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Early Autism Spectrum Disorder (ASD) identification is crucial but resource-intensive. This study
evaluated a novel two-stage multimodal AI framework for scalable ASD screening using data from
1242 children (18–48 months). A mobile application collected parent-child interaction audio and
screening tool data (MCHAT, SCQ-L, SRS). Stage 1 differentiated typically developing from high-risk/
ASD children, integrating MCHAT/SCQ-L text with audio features (AUROC 0.942). Stage 2
distinguished high-risk from ASD children by combining task success data with SRS text (AUROC
0.914, Accuracy 0.852). The model’s predicted risk categories strongly agreed with gold-standard
ADOS-2 assessments (79.59% accuracy) and correlated significantly (Pearson r = 0.830, p < 0.001).
Leveraging mobile data and deep learning, this framework demonstrates potential for accurate,
scalable early ASD screening and risk stratification, supporting timely interventions.

Autism Spectrum Disorder (ASD) presents a growing global health chal-
lenge, characterized by a complex interplay of social-communication
challenges, repetitive behaviors, and sensory processing differences. These
characteristics significantly impact on the quality of life and long-term
outcomes for individuals with ASD1. The heterogeneous nature of the dis-
order, with various presentations and varying severities, underscores the
need for innovative diagnostic approaches, including those capable of
identifying distinct behavioral phenotypes within the spectrum2. Crucially,
early identification and intervention have been consistently shown to
optimize developmental trajectories, reduce symptomseverity, and improve
overall well-being3,4. However, widely accepted diagnostic tools such as the
Autism Diagnostic Observation Schedule (ADOS-2)5 and the Autism
Diagnostic Interview-Revised (ADI-R) are resource-intensive, demanding
substantial clinical expertise and extensive time6. This high resource
requirement can delay or limit access to timely assessments, particularly in
under-resourced areas, hindering the potential benefits of early interven-
tion. Addressing this challenge, digital health innovations leveraging arti-
ficial intelligence (AI) offer a promising avenue for scalable, objective, and
automated diagnostic support7–10.

It is crucial, however, to clarify that these AI tools are intended to aid in
detection and risk stratification, not to replace comprehensive clinical
diagnosis. Many existing AI applications rely on a single data modality. For

instance, screening questionnaires like the M-CHAT-R/F11 and SCQ12,
while widely used, depend on subjective parent reports whichmay not fully
capture the complexity or subtle signs of ASD11,12. Moreover, traditional use
of tools like theM-CHAT-R/F or SCQoften focuses primarily on the overall
score, potentially overlooking the valuable semantic information contained
within individual items. Drawing inspiration from work developing struc-
tured ASD phenotype descriptions using natural language processing
(NLP)13, this study adopts a novel approach. We employ NLP techniques
not just on the scores, but on the text of the screening questionnaires
themselves, aiming to extract meaningful descriptions and identify specific
behavioral traits associated with ASD-related terms used in the questions.

Other AI approaches analyzing facial expressions14 or neuroimaging
data15,16 show potential but may require specialized equipment or yield
results comparable to human experts, limiting widespread practical appli-
cation for initial screening14. Integrating AI-based aids into primary care
shows promise for enhancing efficiency17, but there remains a need for tools
that leverage easily accessible, yet rich, data sources.

This study introduces and evaluates a novelmultimodal AI framework
designed to enhance the early screening and identification of ASD risk in
young children. Crucially, this framework uniquely integrates two key data
sources: (1) voice data extracted directly from videos capturing naturalistic
parent-child interactions, and (2) semantically analyzed data derived from
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the text of standardized ASD screening questionnaires (e.g., M-CHAT-R/F,
SCQ, SRS), processed using NLP. The clinical significance of this multi-
modal approach lies in its potential to create amore robust and reliable early
detection signal. It combinesobjective, quantifiable vocal biomarkers related
to language development and social communication, often altered in ASD1

8,19 captured during everyday interactions, with nuanced behavioral trait
information extracted from validated screening instruments11,12. This
synergy aims to improve the accuracy and reliability of early screening
efforts compared to unimodal approaches, as discussed in related
literature20–23.

Furthermore, our approach aligns with recent advancements in mul-
timodal fusion techniques, such as those seen in robustmultimodal emotion
recognition with transformers (e.g., Zhu et al.11), cross-modal fusion for
utterance-level analysis24 and contextual interaction-based multimodal
emotion analysis with enhanced semantic information (e.g., Hazarika et al.2
5). Similarly, the use of contrastive learning for removing negative infor-
mation inmultimodal analysis (e.g.,Wang et al.26) provides a foundation for
developing more robust and reliable models.

From a clinical perspective, providing a more accurate risk assessment
earlier in a child’s development holds substantial utility. Such a tool can
assist clinicians in identifying children who warrant prioritized referral for
comprehensive diagnostic evaluation. This facilitates more efficient use of
limited diagnostic resources, potentially reducing lengthy wait times and
enabling quicker access to essential early intervention services⁸. By lever-
aging readily available data like interaction videos and screening ques-
tionnaires (analyzed for content), the framework aims for practical
applicability in diverse clinical settings.

Despite progress inAI for ASD7,9, and specific analyses of voice18,19,27 or
multimodal data8,21–23,28, a research gap persists in developing and validating
scalableAI tools that specifically integrate naturalistic voice recordings from
interaction videos with semantically processed screening tool data for the
explicit purpose of early ASD risk identification and stratification. This gap
is particularly relevant in the context of ensuring trustworthy AI systems, as
explored in fields like image super-resolution (e.g., Korkmaz et al.29), and
leveraging advanced signal processing techniques, such as client-server
based recognition systems for emotional and behavioral states (e.g., Zhu
et al.30) or WiFi-based non-contact human presence detection (e.g., Zhang
et al.31), and dynamic spectral graph anomaly detection (e.g., Zheng et al.32).
These advancements highlight the potential for more sophisticated data
acquisition and analysis in clinical settings.

