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INTRODUCTION

The integration of artificial intelligence (AI) into radiology has resulted in significant 
advancements in image interpretation and workflow efficiency. Although AI has primarily 
been utilized for image analysis, its application in voice recognition systems has emerged 
as a transformative tool for enhancing report generation efficiency [1]. Conventional re-
porting methods often involve manual keyboard typing or transcription by hired typists, 
both of which are time consuming and error-prone [2-4]. Recent advancements in AI-
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Purpose: This study evaluated whether the interpretation speed of routine lumbar spine 
magnetic resonance imaging (MRI) increases when using an artificial intelligence (AI)-
based voice recognition system compared with the conventional keyboard typing method.
Materials and Methods: We retrospectively reviewed 527 routine lumbar spine MRI 
images performed between November 2022 and February 2023. Two radiologists inter-
preted 292 and 235 images using conventional keyboard typing and dictation with an 
AI-based voice recognition system, respectively. Interpretation time, report character 
count, and turnaround time for the two methods were compared.
Results: Interpretation time was significantly reduced by 21.7% using dictation with the 
AI-based voice recognition method compared with that using the conventional keyboard 
typing method (p < 0.05). However, no statistically significant differences were observed 
in the reported character count or turnaround time (p > 0.05).
Conclusion: AI-based voice recognition system for interpreting lumbar spine MRI sig-
nificantly reduced interpretation time compared with the conventional keyboard typing 
method, suggesting enhanced efficiency for radiologists.
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based voice recognition systems have enabled accurate real-
time transcription of dictated reports, thereby addressing these 
challenges [5].

Earlier studies on voice recognition systems often focused on 
non-AI-based technologies, which exhibited high error rates, 
requiring radiologists to spend additional time correcting tran-
scription errors [2,3,6]. Furthermore, these systems are limited 
by their inability to adapt to the unique speech patterns of in-
dividual users [7]. To date, no study has specifically evaluated 
the efficiency of AI-based voice recognition systems in inter-
preting lumbar spine magnetic resonance imaging (MRI), which 
is one of the most commonly performed imaging studies in 
radiology. Therefore, this study aimed to fill this gap by exam-
ining whether such systems can improve interpretation speed 
and workflow efficiency in routine radiology practice.

MATERIALS AND METHODS

Case Selection and Process
A total of 540 routine lumbar spine MRI were performed at 

the Yongin Severance Hospital over a 4-month period between 
November 2022 to February 2023. Cases were excluded if the 
interpretation time was prolonged owing to external factors, 
such as interruptions or personal circumstances. After excluding 
13 cases, 527 examinations (201 males and 326 females with a 
mean age of 62.6 years [range, 20–93 years]) were included.

Two fellowship-trained musculoskeletal radiologists alter-
nated between keyboard typing and dictation using an AI-based 
voice recognition system (VUNO Med-DeepASR). The radiolo-
gists had approximately 2 years of experience using AI-based 
voice recognition systems. Within 2 years of deep learning and 
frequent updates, the voice recognition system was highly pro-
ficient in accurately recognizing the radiologists’ speech and 
converting it into text. One radiologist read the MRI images 
performed at our hospital for 1 month, and the other radiol-
ogist read the images for the next month using only the key-
board typing method. At the end of this period, the MRI images 
were read using the dictation method with an AI-based voice 
recognition system for 1 month each. Interpretation time was 
defined as the duration from initiation of image opening to 
completion of the interpretation. Report character count was 
defined as the total number of characters in the interpretation 
report. Turnaround time was defined as the period from up-
loading of the MRI images to completion of the final report. 
This retrospective study was approved by the Institutional Re-
view Board of Yonsei University College of Medicine, Yongin 
Severance Hospital (no. 2023-0101). Informed patient consent 
was not required due to the retrospective nature of the study.

 

Speech Recognition Technology
The voice recognition technology employed in this study 

combines the Time-Delay Neural Network (TDNN) and Hidden 
Markov Model (HMM) techniques. The HMM technique was 
first proposed in 1989 [8], and the hybrid TDNN-HMM model 
was later discussed and expanded upon in research directions 
by Bourlard and Morgan [9] in 1998. This model has since been 
widely applied across various fields owing to its adaptability 
and robustness [10]. The TDNN-HMM framework utilizes the 
Lattice-Free Maximum Mutual Information (LF-MMI) criterion 
to optimize recognition accuracy [11]. This approach enables 
the system to effectively extract features from speech signals 
and convert them into phoneme representations with high pre-
cision [12]. Additionally, the system achieves greater contex-
tual understanding and transcription accuracy by incorporat-
ing n-grams into language modeling [13].

Statistical Analysis
Data were presented as mean ± standard deviation for con-

tinuous variables. Independent two-sample t-tests were per-
formed to compare the differences between the two methods, 
with statistical significance set at p < 0.05.

RESULTS

Reader 1 (Lee) interpreted 159 and 118 MRI images using 
the conventional typing and dictation methods, respectively. 
Reader 2 (Cho) interpreted 133 and 117 MRI images using the 
conventional typing and dictation methods, respectively. The 
results are summarized in Table 1.

