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Abstract
Background and Objectives
Identifying β-amyloid (Aβ) positivity is crucial for selecting candidates for Aβ-targeted thera-
pies in early-stage Alzheimer disease (AD). While Aβ PET is accurate, its high cost limits 
routine use. Plasma p-tau217 testing offers a less invasive option but also incurs additional costs. 
Structural brain MRI, routinely used in cognitive assessments, can identify features predictive of 
Aβ positivity without extra expense. We evaluated a 2-stage workflow integrating MRI-based 
features and plasma p-tau217 to efficiently predict Aβ PET positivity in early-stage AD.

Methods
This prospective cohort study included participants with mild cognitive impairment (MCI) or 
early Alzheimer-type dementia (ATD) from the Korea-Registries to Overcome Dementia and 
Accelerate Dementia Research (K-ROAD; Korea) and Alzheimer’s Disease Neuroimaging 
Initiative (ADNI; US) cohorts. Eligible participants had a Clinical Dementia Rating score of 0.5, 
along with MRI, plasma p-tau217, and Aβ PET data. A random forest classifier predicting Aβ 
PET positivity was developed using MRI-based brain atrophy patterns and APOE e4 status. 
Participants were stratified into low-risk, intermediate-risk, and high-risk groups; plasma 
p-tau217 testing was performed only in intermediate-risk individuals. Outcomes included 
positive predictive value (PPV), negative predictive value (NPV), and overall accuracy.

Results
A total of 807 K-ROAD participants (median age 72.0 years, 58.7% female) and 230 ADNI 
participants (median age 70.9 years, 49.1% female) were analyzed. Using a 95% sensitivity/ 
specificity strategy, the low-risk group demonstrated NPVs of 94.7% (91.7%–97.7%, K-ROAD)
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and 99.0% (97.0%–100.0%, ADNI). The high-risk group showed PPVs of 97.6% (95.9%–99.3%, K-ROAD) and 98.8% (96.5%– 
100.0%, ADNI). Intermediate-risk groups comprised 33.3% (K-ROAD) and 20.9% (ADNI) of participants. Plasma p-tau217 
testing in intermediate-risk groups yielded PPVs of 92.5% (88.7%–96.3%, K-ROAD) and 90.0% (79.0%–100.0%, ADNI) and 
NPVs of 83.1% (75.0%–91.2%, K-ROAD) and 83.3% (66.1%–100.0%, ADNI). The overall workflow accuracy was 94.2% 
(92.6%–95.8%, K-ROAD) and 96.5% (94.1%–98.9%, ADNI).

Discussion
The 2-stage diagnostic workflow integrating MRI-based risk stratification and plasma p-tau217 testing accurately identified 
individuals with Aβ PET positivity in early-stage AD, substantially reducing the need for additional biomarker testing. However, 
the generalizability may be limited by modest incremental improvement over baseline models and limited racial and ethnic 
diversity.

Introduction
Alzheimer disease (AD) is characterized by 2 key pathologic 
hallmarks: extracellular β-amyloid (Aβ) plaques and in-
tracellular tau neurofibrillary tangles. 1,2 These pathologies re-
sult in neurodegeneration, leading to regional brain atrophy 
observable in vivo through structural imaging. 2-4 Notable 
changes include atrophy in the medial temporal lobe 5-7 and 
posterior parietal cortex, 7,8 which often manifest as sulcal 
widening and ventricular enlargement, particularly in the 
temporal horns of the lateral ventricles (LVs). 9 Recently, Aβ-
targeted therapies have shown promise in modifying the disease 
course in its early stages. 10,11 Consequently, detecting Aβ ac-
cumulation in vivo has become critical for identifying patients 
with mild cognitive impairment (MCI) or early Alzheimer-type 
dementia (ATD) who may benefit from these therapies.

Currently, Aβ accumulation is most reliably assessed using amy-
loid PET imaging 12-14 or CSF testing. 15-17 However, despite their 
high accuracy, these modalities are costly, invasive, and not uni-
versally accessible, limiting their utility in routine clinical prac-
tice. 18,19 By contrast, structural brain imaging such as MRI or CT 
is a mandatory diagnostic tool for evaluating patients with cog-
nitive impairment because it is essential for excluding alternative 
causes such as brain tumors, strokes, or hydrocephalus. 20,21 MRI is 
generally preferred over CT in clinical practice because of its 
superior sensitivity to subtle atrophy and its ability to rule out 
multiple differential diagnoses with a single scan, although it 
cannot be performed in patients with contraindications. More-
over, MRI-derived brain atrophy patterns, including medial tem-
poral atrophy and related structural changes, correlate significantly 
with Aβ accumulation. 22-25 This provides an opportunity to

screen for Aβ positivity using existing imaging data, eliminating 
the need for additional costly or invasive procedures.