To address this gap, this study introduces a novel two-stage
multimodal AI framework that combines text data (e.g., MCHAT,
SCQ, SRS), audio data from parent-child interactions, and hospital
clinical information to enhance ASD screening and risk stratification.
This framework builds upon prior work and addresses the limitations
of unimodal approaches highlighted by Rahman et al. and others20.
Specifically, the framework leverages advanced deep learning models
like RoBERTa33, known for its strong performance in NLP tasks, and
Whisper34, a state-of-the-art speech recognition model, to capture
comprehensive information from text and audio data. Recent advan-
ces in speech processing, such as pre-trained speech embeddings, have
further demonstrated the potential of leveraging audio data to
understand spoken language development in children with ASD18.
While other audio analysis methods, such as Audio Spectrogram
Transformers (ASTs)35, have shown promise in various applications,
the present framework utilizes Whisper for its superior speech
recognition capabilities, particularly in handling the complexities of
child speech and its demonstrated effectiveness in capturing subtle
linguistic and prosodic features. The framework incorporates the
following key innovations:

This framework introduces several key innovations. First, it features
multimodal integration by merging semantically processed text-based
survey data (via RoBERTa) with audio-derived features from parent-child
interactions (processed byWhisper). This allows for amore comprehensive
capture of social communication, language, and behavioral indicators than

single-modality or score-based approaches. Second, our approach focuses
on risk stratification, mapping prediction probabilities to clinical bench-
marks such as ADOS-2 scores for actionable risk categorization into “Low
Risk,” “Moderate Risk,” and “High Risk” groups6, thereby providing more
reliable probability estimates in line with the recommendations of Nixon
et al. on the importance of model calibration in deep learning36. Finally, we
designed the framework with the potential for scalability and clinical utility,
keeping in mind the potential for integration into a Clinical Decision
Support System (CDSS). Such integration could support clinical decision-
making in screening pathways, improve accessibility, and potentially alle-
viate clinical workload3,37,38. The CDSS integration is inspired by successful
implementations in other domains, as reviewed by Abdar et al.39, high-
lighting the potential of AI to assist in clinical decision-making39. It also
offers the potential for personalized treatment planning, a significant
advancement in neurorehabilitation as suggested by Chang et al.40.

By integrating these specific multimodal data sources (semantically
analyzed questionnaires and voice from videos), employing advanced deep
learning tailored to each modality, explicitly addressing model calibration
for reliable risk stratification, and considering practical clinical integration,
this research aims to provide a scalable, automated tool. The goal is to
significantly enhance the accuracy and efficiency of early ASD screening,
thereby supporting clinicians in identifying at-risk children sooner.
Demonstrating the feasibility and effectiveness of this AI-driven approach
aims to pave the way for more accessible and timely support for ASD
assessment pathways, ultimately contributing to improved developmental
outcomes and quality of life for individuals with ASD and their families by
facilitating earlier access to intervention.

Results
This section presents the results of the two-stageAI framework forASD risk
stratification, focusing on model performance, calibration, risk stratifica-
tion, and correlation with clinical measures.

Stage 1 model performance: differentiating typically developing
from at-risk children
The Stage 1model, amulti-modal neural network based on the “RoBERTa-
large” pre-trained model, was trained to distinguish between children with
typical development (TD) and those in the combined High-Risk/ASD
group. Performancewas evaluated using 5-fold cross-validation, yielding an
average AUROC of 0.942, accuracy of 0.86, precision of 0.85, recall of 0.85,
and F1-score of 0.85 (Table 1). The consistently high AUC scores across all
folds, illustrated in the ROC curves (Fig. 1), demonstrate themodel’s strong
and robust ability to discriminate between the groups.

Auxiliary task: language delay prediction
The Stage 1 model also performed an auxiliary task of predicting language
delay. The model achieved good performance on this task, with an average
AUROC of 0.91, accuracy of 0.82, precision of 0.80, recall of 0.81, and F1-
score of 0.80 across five folds (Table 2, Fig. 2). This further demonstrates its
ability to extract meaningful clinical information from the input data.

Stage 2 model performance: differentiating high-risk from ASD
The Stage 2 model, a fine-tuned RoBERTa-large model, was trained to
differentiate between individuals at high risk (HR) for ASD and those
diagnosed with ASD. This model integrated behavioral task success/failure
data with textual data derived from the SRS.

Themodelwas trained and evaluated usingfive different randomseeds
(Folds 100, 42, 2021, 7, and 12345) to assess the robustness of its perfor-
mance.The results onheld-out test sets for each fold are presented inTable 3
and Fig. 3.

The Stage 2model demonstrated strong performance in differentiating
between individuals diagnosed with ASD and those identified as high-risk
(HR) for ASD. Across five-fold cross-validation, the model achieved an
average AUCof 0.91 (range: 0.90–0.93) (Table 3). It also exhibited balanced
overall performance, with average accuracy, precision, recall, and F1-score
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values of 0.85, 0.90, 0.90, and0.90, respectively.Accuracy across folds ranged
from 0.82 to 0.88, while AUC scores remained consistently high, ranging
from 0.90 to 0.93, underscoring the model’s excellent discriminative ability.
TheROCcurves in Fig. 3 visually corroborate this strong performance, with
all curves lying well above the chance line.

The model consistently excelled at correctly identifying individuals
diagnosed with ASD, indicated by a generally high recall for class 1 (ASD)
across all folds, ranging from 0.84 to 0.97. Precision for class 1 was also
consistently high, ranging from 0.88 to 0.92. Performance on theHigh-Risk
group (class 0) exhibitedmore variability. Notably, Fold 2021demonstrated
the highest precision (0.90) but the lowest recall (0.64) for this group. This
suggests a potential trade-off between correctly identifying all high-risk
individuals (high recall) and minimizing false positives (high precision)
within this specific group. These variationsmay be attributed to the inherent
heterogeneity of the High-Risk group or potentially reflect some sensitivity
to the specific random seed used during training. However, the consistently
high average AUC of 0.91 indicates that the model is generally robust and
effective in distinguishing between individuals diagnosed with ASD and
those at HR.