Average interpretation time for Reader 1 was 248.5 seconds 
using the typing method and 176.2 seconds using the dictation 
method, while for Reader 2, it was 436.1 seconds using the 
typing method and 347.9 seconds using the dictation method. 
Both readers had shorter interpretation times with the dicta-
tion method, and this difference was statistically significant 
(p < 0.001). Both readers showed a 21.7% reduction in inter-
pretation time with the dictation method (average, 261.7 sec-
onds) compared with that when using the typing method (av-
erage, 333.9 seconds), which was statistically significant (p < 
0.001).

Average character count of the interpretation reports for 
Reader 1 was 471.9 using the typing method and 478.6 using 
the dictation method. For Reader 2, the average character count 
was 540.7 for the typing method and 563.2 for the dictation 
method. Difference in the average character count of the in-
terpretation reports between the two methods was not statis-
tically significant for both readers (p > 0.05).

Although the turnaround time was shorter with the dicta-
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tion method for both readers, the difference was not statisti-
cally significant (p > 0.05). 

DISCUSSION

This study highlights the significant efficiency gains achieved 
using an AI-based voice recognition system for interpreting 
lumbar spine MRI. Unlike previous studies utilizing conven-
tional voice recognition systems, this AI-based voice recogni-
tion system demonstrated a reduced interpretation time owing 
to its advanced accuracy developed through continuous up-
dates and adaptation to individual speech patterns [14]. Con-
ventional voice recognition systems often exhibit high error 
rates and require additional time for error correction, which 
negates the intended time-saving benefits [15].

In contrast, AI-based systems leverage robust acoustic mod-
eling techniques, such as the TDNN-HMM and LF-MMI tech-
niques, ensuring greater transcription accuracy and reliability. 
These improvements align with a prior study showing that AI-
based systems outperform traditional models in various speech 
recognition tasks, particularly in environments with complex 
acoustic conditions [16]. Advanced models, such as those in-
tegrating recurrent neural networks, are promising in improv-
ing acoustic modeling [17].

Although the turnaround time improvements were not sta-
tistically significant in this study, the observed reduction in typ-
ing fatigue emphasized the potential benefits of voice recogni-
tion systems in clinical practice. Similar observations have been 
reported that voice recognition systems reduce turnaround 
time compared with the conventional typing method [18,19].

There were results of similar character counts in the inter-
pretation reports, without a significant difference between the 
two methods used. This suggests that the level of details of the 
interpretation reports when using the dictation method does 
not appear to be compromised compared with that when using 
the typing method, as no significant differences were found 
in the description quality.

This study has a few limitations. First, there may have been 
a process of checking for typographical errors after using the 
speech recognition system; however, this time was not includ-
ed in the total reading time. However, as deep learning was 
used to reduce recognition errors, we believe that it did not 
have a significant impact on the results. Second, this pilot study 
focused only on routine lumbar spine MRI. This choice was 
made because lumbar spine MRI is one of the most common 
MRI examinations performed at our institution, making it eas-
ier to select participants. Furthermore, the format and content 
of interpretation reports for routine lumbar spine MRI are rel-
atively standardized, making them a suitable choice for imple-
menting the dictation method. Nonetheless, future studies that 
include more imaging modalities should be conducted to de-
termine the generalizability of our findings. Finally, an inter-
esting experience during this study was that while using the 
AI-based speech recognition system, readers tended to choose 
words that the AI could understand better, rather than trying 
to teach the AI to recognize new words with their unfamiliar 
pronunciation. This shift may affect the reproducibility of the 
study in different settings where controlling typographical or 
transcription errors might be more challenging. However, it is 
important to note that prior to this study, the researchers had 
operated an AI-based voice recognition system for approxi-

Table 1. Comparison between using conventional typing and dictation method with AI-based voice recognition system

Typing (95% CI) Dictation (95% CI) p

Reader 1-Lee
No. of exams 159 118
Avg. characters per report 471.9 ± 186.4 478.6 ± 196.5 0.774
Avg. interpretation time (s) 248.5 ± 152.4 176.2 ± 86.9 <0.001
Avg. turnaround time (h) 14.1 ± 12.4 11.4 ± 18.3 0.156

Reader 2-Cho
No. of exams 133 117
Avg. characters per report 540.7 ± 225.1 563.2 ± 234.3 0.439
Avg. interpretation time (s) 436.1 ± 244.5 347.9 ± 293.4 0.010
Avg. turnaround time (h) 37.5 ± 26.7 31.6 ± 26.3 0.078

Readers all
No. of exams 292 235
Avg. characters per report 503.2 ± 207.4 520.7 ± 219.8 0.350
Avg. interpretation time (s) 333.9 ± 220.2 261.7 ± 232.0 <0.001
Avg. turnaround time (h) 24.7 ± 23.3 21.5 ± 24.7 0.119

Data are presented as number only or mean ± standard deviation.
AI, artificial intelligence; CI, confidence interval.
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mately 2 years, which resulted in a level of speech recognition 
accuracy with almost no errors.

In conclusion, the application of an AI-based voice recogni-
tion system significantly reduced the interpretation time for 
lumbar spine MRI, indicating its potential in enhancing work-
flow efficiency in radiology. By reducing the cognitive burden 
of manual typing and minimizing error correction, these sys-
tems are promising tools for optimizing reporting workflows, 
particularly in high-demand clinical environments. Future stud-
ies should evaluate its broader application across various im-
aging modalities and long-term impact on the efficiency of 
radiology practice.
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