processes by improving 
pattern recognition and estimation accuracy. Once the images are 
normalized, pixel-intensity distribution–based features (e.g., entropy, 
energy, kurtosis, skewness, and median) and texture features (de-
rived from gray-level co-occurrence and gray-level run-length ma-
trices) are collected. In addition, wavelet transformation with the 
Coiflet family was used to decompose the image into low-to high-
frequency modes along the x and y directions, and the same features 
were subsequently gathered from the resulting subimages. As a re-
sult, 730 features were returned for downstream analysis

To ensure the reliability of the measured features, we computed 
the ICC for each radiomic feature by changing wavelets using the 
“irr” R package. Two-way random effects with a single measurement 
and absolute agreement were applied. Given that our average ICC 
value was ~0.4 (Q1 = 0.058 and Q3 = 0.537), we considered features 
with an ICC ≥0.5 to be optimally reliable (fig. S5). To improve the 
efficacy of unsupervised clustering, we reduced multicollinearity 
by removing radiomic features with high correlations with other 
features. Pearson correlation analysis was performed for all candi-
date radiomic features, and features were considered redundant if 
they shared a correlation coefficient of >0.9. Among the redundant 
features, the feature with the greatest variance was selected for unsu-
pervised clustering.

Risk score development using machine learning
For an unbiased evaluation, the internal exploratory dataset was 
split into training and test datasets at a 7:3 ratio. The LASSO algo-
rithm was adopted to select the most relevant radiomic features for 
predicting the proposed radiomic cluster. Standard 10-fold cross-
validation was used in the regression to tune the parameters for the 
risk score construction. After model construction, the score was for-
mulated as follows

β0 is the intercept from the LASSO model, β1−k are the nonzero co-
efficients, and x1−k are the feature values for the observation. The final 
performance was evaluated in the test dataset using the AUC metrics.

RNA sequencing and transcriptome analysis
RNA was isolated from the tissue samples using TRIzol (Invitrogen, 
Waltham, MA, USA). The concentration of the extracted RNA was 
determined using the Quant-IT RiboGreen assay (no. R11490, 
Thermo Fisher Scientific, Waltham, MA, USA), and RNA quality 
was evaluated using a TapeStation RNA ScreenTape (no. 5067-5576, 
Agilent Technologies, Santa Clara, CA, USA). Only RNA with an 
RNA integrity number of ≥7.0 was selected for subsequent library 
preparation. For each sample, 1 μg of RNA was used to prepare li-
braries using the Illumina TruSeq Stranded mRNA Sample Prep 
Kit (no. RS-122-2101, Illumina, Inc., San Diego, CA, USA), 
which included the initial step of mRNA isolation using poly(T)-
attached magnetic beads. The mRNA was subsequently fragment-
ed using divalent cations at high temperatures. The fragmented 
mRNA was converted into first-strand cDNA using SuperScript II 
reverse transcriptase (no. 18064014, Thermo Fisher Scientific) and 
random primers, followed by synthesis of second-strand cDNA 
using DNA polymerase I, ribonuclease H, and deoxyuridine tri-
phosphate. The cDNA was then processed for end repair, A-tailing, 
adapter ligation, and enrichment by PCR. The final cDNA library 
was quantified using KAPA Library Quantification Kits (no. KK4854, 
Kapa Biosystems, Wilmington, MA, USA) and assessed for quality 
using TapeStation D1000 ScreenTape (no. 5067-5582, Agilent Tech-
nologies). Indexed libraries were sequenced on an Illumina Nova-
Seq 6000 platform to generate paired-end reads [2 × 100 bp (base 
pairs)]. Postsequencing data quality was verified using FastQC 
v0.11.7, and reads were cleaned of adapters and low-quality se-
quences using Trimmomatic 0.38. The cleaned reads were aligned to 
the reference genome GRCh37 (hg19) using HISAT2 v2.1.0, and 
transcripts were reconstructed using StringTie v2.1.3b. The read 
counts and fragment per kilobase of transcript per million mapped 
reads (FPKM) were obtained. The list of primers used for qPCR for 
the validation samples is provided in data S6.

GenePattern, an open web server for bioinformatics, was used 
for the downstream analysis of bulk transcriptomic data (59). DEG 
analysis and GSEA were performed with default parameters, as 
outlined in the software documentation. DEG profiles were config-
ured based on gene set lists from the molecular signature database 
(29, 60).