Calibration
To assess the reliability of the model’s predicted probabilities, calibration
plots were generated. A perfectly calibrated model would produce a cali-
bration plot with a diagonal line, indicating that the predicted probability
matches the observed fraction of positive cases.

As shown in Fig. 4, the original model exhibits some degree of mis-
calibration, particularly in the higher probability range. To address this,
isotonic regressionwas applied to calibrate themodel’s predictions. Figure 4
(right panel) shows the calibration plot after applying isotonic regression.
The calibrated model demonstrates improved calibration, with the curve
aligning more closely to the ideal diagonal line.

The Expected Calibration Error (ECE) for the original model was
[0.14]. After isotonic regression calibration, the ECE was reduced to
[<0.0001], indicating improved calibration performance.

These results suggest that calibration can enhance the reliability of the
model’s predictions, making them more interpretable and clinically useful.
The calibrated probabilities can be more confidently used to inform risk
stratification and clinical decision-making.

Correlation between model predictions and ADOS scores
To assess the validity of the Stage 2 model’s predictions, we evaluated the
correlation between the model’s output (mean calibrated probabilities
across the five folds) and the clinically administeredADOS-2 total(T) score.
The analysis revealed a strong and statistically significant positive correla-
tion, with a Pearson correlation coefficient of r = 0.830 (p < 0.001) and a
Spearman’s rank correlation of ρ = 0.889 (p < 0.001).

These results indicate a strong and statistically significant positive
correlation (p < 0.001, using an alpha level of 0.05 throughout the study)
between the model’s predictions and the severity of ASD symptoms as
measured by ADOS given by the Fig. 5.

Risk stratification and threshold optimization
Building upon the strong correlation betweenmodel predictions andADOS
scores, we performed risk stratification to categorize participants into risk
groups based on the model’s output and their ADOS-2 TOTAL(T) scores.
Building upon the strong correlation with ADOS scores, we performed risk
stratification to categorizeparticipants into risk groups basedon themodel’s
output and their ADOS-2 TOTAL(T) scores by optimizing thresholds for
themodel’smean calibrated probability. The process aimed to best align the
model’s output with clinical risk categories defined by ADOS-2 TOTAL(T)
scores: Low Risk (score < 7), Moderate Risk (score ≥ 7 and ≤13), and HR
(score > 13). The resulting optimized thresholds for the model’s probability
were <0.40 for Low Risk, between 0.40 and 0.85 for Moderate Risk, and
>0.85 for HR. As shown in Fig. 6, applying these thresholds to the model’s
predictions yielded a maximum agreement (Accuracy) of 0.80 with the
ADOS-based categories.

This process of enhancing agreement from an uncalibrated state to an
optimized one is detailed in Supplementary Fig. 16 and Supplementary
Fig. 17, which show the progression from the initial agreement heatmap to
thefinal calibrated cross-tabulation. The cross-tabulation heatmaps in Fig. 7
visualize the agreement between the model-predicted risk categories (using
the optimized thresholds) and the ADOS-based risk categories.

Overall, the model demonstrates good agreement with ADOS-based
risk categories, particularly for the High-Risk group (23 out of 37 correctly
identified). This suggests that the model’s predictions align well with
established clinical assessments, particularly for identifying individuals with
more severe ASD symptoms. The discrepancies observed in the Moderate
Risk group may reflect the inherent challenges in categorizing individuals
with borderline symptom severity and highlight the potential value of the
model in providing supplementary information to aid clinical judgment in
such cases.

Comparison with existing literature
The Stage 1 model, designed to differentiate between typically developing
(TD) children and those at HR for or diagnosed with ASD, achieved an

Table 1 | Stage1model performanceacross folds (TDvs.High-
Risk/ASD)

Fold AUC Accuracy Precision Recall F1-
Score

0 0.95 0.91 0.90 0.90 0.90

1 0.93 0.82 0.81 0.78 0.79

2 0.95 0.85 0.84 0.87 0.84

3 0.96 0.89 0.88 0.89 0.88

4 0.92 0.84 0.82 0.82 0.82

Average 0.942 0.86 0.85 0.85 0.85

This table shows the performance of the Stage 1model, which was trained to differentiate between
typically developing (TD) children and the combined High-Risk/ASD group, evaluated using 5-fold
cross-validation
AreaUnder theReceiverOperatingCharacteristicCurve (AUROC):TheaverageAUROCacross
the five folds was 0.942, with individual fold scores ranging from 0.92 to 0.96.
Accuracy, Precision, Recall, F1-score: Balanced performance was also observed across other
metrics, with an average accuracy of 0.86, precision of 0.85, recall of 0.85, and F1-score of 0.85.

Fig. 1 | ROC curves for the Stage 1 model. These curves display the model’s
performance in discriminating between typically developing children and those at
risk for ASD across five cross-validation folds. Each Receiver Operating Char-
acteristic (ROC) curve represents the performance of the model on a different held-
out test set. TheAreaUnder theCurve (AUC) for each fold is displayed in the legend,
and the consistently high AUC scores demonstrate the model’s robust dis-
criminative ability.
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impressive average AUROC of 0.942 across five folds. This performance
surpasses many previous efforts that relied solely on traditional machine
learningmethods applied to parent-reported questionnaires, as highlighted
in the review by Rahman et al.20. The high AUROC scores, consistently
above 0.92 in each fold (Fig. 1, Table 1), indicate themodel’s robustness and
ability to generalize well to unseen data. Furthermore, the model’s strong
performance on the auxiliary task of language delay prediction (average
AUROC of 0.908, Fig. 2, Table 2) underscores its ability to extract mean-
ingful and clinically relevant information from the multimodal input data.
The successful integration of audio data, processed using the Whisper
model, demonstrates the value of incorporating naturalistic observations of
parent-child interactions, which capture subtle complexity in social com-
munication and language development often missed by traditional assess-
ment methods19,27.