However, relying solely on MRI findings poses challenges, par-
ticularly in ambiguous cases where structural changes are subtle 
or overlap with non-AD conditions. 26,27 A gray zone remains, 
where Aβ positivity cannot be clearly classified based on MRI 
findings alone. 18,28 To address this uncertainty, a risk stratifica-
tion framework is necessary, where MRI is used to identify low-
risk and high-risk individuals while intermediate-risk individuals 
undergo confirmatory testing. 29 Plasma p-tau217, a biomarker 
reflective of tau-related neurodegeneration, has emerged as 
a highly accurate tool for detecting Aβ accumulation. 30-33 Its 
potential utility as a confirmatory test within a 2-stage workflow 
makes it an ideal complement to MRI, addressing diagnostic 
uncertainty in intermediate-risk cases.

In this study, we aim to evaluate a 2-stage diagnostic workflow 
integrating MRI-based brain atrophy assessments and plasma 
p-tau217 testing to predict Aβ PET positivity in patients with 
early-stage AD, with validation across different clinical cohorts to 
ensure broader applicability. By combining these modalities, the 
study seeks to address diagnostic uncertainty in intermediate-risk 
groups, optimize resource allocation, and provide a scalable 
framework for improving early diagnosis in clinical practice.

Methods
Participants
This study was designed as a prospective cohort study con-
ducted at a tertiary hospital in South Korea. Participants were

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; ATD = Alzheimer-type 
dementia; AUC = area under the curve; CDR = Clinical Dementia Rating; CDR-SOB = CDR-Sum of Boxes; CL = Centiloid; 
FBB = 18F-florbetaben; FBP = 18F-florbetapir; FMM = 18F-flutemetamol; IQR = interquartile range; K-ROAD = Korea-
Registries to Overcome Dementia and Accelerate Dementia Research; LV = lateral ventricle; MCI = mild cognitive impairment; 
NPV = negative predictive value; PPV = positive predictive value; Se = sensitivity; SIMOA = Single-Molecule Array; Sp = 
specificity; SUVR = standardized uptake value ratio.
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recruited from the Korea-Registries to Overcome Dementia 
and Accelerate Dementia Research (K-ROAD) project in 
South Korea, 34 which is a global partner of the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI). This study used 
a convenience sampling approach. Individuals diagnosed with 
MCI and early-stage ATD, between 55 and 90 years, were 
included if they had undergone testing for APOE genotype, 
Aβ PET imaging, and 3D T1-weighted MRI. A comprehen-
sive dementia assessment was conducted for all participants, 
including clinical interviews, detailed neurologic examina-
tions, and standardized neuropsychological assessments using 
the Seoul Neuropsychological Screening Battery. 35 Especially, 
verbal memory was assessed using the Seoul Verbal Learning 
Test and visual memory using the Rey Complex Figure Test, 
including immediate recall, delayed recall, and recognition. 
MCI diagnosis was established using Petersen clinical criteria 
for amnestic MCI with the following modifications 36,37 : 
subjective memory concerns reported by the patient or 
caregiver, preserved functional independence in daily activi-
ties, objective cognitive performance falling below −1.0 SD of 
age-matched and education-matched norms in neuro-
psychological testing, and not being demented. The diagnosis 
of early-stage ATD was based on the 2011 National Institute 
on Aging and Alzheimer’s Association criteria, 38 requiring 
a Clinical Dementia Rating (CDR) score of 0.5. Individuals 
with cognitive impairment due to secondary causes, as con-
firmed by laboratory tests for vitamin B12 deficiency; syphilis 
serology; and thyroid, renal, or hepatic dysfunction, were 
excluded. Participants with major structural brain lesions, 
such as territorial infarction, intracranial hemorrhage, brain 
tumors, or extensive white matter hyperintensities, classified 
according to the modified Fazekas ischemic scale, 39 were also 
excluded. Furthermore, those diagnosed with other neuro-
degenerative diseases, such as progressive supranuclear palsy, 
corticobasal syndrome, frontotemporal dementia, or de-
mentia with Lewy body/Parkinson disease, were not included. 
To ensure high statistical power, all eligible participants who 
met the inclusion and exclusion criteria and had complete data 
for the required biomarkers were included in the study. A 
detailed participant selection process is illustrated in 
eFigure 1.

For replication, an external cohort was drawn from ADNI, 
a widely used, publicly available data set consisting mainly of 
non-Hispanic Whites, led by principal investigator Michael 
Weiner. Individuals with MCI and early-stage ATD with 
a CDR score of 0.5 and available plasma p-tau217 measure-
ments were included in this study (eFigure 1). Detailed in-
clusion and exclusion criteria for ADNI participants can be 
accessed on the official ADNI website. 40

Aβ PET Acquisition and Determination of
Aβ Positivity
Aβ PET scans were acquired using either 18F-florbetaben 
(FBB) or 18F-flutemetamol (FMM) tracer to assess amyloid 
deposition in the brain. Following ligand manufacturer-
recommended guidelines, dynamic 20-minute PET imaging,

consisting of four 5-minute frames, was performed 90 minutes 
after the injection of a mean dose of 311.5 MBq FBB or 185 
MBq FMM. PET images were aligned with each participant’s 
MRI scan and spatially normalized to the Montreal Neuro-
logical Institute-152 standard using the appropriate trans-
formation matrix. The gray matter of the brain was segmented 
into 116 anatomical areas using the automated anatomical 
labeling atlas. Standardized uptake value ratios (SUVRs) were 
computed using the cerebellum as the reference region, with 
regional masks obtained from the Global Alzheimer’s Asso-
ciation Interactive Network website. 41 Aβ burden was quan-
tified using BeauBrain Amylo software, which implements 
image processing methodologies based on the Centiloid (CL) 
scale.