IHC staining
Formalin-fixed, paraffin-embedded tissue blocks were sectioned at 
4-μm thickness using a microtome to generate nonstained slides. 
The slides were deparaffinized in xylene and rehydrated using a 
graded series of ethanol solutions. Antigens were retrieved using 
the heat-induced epitope retrieval method. The slides were im-
mersed in tris-EDTA buffer (pH 9.0) and heated in a steamer 
for 20 min at 95°C. Following heat treatment, the slides were al-
lowed to cool to room temperature for 30 min to facilitate the 
proper unfolding of the epitopes. The slides were then incubated 
with primary antibodies against ATF5 and PAX5. The ATF5 anti-
body (no. ab184923, Abcam, Cambridge, UK) was diluted 1:1000, 
and the PAX5 antibody (no. ab109443, Abcam) was diluted 1:100. 
After incubation with the primary antibody, the slides were washed 
three times with phosphate-buffered saline (PBS) to remove un-
bound antibodies. Subsequently, a secondary antibody, goat anti-rabbit 
immunoglobulin G H&L (no. ab205718, Abcam), was applied at 
1:500 dilution. The slides were then incubated with secondary an-
tibodies for 1 hour at room temperature in a humidified chamber, 

S = β0 + β1x1 + β2x2 + … + βkxk
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followed by three additional washes with PBS to eliminate excess 
secondary antibodies.

For image analysis, four images per slide were captured from dif-
ferent regions using the LoupLite program at 40× magnification. 
Considering the use of the two antibodies, images were consistently 
obtained from the same regions for each analysis to ensure normal-
ization across slides. The border areas of the slides were excluded to 
minimize noise from the background staining. Each image consist-
ed of 6,291,456 pixels (3072 × 2048 resolution). Images were pro-
cessed using ImageJ software, and the IHC Profiler plugin was used 
to analyze the pixel intensity (61). The percentage of positive staining 
was quantified by calculating the proportion of pixels correspond-
ing to different intensity levels, thereby providing a robust assess-
ment of protein expression.

Identification of BRAF, RAS, and TERT promoter mutations
DNA extraction was performed using the QIAamp DNA Mini Kit 
(QIAGEN, Inc., Hilden, Germany) according to the manufacturer’s 
instructions. Genomic DNA was then amplified by PCR using the 
primers detailed in data S6 on a C1000 Thermal Cycler (Bio-Rad 
Laboratories, Hercules, CA, USA). After electrophoresis on a 2% 
agarose gel, the products were visualized using the Gel Doc EZ Sys-
tem (Bio-Rad) and purified using the QIAquick Gel Extraction Kit 
(QIAGEN, Inc., Hilden, Germany). Sequencing was conducted on 
an ABI 3730XL DNA Analyzer using the BigDye Terminator v3.1 
Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Waltham, 
MA, USA). deFuse v0.8.1, FusionCatcher v1.00, and Arriba v1.2.0 
were applied to expression data to detect fusion oncogenes. Only the 
results consistently identified by all three analyses were considered 
significant (62–64).

Statistical analysis
All statistical analyses were performed using the R program v4.3.2 
(R project, The R Foundation for Statistical Computing, Vienna, 
Austria) or GraphPad Prism v10 (GraphPad Software, San Diego, CA, 
USA). Continuous variables were compared across multiple groups 
using analysis of variance (ANOVA) and between two groups using 
an unpaired t test. The proportion of categorical variables was evalu-
ated for independence using the chi-square test. Heatmaps and den-
drograms were plotted using the “ComplexHeatmap” R package. 
The potential multicollinearity of the variables used for ordinal 
regression analysis was confirmed by calculating the variance infla-
tion factor (VIF). VIF >5 was considered to indicate significant mul-
ticollinearity, and the results are provided in data S7. To ensure the 
robustness of our regression model, we systematically evaluated and 
addressed multicollinearity among all clinical biomarkers included 
in the analysis. The AUC of models developed in our regression anal-
ysis were compared using the DeLong test of the “pROC” R package. 
Gene signature–based survival analysis in patients with PTC from 
TCGA was conducted using GEPIA2 (http://gepia2.cancer-pku.cn) 
(65). Statistical significance was set at P < 0.05.

Study approval
The study protocol was approved by the Institutional Review Board 
(IRB) of Yonsei Cancer Center, Severance Hospital (IRB nos. 4-2021- 
1487 and 4-2013-0546), Seoul, South Korea. Written informed con-
sent was obtained from all participants.

Supplementary Materials
The PDF file includes:
Figs. S1 to S5
Legends for data S1 to S8

Other Supplementary Material for this manuscript includes the following:
Data S1 to S8
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