The Stage 2 model, a fine-tuned RoBERTa-large model, further
refined the classification by distinguishing between individuals at HR for
ASD and those with a confirmed diagnosis. This model achieved an
average AUROC of 0.914 and an average accuracy of 0.852 across five
different training runs (Table 3, Fig. 3). These results are particularly
noteworthy given the challenging nature of this classification task. The

consistently high AUC scores across all folds (0.90 to 0.93) demonstrate
the model’s robust discriminative ability and its potential for clinical
utility. The strong positive correlation between the model’s predicted
probabilities and ADOS-2 TOTAL(T) scores (Pearson r = 0.830,
p < 0.001; Spearman ρ = 0.889, p < 0.001) (Fig. 5) further validates the
clinical relevance of the model’s output, suggesting that it captures
meaningful information about ASD symptom severity. These findings
build upon prior work that has explored the use of AI in ASD diagnosis,
such as those leveraging neuroimaging data or facial behavior analysis14–1
6, by demonstrating the power of combining textual and behavioral data
within a deep learning framework.

Overall model performance
Our two-stage multimodal AI framework demonstrated robust perfor-
mance in ASD risk stratification. An initial 3-class classificationmodel (TD
vs.High-Risk vs.ASD)was also explored,withperformancemetricsdetailed
in Supplementary Table 1 and corresponding confusionmatrices and ROC
curves in Supplementary Fig. 1.However, the two-stage binary classification
approach was ultimately adopted for its superior performance and clinical
interpretability.

Table 2 | Stage 1 model performance on language delay
prediction across folds

Fold AUC Accuracy Precision Recall F1-
Score

0 0.89 0.81 0.80 0.83 0.80

1 0.89 0.79 0.77 0.78 0.77

2 0.91 0.81 0.79 0.79 0.79

3 0.94 0.85 0.84 0.84 0.84

4 0.91 0.83 0.82 0.80 0.81

Average 0.91 0.82 0.80 0.81 0.80

This table presents the performance of the Stage 1 model on the auxiliary task of predicting
language delay across five folds.
AreaUnder theReceiverOperatingCharacteristicCurve (AUROC):TheaverageAUROCacross
the five folds was 0.91, with individual fold scores ranging from 0.89 to 0.94.
Accuracy, Precision, Recall, F1-score: Balanced performance was also observed across other
metrics, with an average accuracy of 0.82, precision of 0.80, recall of 0.81, and F1-score of 0.80.

Fig. 2 | ROC curves for the auxiliary language delay prediction task. These plots
show the performance of the Stage 1 model on the secondary task of identifying
language delay. The Receiver Operating Characteristic (ROC) curves are shown for
five cross-validation folds, with each curve representing themodel’s performance on
a different held-out test set and the Area Under the Curve (AUC) for each fold
displayed in the legend.

Table 3 | Stage 2 Model Performance Across Folds

Fold Accuracy AUC Precision Recall F1

Fold 100 0.86 0.92 0.89 0.92 0.91

Fold 42 0.82 0.93 0.91 0.84 0.87

Fold 2021 0.88 0.90 0.88 0.97 0.92

Fold 7 0.86 0.92 0.92 0.89 0.90

Fold 12345 0.84 0.90 0.89 0.89 0.89

Average 0.85 0.91 0.90 0.90 0.90

This table details the performance of the Stage 2model in differentiating between individuals at HR
for ASDand those diagnosedwith ASD. The evaluationwas conducted on held-out test sets across
five different random seeds to ensure robustness.

Fig. 3 |ROCcurves for the Stage 2model.The plots demonstrate themodel’s robust
ability to classify individuals as either High-Risk or diagnosed ASD across five
separate evaluation runs. Each Receiver Operating Characteristic (ROC) curve
shows the model’s performance when trained with a different random seed, with the
Area Under the Curve (AUC) for each run displayed in the legend to confirm
consistent, high performance.
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Stage 1 Classification (TD vs. [High+ASD]): As detailed in Supple-
mentary Table 2, the multimodal “Audio + Text with language delay”
model (our Stage 1 model) achieved an AUROC of 0.9551 (95% CI:
0.8247–0.9812). Unimodal baselines showed lower performance: “Audio
only” achieved an AUROC of 0.7691 (95% CI: 0.6758–0.8521), while “Text
only” achieved 0.9418 (95% CI: 0.9020–0.9726). This highlights the sig-
nificant contribution of questionnaire text and the value of multimodal
fusion. The model “Audio + Text w/o language delay” also maintained a
high AUROC of 0.9496 (95% CI: 0.9143–0.9777).

Stage 2 Classification (High-Risk vs. ASD): Performance metrics for
Stage 2models are presented in SupplementaryTable 3.Our proposed Stage
2 model (“SRS+ 5 Tasks S/F”) achieved an AUROC of 0.9317 (95% CI:
0.8585–0.9854). This multimodal approach significantly outperformed
unimodal baselines: “Base SVM” (AUROC 0.8263), “SRS Only” (AUROC

0.8831), and “5 Tasks S/F Only” (AUROC 0.7607), confirming the syner-
gistic effect of integrating both SRS and structured interaction task
outcomes.

Error analysis and risk stratification
The error analysis utilized two datasets: confusion matrices in Supple-
mentary Figs. 2–3 were computed on our original held-out test set, while
visualizations in Supplementary Figs. 18–20 were generated using an
independent, newly collected external cohort to assess Stage 1 true-vs-
predicted labels (Supplementary Fig. 18), Stage 1 calibrated risk levels
(Supplementary Fig. 19), and Stage 2 calibrated risk levels (Supplemen-
tary Fig. 20).

The first stage of the model (TD vs. non-TD) demonstrated high
sensitivity on the original held-out set, achieving 100% sensitivity for non-

Fig. 4 | Calibration plots for the Stage 2 model before and after isotonic
regression.These reliability curves compare themodel’s probabilistic predictions to
actual outcomes, showing significant improvement after calibration. The left panel

shows the original, uncalibrated model, while the right panel shows the model’s
improved calibration after applying isotonic regression, where its predictions align
more closely with the ideal diagonal line of perfect calibration.