For ADNI participants, Aβ PET scans were acquired using 
18F-florbetapir (FBP), with 20-minute dynamic acquisition 
(four 5-minute frames) occurring between 50 and 70 minutes 
after injection of 10.0 mCi of FBP. ADNI’s standardized 
image pipeline included frame co-registration, motion cor-
rection, and intensity normalization to ensure data consis-
tency across imaging sites. Full details of the T1 and PET 
acquisition parameters and image processing steps are listed 
on the ADNI website. 42 A previously validated transformation 
equation was applied to convert SUVR values to CL units. A 
threshold of 20 CL was used to define Aβ PET positivity 
across both K-ROAD and ADNI cohorts. 13 The assessment of 
the Aβ PET status was blinded to the participants’ clinical 
information, MRI-based brain atrophy, and plasma p-tau217 
result.

Brain MRI Image Preprocessing
In the K-ROAD cohort, high-resolution 3D T1 turbo field-
echo MRI sequences were obtained using a 3.0T Philips 
Achieva scanner (Philips Healthcare, Andover, MA). Acqui-
sition parameters included a sagittal slice thickness of 1.0 mm 
with 50% overlap and a reconstructed matrix size of 480 × 480 
pixels over a 240-mm field of view. ADNI participants un-
derwent structural MRI using 3.0T MRI scanners, with either 
inversion recovery–fast spoiled gradient-recalled or 
magnetization-prepared rapid gradient-echo sequences. Full 
details of the T1-weighted acquisition and processing proto-
cols for ADNI are available on the official website.

AI-Driven Brain Atrophy Assessment
Figure 1 illustrates the framework used in this study. An AI-
based brain MRI analysis was implemented using BeauBrain 
Morph software, which provides quantitative assessment of 
brain atrophy by segmenting CSF regions on MRI scans. A 
2D nnUNet segmentation model 43 was used, and perfor-
mance was evaluated using 5-fold cross-validation. Pre-
processed images underwent further refinement with the 
default nnUNet preprocessing pipeline before training. 
The model was trained with a leaky rectified linear unit as the 
activation function, an objective function combining Dice loss 
and cross-entropy loss, and stochastic gradient descent as the 
optimizer. The learning rate was set to 1e-2, with a weight
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decay of 3e-5. Training was conducted over 200 epochs with 
a batch size of 64. In addition, to facilitate cross-cohort 
comparisons, we standardized regional brain volumes using 
W-scores, referencing cognitively unimpaired participants 
(n = 936; age range 65.0–76.0 years; 61.5% female) in the 
K-ROAD cohort, while accounting for age and sex differences. 
We prioritized CSF spaces for brain atrophy assessment be-
cause of their strong intensity contrast with adjacent tissues, 
which reduces vendor-related variability and enhances re-
producibility. These measures align with regions commonly 
used in clinical visual assessments by radiologists and neu-
rologists, improving their applicability. In addition, this ap-
proach facilitates the use of 2D T1 MRI and CT scans, making 
it more suitable for real-world diagnostic settings. The ana-
lysts were blinded to the participants’ clinical information and 
Aβ PET status. This AI-driven method was chosen because of 
its high diagnostic precision, ability to accommodate data 
from multiple MRI vendors, and significant reduction of the 
time and potential for human error inherent in manual seg-
mentation. The software program automatically identifies 14 
specific CSF regions, including the left and right CSF areas of 
the frontal, occipital, parietal, and temporal lobes, as well as 
the anterior LVs, posterior LVs, and temporal horns of LVs 
adjacent to the hippocampus.

Plasma Collection and Processing for 
p-Tau217 Analysis
Blood samples from the K-ROAD cohort were collected from 
each participant in tubes containing 0.5M EDTA and mixed 
for 5 minutes. The samples were then centrifuged at 1,300g 
for 10 minutes to separate plasma, which was subsequently 
aliquoted into 5 or 10 vials, each containing 0.3 mL of plasma. 
These plasma samples were stored at −75°C, following the

National Biobank of the Republic of Korea’s guidelines for 
human biospecimen storage and registration. The frozen 
plasma samples were then transported under −70°C con-
ditions to the Department of Psychiatry and Neurochemistry 
at the University of Gothenburg, where plasma p-tau217 
concentrations were quantified using the commercial ALZ-
path p-Tau217 immunoassay on the Single-Molecule Array 
(SIMOA) HD-X instrument. This system, developed by 
Quanterix (Billerica, MA), uses a paramagnetic microbead-
based sandwich ELISA approach. The laboratory personnel 
were blinded to the participants’ clinical diagnoses and Aβ 
PET status. For the ADNI cohort, plasma samples were 
processed following their standardized protocol and plasma 
p-tau217 analysis was conducted using the same ALZpath 
p-Tau217 immunoassay on the SIMOA HD-X instrument. 
While both cohorts used the ALZpath assay on the SIMOA 
instrument, K-ROAD samples were analyzed at the University 
of Gothenburg, whereas ADNI samples were processed and 
analyzed by Quanterix.

Development of a 2-Stage Workflow for Aβ 
Positivity Prediction
To predict Aβ PET positivity, we developed a classifier using 
several machine learning models, such as support vector 
machine, logistic regression, and random forest model, with 
a base model (including only age, sex, and APOE e4 status) 
and W-scores of regional CSF volume as predictors 
(Figure 1). This algorithm was selected because of its superior 
classification performance compared with other machine 
learning models, such as support vector machine and logistic 
regression (eFigure 2). Probabilities of Aβ positivity 
were calculated based on brain atrophy and APOE e4 status, 
and a 2-stage diagnostic approach was established for risk

Figure 1 Proposed Framework

The framework illustrates the results of an AI-powered brain MRI analysis that assesses brain atrophy using quantitative information from MRI scans. The 2-
step framework for Aβ PET status classification aims to minimize additional confirmatory tests while ensuring accurate patient stratification. In the first step, 
a random forest model incorporating APOE e4 status and regional CSF volume predicts Aβ PET positivity, stratifying participants into 3 risk categories. In the 
second step, plasma p-tau217 testing is applied exclusively to the intermediate-risk group to refine predictions and facilitate risk-based decision making. *The 
classification of Aβ-positive and Aβ-negative cases is determined based on Aβ PET status. Aβ = β-amyloid; CU = cognitively unimpaired; LV = lateral ventricle; L/ 
R = left and right; ROI = region of interest.
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stratification. In the first stage, participants were classified into 
low-risk, intermediate-risk, and high-risk groups based on 
brain atrophy model-derived probabilities of Aβ PET posi-
tivity. Thresholding strategies were defined using lower 
probability thresholds (90%, 95%, and 97.5% sensitivity [Se]) 
to minimize false negatives and higher probability thresholds 
(90%, 95%, and 97.5% specificity [Sp]) to reduce false pos-
itives. For example, thresholds were set to achieve 95% Se 
with 95% Sp for both MCI and ATD. For each thresholding 
strategy, the prevalence of Aβ PET negativity in the low-risk 
group and Aβ PET positivity in the high-risk group was cal-
culated. In the second stage, additional Aβ biomarker testing 
with plasma p-tau217 measurements was simulated exclu-
sively for intermediate-risk participants identified in the first 
step. Plasma p-tau217 was used to refine Aβ PET predictions 
in this subgroup, and the concordance between plasma bio-
marker levels and Aβ PET status was assessed. The workflow’s 
overall accuracy was calculated as the proportion of correct Aβ 
PET classifications across both stages, and the reduction in 
additional Aβ biomarker testing requirements was quantified 
to assess efficiency.

Statistical Analysis
All statistical analyses were performed using R statistical 
software, version 4.0.2. 44 Descriptive statistics were computed 
for demographic and clinical characteristics, summarizing 
variables across participants. Group differences in continuous 
variables were assessed using analysis of variance, followed by 
Tukey post hoc comparisons when applicable. For categorical 
variables, χ 2 tests were performed to assess group differences, 
with Bonferroni correction applied for multiple pairwise 
comparisons where necessary. Predictive modeling was 
performed using Python version 3.8, with libraries such as 
scikit-learn 45 for machine learning tasks. The random forest 
classifier was trained and validated using k-fold cross-
validation (k = 5). For each fold, the model was trained on 
a subset of the data (training set) and its predictive perfor-
mance was evaluated on the held-out test set, repeated across 
all 5 folds. Performance metrics, including accuracy, positive 
predictive value (PPV), and negative predictive value (NPV), 
were used to assess model effectiveness. To optimize hyper-
parameters, a grid search approach was used, fine-tuning key 
parameters such n_estimators, max_depth, min_samples_split, 
min_samples_leaf, and max_features. In addition, a backward 
elimination approach was used to evaluate whether a base 
model (including only age, sex, and APOE e4 status) would 
provide preferable predictive performances to the full model 
(including only age, sex, and APOE e4 status and MRI 
measures). To maintain consistency throughout the pre-
dictive analysis, the same modeling approach was applied 
across all modeling-building processes. Thresholds for strat-
ifying participants into risk groups were determined based on 
the desired Se and Sp levels (90%, 95%, and 97.5%). Plasma 
p-tau217 results were incorporated in the intermediate-risk 
group, and the concordance between plasma biomarker 
results and Aβ PET status was evaluated. The overall accuracy 
of the 2-stage diagnostic workflow was calculated, and

statistical significance was determined at a 2-tailed alpha level 
of 0.05.

Standard Protocol Approvals, Registrations, 
and Participant Consents
This study was approved by the Institutional Review Board of 
Samsung Medical Center, and written informed consent was 
obtained from all participants and their caregivers in accor-
dance with the Declaration of Helsinki. In addition, the use 
and publication of ADNI data were approved by the ADNI 
Data Sharing and Publications Committee.

Data Availability
The data sets generated and analyzed during this study 
are available from the corresponding author on reasonable 
request.