Fig. 5 | Relationship between model predictions and ADOS-2 scores. These
visualizations confirm a strong, statistically significant positive correlation between
the model’s output and clinical measures of ASD symptom severity. The scatter plot

(left) and pair plot (right) both depict the relationship between the Stage 2 model’s
mean calibrated probabilities and the clinically administered ADOS-2 TOTAL(T)
scores, with the pair plot also showing the marginal distributions of each variable.
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TD detection. All true ASD (n = 11) and High-risk (n = 11) cases were
correctly flagged as “Other,”while a 23% false-positive rate occurred among
TD children (Supplementary Fig. 2). This performance held on the inde-
pendent external cohort, where non-TD sensitivity remained at 100%.
Crucially, these false positives almost exclusively mapped to the Low Risk
category in the subsequent Stage 2 analysis (Supplementary Fig. 18). The
risk calibrationheatmap for the external cohort further showed that genuine
non-TD cases occupied higher risk bins, while correctly classified TD
children remained in the Low Risk bin (Supplementary Fig. 19).

In the second stage of the model (High-risk vs. ASD), detailed results
for the original test set are presented in Supplementary Fig. 3. On the
external cohort, the risk calibration demonstrated strong sensitivity for
ASD,with 10 of 11ASDcases (91%) classifiedas eitherHRorMediumRisk.
In contrast, TD children remained almost entirely in the Low Risk category
(12/13), while the High-risk group spanned all risk bins (Supplementary

Fig. 20). The overall binary prediction performance for Stage 2 on this
cohort is summarized in the confusion matrix in Supplementary Fig. 21.

In sum, by combining high-sensitivity binary classification with cali-
brated risk stratification—and validating on two independent cohorts—our
two-stage framework offers a robust, clinically actionable pathway for early
ASD screening with minimized unnecessary follow-ups and sustained
accuracy.

Interpretability analysis
Micro-level interpretability was performed for the Stage 2 model using
SHAP values and CLS attention mechanisms, providing sample-specific
insights. This analysis focused particularly on the SRS+ 5 Tasks Success/
Failure model due to its high reliability (AUROC 0.9317).

Our SHAPanalysis quantified the impact of specific features onmodel
predictions. For predictingHigh-Risk (Class 0), task successes (e.g., “Success

Fig. 6 | Optimization of thresholds for risk stratification. This graph illustrates the
data-driven process used to identify the optimal probability thresholds for categorizing
individuals into risk groups. The plot shows the agreement scores (Accuracy) between

model-predicted risk categories and ADOS-based risk categories across a grid search of
different threshold combinations, with the peak of the curve indicating the optimized
thresholds (0.40, 0.85) that yielded the highest agreement.

Fig. 7 | Agreement between model-predicted and ADOS-based risk categories.
Theheatmaps provide a visual cross-tabulation of themodel’s classification accuracy
against the ground-truth risk categories defined by ADOS-2 scores. Using the

optimized thresholds of 0.40 and 0.85, the left panel shows the classification results
for individuals in the ADOSHigh Risk group, while the right panel shows the results
for the ADOS Low and Moderate Risk groups.
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of Mimicked actions2” [+0.030], “Success of Reacted to snack” [+0.009])
consistently showed the largest positive contributions, while phrases indi-
cating strong social skills like “usually looks up and pays attention when
spoken to” (-0.006) decreased this likelihood (Supplementary Figs. 4, 5, 10,
11). Conversely, for predictingASD (Class 1), these same task successes had
negative SHAP values (e.g., “Success of Mimicked actions2” [-0.030]),
actively decreasing the likelihood of an ASD diagnosis. Instead, phrases
reflecting social-communication strengths such as “usually looks up and
pays attention when spoken to” (+0.007) increased the ASD prediction
(Supplementary Figs. 6, 7, 12, 13).

To further investigate themodel’s focus, we analyzed the [CLS] token’s
attention patterns. This confirmed that the model places significant
emphasis on both explicit task outcomes and critical behavioral descriptors.
High attention scores were consistently observed for phrases related to
direct task performance like “Success of Mimicked actions2” (≈0.010) and
“Success of Played catch” (≈0.0035) (Supplementary Figs. 8, 9). The model
also paid high attention to core ASD-related features such as “child always
different” (≈0.005), “speech tone” (≈0.0045), “not attending to social
approaches from adults” (≈0.003), and adaptive behaviors like “self-care
behavior” (≈0.013) (Supplementary Figs. 14, 15).

Discussion
This study introduces a novel two-stage multimodal AI framework for
ASD screening and risk stratification, representing a significant
advancement in early detection and intervention efforts. By integrating
text-based parent-reported surveys, audio data from parent-child inter-
actions, and clinical assessment data including ADOS module scores
(utilized particularly for differentiating High-Risk and ASD groups in
Stage 2), our framework addresses critical limitations of prior research
that often relied on unimodal data sources³. To our knowledge, this is the
first large-scale study (n = 1242) to employ such a comprehensive, AI-
driven approach to systematically investigate the correlation between
predictive phenotypes and ASD diagnostic outcomes. The results
underscore the feasibility and effectiveness of leveraging advanced deep
learning models, specifically RoBERTa33 and Whisper34, to achieve
accurate ASD screening and risk stratification.

A key contribution of this research lies in developing a comprehensive
ASD assessment framework that integrates the AI model’s predictions with
ADOS-2 total(T) scores, which measure the severity of autism symptoms
rather than ASD risk itself. This integration enables a clinically meaningful
and fine-grained evaluation of symptom severity, aligning AI-driven
assessments with established clinical scales. The framework demonstrated
high agreement (79.59%accuracy)withADOS-2-defined symptomseverity
categories, suggesting its potential to support clinical decision-making by
providing structured insights into symptom presentation. Notably, the
model exhibited high sensitivity in identifying individuals with elevated
ADOS-2 total(T) scores (correctly identifying 23 out of 37 individuals in the
highest severity category), underscoring its potential utility in prioritizing
individuals for comprehensive diagnostic evaluations and addressing delays
in ASD diagnosis.6,37.