Results
Participant Characteristics
The K-ROAD cohort included 807 participants with a median 
age of 72.0 years (58.7% female and 46.6% of APOE e4 car-
riers) (Table 1). Aβ PET positivity was observed in 64.3% of 
participants, and the median CDR-Sum of Boxes (CDR-
SOB) score was 1.5. The median interval between the MRI 
scan and Aβ PET imaging was 83.0 days (interquartile range 
[IQR] 23.0–163.5), and the median interval between the MRI 
scan and plasma p-tau217 measurement was 102.5 days (IQR 
29.0–223.5). In addition, the independent set from ADNI 
included 230 participants with a median age of 70.9 years 
(49.1% female and 34.8% of APOE e4 carriers) (Table 1). Aβ 
PET positivity was observed in 52.6% of participants, with 
a median CDR-SOB score of 1.0.

First-Stage Risk Stratification Using MRI-Based 
Brain Atrophy Patterns
MRI-based brain atrophy patterns were used in the first stage 
of a 2-stage diagnostic workflow to stratify participants into 
low-risk, intermediate-risk, and high-risk groups based on 
predicted probabilities of Aβ PET positivity in K-ROAD 
(Figure 2A) and ADNI (Figure 2B) cohorts. The random 
forest model was selected because of its superior classification 
performance compared with other machine learning models 
(eFigure 2). Using both K-ROAD and ADNI data sets, adding 
MRI features to the base model (age + sex + APOE e4) 
improved area under the curve (AUC) from 0.76 to 0.81 (p = 
0.009) in the K-ROAD cohort and from 0.75 to 0.78 (p = 
0.13) in the ADNI cohort (eTable 1).

In the K-ROAD cohort, for Se/Sp levels of 90%, 95%, and 
97.5%, the NPVs in the low-risk group were 93.6%, 94.7%, 
and 96.3%, respectively, while the PPVs in the high-risk group 
were 93.3%, 97.6%, and 98.3%, respectively (Table 2). The 
proportion of patients categorized into the intermediate-risk 
group was 32.6%, 33.3%, and 46.7%, respectively. Among 
these, the Se/Sp level of 95% seemed most suitable, balancing 
high predictive values and a manageable size of the
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intermediate-risk group, which in turn helps reduce the 
overall cost of further testing (Figure 3). In the ADNI cohort, 
for Se/Sp levels of 90%, 95%, and 97.5%, the NPVs were 
97.1%, 99.0%, and 100.0%, respectively, and the PPVs were 
95.3%, 98.8%, and 98.8%, respectively (Table 2). The 
intermediate-risk group sizes were 8.7%, 20.9%, and 25.6%,

with 95% Se/Sp offering the best balance of accuracy and 
group size. Detailed demographic information for each of the
3 risk groups classified using the 95% Se/Sp strategy is pro-
vided in eTable 2. Because the model demonstrated good 
validation and calibration, probability thresholds were sepa-
rately derived for the K-ROAD and ADNI data sets 
(eFigure 3).

Second-Stage Refinement of Aβ PET Status 
Prediction With Plasma p-Tau217 Testing
In the second stage of the workflow, plasma p-tau217 
testing was used to refine Aβ PET status predictions for 
participants classified as intermediate risk based on the 
MRI-based model (Figure 4). Using the 95% Se/Sp strat-
egy, which was identified as optimal in the first stage, 33.3% 
of K-ROAD participants were classified into the 
intermediate-risk group. Plasma p-tau217 testing achieved 
a PPV of 92.5% and a NPV of 83.1%, effectively improving 
diagnostic accuracy for these uncertain cases. The 95% Se/ 
Sp strategy also achieved the highest accuracy at 94.2% 
(95% CI 92.6%–95.8%) while reducing additional testing 
by 66.7% (Figure 4A). A sex-stratified analysis showed that 
the overall accuracy of the 2-stage workflow was compa-
rable between men (93.7%) and women (94.5%). The 
proportion of participants classified as intermediate risk 
was also similar (36.9% in men, 30.8% in women), sug-
gesting consistent performance across sexes (eFigure 4). In 
the ADNI cohort, 20.9% of participants were classified into 
the intermediate-risk group under the same 95% Se/Sp 
strategy. Plasma p-tau217 testing demonstrated a PPV of 
90.0% for Aβ PET positivity and an NPV of 83.3%, con-
firming the robustness and scalability of the 2-stage di-
agnostic workflow (Figure 4B).

We quantitatively assessed the incremental value of second-
stage testing. In both K-ROAD and ADNI cohorts, the 2-step

Table 1 Demographics of Study Participants

K-ROAD (n = 807) ADNI (n = 230)

Diagnosis, MCI, n (%) 671 (83.2) 212 (92.2)

Age, y 72.0 (65.0–78.0) 70.9 (66.6–75.6)

Sex, female, n (%) 474 (58.7) 113 (49.1)

Race/ethnicity, n (%)

Asian 807 (100.0) 3 (1.3)

Non-Hispanic White 0 205 (89.1)

Hispanic or Latino 0 22 (9.6)

Education, y 12.0 (9.0–16.0) 16.0 (14.0–18.0)

APOE «4 carriers, n (%) 376 (46.6) 80 (34.8)

Aβ PET positive, n (%) 519 (64.3) 121 (52.6)

Plasma p-tau217, pg/mL a 0.73 (0.30–1.2) 0.43 (0.2–0.7)

CDR-SOB 1.5 (1.0–3.0) 1.0 (0.5–2.0)

Abbreviations: Aβ = amyloid-β; ADNI = Alzheimer’s Disease Neuroimaging 
Initiative; CDR-SOB = Clinical Dementia Rating–Sum of Boxes; K-ROAD = 
Korea-Registries to Overcome Dementia and Accelerate Dementia Re-
search; MCI = mild cognitive impairment; SIMOA = Single-Molecule Array. 
Data are presented as n (%) for categorical variables and median with 
interquartile range for continuous variables.
Statistical significance was defined as p < 0.05.
a Plasma p-tau217 levels were measured using the same SIMOA platform 
and ALZpath assay, but the differences between the cohorts may reflect site-
specific variability (K-ROAD measurements were conducted at the University 
of Gothenburg and ADNI measurements at Quanterix).

Figure 2 Distribution and Thresholds of Probability of Aβ (+) Based on MRI-Derived Brain Atrophy Patterns for the K-ROAD 
Cohort (A) and for the ADNI Cohort (B)

Blue dots represent Aβ PET–negative patients while red dots indicate Aβ PET–positive patients. The right y-axis indicates probability values aligned with 
evaluated 3 risk thresholds, accompanied by metrics defining Se (90%, 95%, 97.5%) and Sp (90%, 95%, 97.5%). Aβ = β-amyloid; ADNI = Alzheimer’s Disease 
Neuroimaging Initiative; K-ROAD = Korea-Registries to Overcome Dementia and Accelerate Dementia Research; Se = sensitivity; Sp = specificity.
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workflow significantly outperformed the 1-step model 
(K-ROAD AUC: 0.93 vs 0.82; ADNI AUC: 0.92 vs 0.80; 
DeLong test, p < 0.001 for both; Figure 5, A and B). In the

intermediate-risk subgroup, the 2-step approach also signifi-
cantly improved PPV and NPV (McNemar test, p < 0.01; 
Figure 5C).

Table 2 Accuracy and Risk Stratification for Aβ PET Positivity Across Threshold Strategies in K-ROAD and ADNI Cohorts

Risk groups

K-ROAD ADNI

Participants in risk 
group, n (%)

Aβ PET status

Participants in risk 
group, n (%)

Aβ PET status

Negativity, 
n (%)

Positivity, 
n (%)

Negativity, 
n (%)

Positivity, 
n (%)

90% Se lower risk threshold/90% Sp higher 
risk threshold

Low risk 218 (27.0) 204 (93.6) 14 (6.4) 103 (44.8) 100 (97.1) 3 (29)

Intermediate risk 188 (23.3) 20 (8.7)

High risk 401 (49.7) 27 (6.7) 374 (93.3) 107 (46.5) 5 (4.7) 102 (95.3)

95% Se lower risk threshold/95% Sp higher 
risk threshold

Low risk 208 (25.8) 197 (94.7) 11 (5.3) 97 (42.2) 96 (99.0) 1 (1.0)

Intermediate risk 269 (33.3) 48 (20.9)

High risk 330 (40.9) 8 (2.4) 322 (97.6) 85 (37.0) 1 (1.2) 84 (98.8)

97.5% Se lower risk threshold/97.5% Sp 
higher risk threshold

Low risk 136 (16.9) 131 (96.3) 5 (3.7) 87 (37.8) 87 (100) 0 (0)

Intermediate risk 377 (46.7) 59 (25.7)

High risk 294 (36.4) 5 (1.7) 289 (98.3) 84 (36.5) 1 (1.2) 83 (98.8)

Abbreviations: Aβ = amyloid-β; ADNI = Alzheimer’s Disease Neuroimaging Initiative; K-ROAD = Korea-Registries to Overcome Dementia and Accelerate 
Dementia Research; NPV = negative predictive value; PPV = positive predictive value; Se = sensitivity; Sp = specificity.
Data are presented as n or n (%). The first column indicates each of the evaluated strategies for MRI-based risk stratification, along with the corresponding low-risk, 
intermediate-risk, and high-risk groups for each strategy. The second column indicates the number of screened individuals assigned to each risk category, with the 
percentage of individuals in the intermediate-risk group shown in parentheses. The third and fourth columns indicate the Aβ PET status for low-risk, intermediate-
risk, and high-risk groups. The percentage of Aβ-negative individuals in the low-risk group and the percentage of Aβ-positive individuals in the high-risk group 
correspond to the NPV and PPV, respectively, for each threshold strategy. The subsequent columns follow the same structure for the ADNI cohort.