The severity stratification framework provides multi-level clinical
insights by generating valuable information sequentially through its two-
stage process. The initial Stage 1 classification identifies children likely
needing further evaluation (non-TD), after which Stage 2 differentiates
between a higher likelihood of ASD versus being High-Risk. This process
enables reliable severity stratification, which in turn facilitates several key
clinical applications. It supports early identification and prioritization by
helping to identify children who warrant comprehensive diagnostic eva-
luation, a crucial benefit givenextendedwaitingperiods for specialized care¹.
Furthermore, the objective outputs serve as valuable supplementary infor-
mation for enhanced assessment, especially for individuals with borderline
or ambiguous clinical presentations. Finally, the framework directly sup-
ports informing personalized intervention, as the detailed stratification
allows clinicians to tailor the intensity and focus of early intervention plans
more effectively based on the child’s specific assessed needs⁸.

In any screening paradigm, misclassifications are inevitable, and
understanding their downstream effects is crucial. The core workflow pre-
sented here utilizes two sequential binary models—Stage 1 (TD vs. [High-
Risk+ASD]) and Stage 2 (High-Risk vs. ASD)—followedby calibrated risk
stratification correlated with ADOS-2 scores. While misclassifying TD
children as false positives can increase parental anxiety and follow-up
burden, the two‐stage design cushions this impact. A TD child mistakenly
flagged in Stage 1 is highly unlikely to receive a High‐Risk score in Stage 2,
thereby reducingunnecessarydiagnostic referrals. Clinicians can furtheruse
model confidence scores; for instance, childrenwith borderline probabilities
in Stage 2 may be monitored over time rather than being sent directly for a
full evaluation. Conversely, missing an ASD diagnosis (a false negative)
delays critical early intervention. Although the pipeline achieves >90%ASD
sensitivity, the small number of misses in Stage 2 (1/11 in the external
cohort) underscores that no automated tool is infallible, reinforcing theneed
for continueddevelopmental surveillanceby primary care providers and the
option for repeat screening if concerns persist.

To build clinical trust and facilitate informed decision-making, micro-
level interpretability features like SHAP values and attention maps are cri-
tical. These tools allow clinicians to peer into the model’s “reasoning” by
revealing which specific phrases from questionnaires or structured task
outcomes most strongly influenced a prediction. For example, if the model
heavily weighted a phrase like “not attending to social approaches from
adults” towards an ASD classification, it directly aligns with clinical diag-
nostic criteria, allowing the clinician to cross-reference this with their own
observations. This transparency transforms themodel fromablack box into
a collaborative partner, enabling clinicians to discuss complex or borderline
cases by integrating the model’s evidence with their own clinical expertise.

This study directly addresses several limitations of prior research.
The multimodal approach, incorporating text and audio data, overcomes
the constraints of unimodal methods that have dominated previous ASD
classification studies13,20,41. By harnessing the power of deep learning
models like RoBERTa33 and Whisper34, the framework moves beyond
traditional machine learning techniques that often struggle with the
complexity and heterogeneity of ASD presentations. Furthermore, the
focus on model calibration, drawing on principles from uncertainty
quantification research42–44 enhances the reliability and interpretability of
the model’s predictions, addressing a crucial gap often overlooked in
earlier work20,39. These findings align with the global shift toward scalable,
accessible, and efficient digital health solutions, particularly in under-
resourced settings. The app-based approach for data collection, coupled
with automated AI-driven analysis, has the potential to significantly
reduce the time and resources required for ASD screening, which is
relevant given the increasing prevalence of ASD1 and the development of
other AI-based diagnostic tools10.

Despite these advancements, the study has limitations. The initial
sample sizes (n ≈ 35 per group) limit the precision of low-frequency error
estimates, and thefindingsmaynotbe generalizable to all populations, as the
study was conducted in a specific Korean clinical setting. While the text-
based component used English ASD terms for semantic processing of
questionnaire data, the cultural and linguistic specificity of the contextmust
be considered. The audio component, however, focused onmore language-
agnostic acoustic features, which may enhance transferability. A second
limitation involves data collection and ground truth. The uncontrolled
nature of audio recording, including ambient noise and variable child
participation, impacted the quality of child vocalizations. Additionally,
ADOS-2 scores were used as the ground truth for risk stratification; how-
ever, these scores do not always correspond with clinicians’ final judgments
and represent only one of several diagnostic tools.

Future research should focus on validating the framework in larger,
more diverse populations with different linguistic, cultural, and socio-
economic backgrounds to assess fairness and robustness, including its
performance in children with co-occurring developmental conditions.
Further model optimization could be achieved by incorporating additional
data modalities, such as video or physiological measures, and exploring
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adaptive thresholds to trade off false positives versus false negatives.
Implementing standardized protocols for audio collection could also
improve performance. Finally, longitudinal studies are needed to evaluate
the long-term impact of this AI-driven approach on developmental tra-
jectories, and investigating its integration with electronic health records
could streamline clinical workflows.

In sum, this study successfully developed and validated a novel mul-
timodal AI framework that integrates voice data and semantically analyzed
questionnaire responses for effective ASD screening and severity stratifi-
cation in toddlers. The primary clinical implication lies in its potential to
address critical bottlenecks in current care pathways by offering objective
support for prioritizing assessments, enhancing clinical judgment, and
informing the tailoring of early intervention intensity based on the initial
severity level identified by the model3. By leveraging readily available data
through a mobile application combined with advanced AI, this framework
represents a scalable solution. Its implementation, following rigorous vali-
dation, could substantially enhance current ASD care pathways, reduce the
burden on specialized services, and ultimately improve developmental
outcomes for children with ASD and their families.

Methods
This study employed a two-stage AI framework (Fig. 8) for ASD risk stra-
tification, integrating multimodal data from surveys, parent-child interac-
tions, and clinical assessments.