Figure 3 Overall Workflow Accuracy and Cost-Based Approach

(A) The overall accuracy of the 2-step workflow, reflecting the proportion of correct classifications in both low-risk and high-risk groups, along with the accuracy of 
plasma p-tau217 classifications for the intermediate-risk group, was calculated for the K-ROAD cohort. The error bars correspond to 95% CIs. (B) Bar plots 
indicating the percentage of the intermediate-risk group by applying the risk stratification strategy, based on each of the risk threshold strategies. (C) The cost 
estimation for each risk threshold strategy was determined by incorporating additional expenses associated with the plasma p-tau217 test, which was used to 
assess Aβ PET positivity within the intermediate group. Aβ = β-amyloid; K-ROAD = Korea-Registries to Overcome Dementia and Accelerate Dementia Research.
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Discussion
This study used a 2-stage diagnostic workflow combining 
MRI-based brain atrophy assessments and plasma p-tau217 
measurements to stratify individuals with early-stage AD into 
low-risk, intermediate-risk, and high-risk groups for Aβ PET 
positivity. Our major findings were as follows. First, MRI-
based risk stratification effectively identified individuals at low 
and high risk of Aβ PET positivity, demonstrating its re-
liability. Second, plasma p-tau217 testing further refined 
predictions within the intermediate-risk group, addressing 
diagnostic uncertainty and enhancing workflow accuracy. Fi-
nally, the 2-stage diagnostic workflow, validated using both 
K-ROAD and ADNI cohorts, highlighted the potential of 
leveraging routinely collected MRI data to reduce the need for 
additional biomarker testing, optimizing resource allocation 
in clinical practice.

Our first finding showed that MRI-based risk stratification 
effectively identified Aβ PET–negative individuals in the low-
risk group and Aβ PET–positive individuals in the high-risk 
group, demonstrating its reliability in accurately classifying 
individuals at both ends of the risk spectrum. This approach 
was validated in the ADNI cohort, further supporting its 
generalizability across diverse clinical settings. Regional brain 
atrophy, particularly in areas such as the medial temporal lobe,

parietal cortex, and precuneus, has been shown to correlate 
strongly with Aβ-related neurodegeneration. 46 Based on these 
findings, previous studies have explored MRI-derived struc-
tural changes for binary classification of Aβ PET status. 24,47 

However, these approaches often fail to address diagnostic 
uncertainty in intermediate cases, where structural changes 
may be less distinct. 48,49 Our study’s unique contribution lies 
in its probabilistic framework, which categorizes individuals 
into distinct risk groups, providing a more nuanced and tar-
geted strategy for resolving diagnostic ambiguity and guiding 
confirmatory testing or clinical monitoring.

While APOE e4 status was one of the input variables for risk 
stratification, the observed differences in APOE distribution 
across risk groups are not solely an artifact of model design 
but reflect a meaningful biological association. APOE e is 
a well-established genetic risk factor of amyloid accumulation, 
and its alignment with risk group classification supports the 
validity of our approach. Additional analyses confirmed that 
APOE status independently contributes to risk stratification 
beyond its role as a predictor, reinforcing the robustness of 
our model (eTable 3).

Our second major finding demonstrated that plasma p-tau217
testing improved predictions within the intermediate-risk
group, effectively resolving diagnostic uncertainty and

Figure 4 Two-Stage Diagnostic Workflow for Aβ (+) on PET Prediction Integrating MRI-Based Risk Stratification and Plasma 
p-Tau217 Testing in K-ROAD (A) and ADNI (B) Cohorts

The 2-stage diagnostic workflow, based on the 95% Se and 95% Sp threshold strategies, is summarized for the K-ROAD (A) and ANDI (B) cohorts. On the right, 
the results of the first step, MRI-based risk stratification, are displayed, with red, yellow, and blue dots representing individuals in the high-risk, intermediate-
risk, and low-risk groups, respectively. The percentage of Aβ PET positivity in the high-risk group and the percentage of Aβ PET negativity in the low-risk group 
are shown, reflecting the predictive accuracy of Aβ PET status. To the left, the results of the second step, plasma p-tau217 testing conducted exclusively for the 
intermediate-risk group, are presented. The predictive accuracy for Aβ PET status is represented using the NPV and PPV. Aβ = amyloid-β; ADNI = Alzheimer’s 
Disease Neuroimaging Initiative; K-ROAD = Korea-Registries to Overcome Dementia and Accelerate Dementia Research; NPV = negative predictive value; 
PPV = positive predictive value; Se = sensitivity; Sp = specificity.
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enhancing overall workflow accuracy. This finding was repli-
cated in the ADNI cohort, confirming the utility of plasma 
p-tau217 as a complementary biomarker for refining risk 
stratification across diverse clinical setting. Previous studies 
have demonstrated that plasma p-tau217 is highly accurate for 
predicting Aβ PET status across entire cohorts, with consis-
tently high concordance rates observed in diverse pop-
ulations. 30,50,51 However, our findings highlight its robust 
predictive performance specifically in cases with the greatest 
diagnostic uncertainty, such as those in the intermediate-risk 
group. This result emphasizes the biomarker’s value in a risk 
stratification framework, where resolving ambiguity in 
intermediate-risk groups is critical. By capturing biochemical 
changes associated with Aβ pathology, plasma p-tau217 
complements MRI-derived structural data, enhancing the 
workflow’s overall precision. This integration provides a scal-
able and efficient approach to optimizing diagnostic accuracy 
and resource allocation in clinical practice. Although sex dif-
ferences have been reported in AD pathology, our sex-
stratified analysis demonstrated that the diagnostic accuracy 
and intermediate-risk proportions were comparable between 
male and female participants. This finding supports the ap-
plicability of our workflow across sexes.

Our final major finding was that leveraging MRI data already 
collected as part of routine diagnostic evaluations for cogni-
tive impairment significantly reduced the need for additional 
biomarker testing. To illustrate potential cost savings, we 
compared our 2-stage workflow with universal PET screening. 
With amyloid PET positivity rates of 64.3% (K-ROAD) and 
52.6% (ADNI), recruiting 1,000 amyloid-positive participants 
using universal PET would cost approximately USD 6.22 
million and USD 7.61 million, respectively (at USD 4,000 per 
PET scan). By contrast, our workflow reserved PET testing

only for the intermediate-risk group identified by MRI-based 
stratification (33.3% in K-ROAD; 20.9% in ADNI), who 
underwent plasma p-tau217 testing at an estimated global 
market price of USD 300 per test. This significantly reduced 
additional biomarker testing costs (USD 156,300 in 
K-ROAD; USD 125,100 in ADNI) while achieving overall 
accuracies of 94.2% (K-ROAD) and 96.5% (ADNI)—com-
parable to the performance standards (;90%) recommended 
by the CEO Initiative. These results highlight the clinical 
value of optimizing resource allocation by using MRI, a rou-
tine diagnostic tool, to efficiently stratify risk and prioritize 
biomarker testing for diagnostically uncertain cases. With the 
increasing availability of amyloid-targeted therapies, identi-
fying amyloid-positive individuals has become essential in 
early-stage AD management. Our MRI-driven workflow 
reduces reliance on costly and invasive PET imaging, ensuring 
that resources are focused effectively on patients most likely to 
benefit.

A major methodological strength of our study lies in its 2-
stage diagnostic workflow, which combines MRI-based risk 
stratification with plasma biomarker testing to improve di-
agnostic precision and reduce unnecessary testing in a scalable 
and clinically practical manner. The two-step approach has 
traditionally been applied in very low-prevalence conditions, 
such as HIV screening. More recently, this design has been 
recognized as an effective strategy to optimize diagnostic 
precision and resource allocation by reducing unnecessary 
testing. 52 However, several limitations should be noted. First, 
although our 2-stage approach significantly improved di-
agnostic accuracy, the incremental improvement compared 
with the baseline model was modest, somewhat limiting the 
clinical impact of our findings. Nevertheless, even modest 
improvements can be valuable in clinical practice, particularly

Figure 5 Model Performance and Predictive Value Across Classification Strategies

ROC curves in the K-ROAD cohort (A) and in the ADNI cohort (B) comparing the 1-step (MRI-only) model and the proposed 2-step model. (C) Comparison of PPV 
and NPV between the 1-step (MRI-only) and 2-step models in the intermediate-risk group across cohorts. ADNI = Alzheimer’s Disease Neuroimaging Initiative; 
K-ROAD = Korea-Registries to Overcome Dementia and Accelerate Dementia Research; NPV = negative predictive value; PPV = positive predictive value; ROC = 
receiver operating characteristic.
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given the importance of accurate amyloid detection for pa-
tient management and therapeutic decision making. Second, 
while plasma p-tau217 biomarkers have shown high di-
agnostic accuracy, the lack of a clear bimodal distribution can 
lead to overlap between Alzheimer and non-Alzheimer con-
ditions. 53,54 However, our study demonstrated high accuracy 
of plasma p-tau217 within the intermediate-risk group, miti-
gating concerns about its diagnostic overlap. Third, the brain 
atrophy patterns observed in our participants are not entirely 
specific to AD and can also be seen in other neurodegenera-
tive conditions such as limbic-predominant age-related TDP-
43 encephalopathy or hippocampal sclerosis. 26,27,55 Finally, 
the generalizability of our findings may be limited by the lack 
of racial and ethnic diversity, as the K-ROAD participants 
consisted entirely of Korean individuals, and the ADNI par-
ticipants were predominantly non-Hispanic White. Moreover, 
the unexpectedly low APOE e4 carrier rate observed in the 
ADNI cohort may reflect sampling bias or specific inclusion 
criteria, further limiting generalizability. Future studies in-
corporating more ethnically diverse populations are needed to 
validate the applicability of our 2-stage diagnostic workflow 
across different racial and ethnic groups. Despite these limi-
tations, our study provides valuable insights into the in-
tegration of neuroimaging and plasma biomarkers for AD risk 
stratification. By addressing diagnostic uncertainty in 
intermediate-risk cases and optimizing resource allocation, 
the proposed workflow offers a robust framework for im-
proving early diagnosis and advancing clinical care in AD.

In conclusion, this study demonstrates the effectiveness of 
combining MRI-based risk stratification with plasma bio-
marker testing to address diagnostic uncertainty and enhance 
early detection of AD. By leveraging routinely collected im-
aging data and targeted biomarker testing, this workflow has 
the potential to improving diagnostic pathways and guiding 
clinical decision making for patients with early-stage AD.
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