Study design and participants
This study recruited 1242 children aged 18–48months fromclinical settings
across 9 hospitals in the Republic of Korea. Data collection was primarily
conductedusing amobile application,whichgathered responses to keyASD
screeningquestionnaires (including theM-CHAT-R/F, SCQ-L, andSRS)—
with the M-CHAT-R/F administered for children aged 18–30 months and
the SCQ-L for those aged 24–48 months— and recorded voice data from
parent-child interaction videos during standardized tasks. Participants were
categorized into three groups: TD, high-risk for ASD, and confirmed ASD.

This categorization was based on results from these screening tools and
clinical diagnoses performed according to DSM-5 criteria. Figure 9 details
the participant flow through the study, illustrating the inclusion and
exclusion criteria applied based on data availability and clearly delineating
the sample sizes and specific data inputs for both Stage 1 and Stage 2 of the
two-stage AI model analysis.

Participants in the study were categorized into three distinct groups:
ASD, High-Risk (HR), and TD (TD). The ASD group included toddlers
with a confirmed diagnosis based on a combination of screening tools and
clinical diagnoses using DSM-5 criteria6. These diagnoses were further
supported by comprehensive clinical evaluations utilizing standardized
assessment tools, including the Autism Diagnostic Observation Schedule,
Second Edition (ADOS-2)45, and the Korean Childhood Autism Rating
Scale, Second Edition (K-CARS-2)5. The High-Risk (HR) group comprised
toddlers identified through primary screening tools such as the Modified
Checklist forAutism inToddlers, Revisedwith Follow-Up (M-CHAT-R/F),
Q-CHAT, SCQ, SRR, and Bedevel46,47. Toddlers with delayed language
development, a familyhistoryofASD,orpretermbirthbefore 36weekswere
also classified into this group. These children exhibited potential ASD traits
requiring follow-up evaluations but did notmeet the full criteria for anASD
diagnosis. Finally, the TD group consisted of toddlers exhibiting typical
developmental patterns without any indications of ASD traits, as deter-
mined by the M-CHAT-R/F47, and who had no family history of develop-
mental disorders.

Ethical considerations
This study was conducted in accordance with the Declaration of Helsinki.
The study protocolwas approved by the Institutional ReviewBoard (IRB) of
Severance Hospital, Yonsei University College of Medicine (IRB No. 4-
2022-1468), and the IRBs of all participating hospitals in this multi-center
study: Seoul National University Hospital (IRB No. 2209-096-1360),
Eunpyeong St. Mary’s Hospital (IRB No. 2022-3419-0002), Wonkwang
University Hospital (IRB No. 2022-12-023-001), Seoul National University
Bundang Hospital (IRB No. 2305-829-401), Hanyang University Hospital

Fig. 8 | Schematic diagram of the two-stage multimodal AI framework for ASD
risk stratification.The framework shows a sequential process beginning with initial
classification and culminating in actionable risk stratification. This diagram illus-
trates how Stage 1 (Model 1) uses voice and questionnaire data to classify individuals

as Typically Developing (TD) or at-risk (High+ASD). Individuals flagged as at-risk
proceed to Stage 2 (Model 2), which uses semantic features and task outcomes to
further classify them as High-Risk or diagnosed ASD, leading to stratification into
three clinical risk categories with recommended actions.
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(IRB No. 2022-12-007-001), Chungbuk National University Hospital (IRB
No. 2023-04-034), and Seoul St. Mary’s Hospital (IRB No.
KC24ENDI0198). Written informed consent was obtained from the legal
guardian of every participant before any data collection.

Procedures for data protection were implemented to uphold the
highest ethical standards for collecting data fromminors. Upon enrollment,
each childwas assigned a unique, non-identifiable “Study ID,” andno direct

identifiers appear in analysis files. All data were stored on encrypted servers
at Yonsei University, using AES-256 and HASH-256 encryption for sensi-
tive information. Access to the database was restricted to authorized per-
sonnel through role-based permissions. Data management complied with
the Personal Information Protection Act and the Bioethics and Safety Act.
Raw audio recordings were deleted after feature extraction, and pseudo-
nymized data will be stored for 10 years from the study’s conclusion before

Fig. 9 | Study flowchart and multimodal AI framework overview. This flowchart
details participant recruitment, exclusion criteria, and data allocation for the two-
stage AI model. It shows how participants were selected based on the availability of
mobile application data, including screening tool responses and voice recordings.
Stage 1 included 818 participants to differentiate TD from non-TD individuals,

while Stage 2 included 515 participants from the non-TD group to differentiate
between High-Risk and ASD individuals. (MCHAT: Modified Checklist for Autism
in Toddlers; SCQ-L: Social Communication Questionnaire-Lifetime; SRS: Social
Responsiveness Scale; ASD: Autism Spectrum Disorder; TD: Typically Developing;
non-TD: Non-Typically Developing).
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being securely destroyed, with any extension requiring further IRB review.
Allmethods and procedures are described here in themainmanuscript, not
in Supplementary Information.

Recruitment
The study employed amulti-pronged recruitment strategy, partnering with
clinical institutions, community childcare centers, and pediatric clinics
specializing in developmental delays to reach a diverse population. Targeted
outreach to high-risk groups was conducted through inclusive daycare
centers and by distributing brochures in specialized clinics. Participant
engagement was fostered by offering incentives like detailed developmental
assessment reports.

Data collection
Data collection for this study involved three primary sources: survey data,
digital phenotyping data, and clinical data.

Survey data was acquired through standardized questionnaires
completed by parents, including the Modified Checklist for Autism in
Toddlers (MCHAT)12,46, the Social Communication Questionnaire Life-
time (SCQ-L)12,46, and the Social Responsiveness Scale second edition
(SRS-2)20,23. These surveys provided text-based data for the AI model.
The initial sample based on MCHAT and SCQ-L scores consisted of
1242 children, including 434 TD, 331 High-Risk, and 477 with ASD. For
the Stage 2 analysis requiring SRS and 5-task audio data, 32 participants
were excluded, resulting in a sample of 162 High-Risk and 353 ASD
children (Total = 515).

Digital phenotypingdatawas collected from897 children via a custom-
developed mobile application. This included audio data from parent-child
interactions, where the app guided parents through a series of standardized
tasks designed to elicit specific behaviors relevant to ASD diagnosis
(Table 4). The number of interaction tasks varied by age, with children aged
18–23months completing four tasks, those aged 24–35months completing
five, and those aged 36–48 months completing six. These tasks included
Responding to Name, Imitation (one-step for 18–23 months, two-step for
24–48 months), Ball Play, Symbolic Play, Requesting Help, and Free Play.
Audio from the Free Play taskwas analyzed for the Stage 1model using data

from 294 TD, 214 High-Risk, and 389 ASD children. Audio from 547
children was used in the Stage 2 model. Additionally, task success/failure
data was collected for each of the five structured tasks (excluding Free Play),
where caregivers evaluated and recorded the child’s performance based on
predefined criteria; this binary information was used directly in the Stage
2 model.

Finally, clinical data was collected, including assessments fromADOS-
2Module 1 (ADOS-2Mod1), ADOS-2Module 2 (ADOS-2Mod2), and the
ADOS-2 Toddler Module (ADOS-2 ModT). To ensure consistency across
modules, a composite score—referred to as theADOS-2 total(T) score—was
calculated by summing the ADOS social affect (ADOS_SA) score and the
ADOS restricted and repetitive behavior (ADOS_RRB) score. ThisADOS-2
total(T) score served as the ground truth for model validation and risk
stratification.

Language delay definition and calculation
In this study, language delay was defined as a delay of 7 months or more in
either receptive or expressive language age compared to the child’s chron-
ological age. Language development was assessed using either the Preschool
Receptive-Expressive Language Scale (PRES) or the Sequenced Language
Scale for Infants (SELSI). For each child, the obtained receptive and
expressive language ageswere subtracted from their chronological age. If the
receptive or expressive languagedelaywas7months or greater, the childwas
classified as having a language delay.

Stage 1 model development
The development of the AI model employed a two-stage approach. This
section details themethodology used for Stage 1, focusing on distinguishing
TD children from those at High-Risk (HR) for or diagnosed with ASD.

The initial dataset comprised data from 1242 participants. Following
the exclusion of 61 participants due to missing free-play audio data or the
presence of specific confounding factors (high-risk ASDwith family history
or high-riskASDwith premature birth), thefinal dataset for Stage 1 analysis
consisted of 818 children. This cohort included 273 TD children, 175
children identified as High-Risk for ASD, and 370 children diagnosed
with ASD.

Table 4 | Parent-Child Interaction Tasks

Task Age (months) Description Steps

Responding
to Name

18–48 Parent calls the child’s while out of sight. 1. Parent calls child’s name (1st attempt).
2. If no response after 5 s, parent calls again (2nd attempt).
3. If still no response, parent makes other familiar sounds (excluding physical
contact).

Imitation (Younger) 18–23 Parent instructs the child to imitate raising arms. 1. Parent says, “[Child’s name], imitate me,” and raises arms.
2. If no response after 5 s, repeat instruction and action. 3. If still no response,
say “Raise your arms” while demonstrating.

Imitation (Older) 24–48 Parent instructs the child to imitate clappingand
raising arms.

1. Parent says, “[Child’s name], imitate me,” claps, and raises arms. 2. If no
response after 5 s, repeat instruction and actions. 3. If still no response, say
“Clap your hands, raise your arms” while demonstrating.

Ball Play 24–48 Parent and child engage in a ball-playing
activity.

1. Parent says, “Let’s play ball.”
2. Parent gestures as if to receive the ball.
3. If no response after 5 s, repeat gesture.
4. If still no response, say, “Roll the ball to me.”
5. Continue play if successful.

Symbolic Play 36–48 Parent and child engage in pretend play with a
doll and a cup.

1. Parent says, “The baby is thirsty. What should we do?”
2. If no response after 5 s, parent imitates the baby/animal, saying, “I’m
thirsty.”
3. If no response, parent brings a cup to the doll, saying, “Let’s have a drink.”
4. Continue play with simple episodes.

Requesting Help 18–48 Child is presented with a desirable object in a
container they cannot open independently.

1. Parent says, “[Child’s name], have a snack.” 2. If no response after 5 s,
partially open the lid.
3. If still no response, fully open the lid but keep it in hand.

Free Play 18–48 Child engages in unstructured play, with the
parent joining in later.

1. Child plays freely for 2 min.
2. Afterward, the parent joins child’s play for 1min.
3. If no response, parent says, “Shall we play together?”

This table describes the standardized parent-child interaction tasks used to collect audio data via a mobile application. The tasks were designed to elicit behaviors relevant to ASD diagnosis and varied
based on the child’s age.
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Data preprocessing
Text-based analysis utilized responses from the Modified Checklist for
Autism in Toddlers (MCHAT) and the Social Communication Ques-
tionnaire - Lifetime (SCQ-L).We employed amapping strategy to enhance
the extraction of ASD-relevant information from these questionnaires.
Specifically, 1943 medical concepts derived from Zhao et al. (2022)13 were
used to map the survey items to a broader set of 3336 ASD-related terms,
creating a richer textual representation for identifying high-risk individuals.
Subsequently, a Sentence Transformer model (Reimers & Gurevych, 2019)
was implemented to calculate cosine similarity scores between each survey
item and the expanded set of ASD terms. The top five matching terms for
each item, based on cosine similarity, were identified. From this subset, 1–2
clinically relevant terms were carefully selected as keywords, guided by
expert clinical judgment. These selected keywords served as the foundation
for training a RoBERTa-based binary classification model. This model was
designed to differentiate between TD children and the combined group of
high-risk and ASD children, leveraging the textual information derived
from the MCHAT and SCQ-L.

The audio data consisted of recordings from parent-child interaction
tasks. Each recording,with a total duration of 3min,was segmented into 30-
s intervals. These segments were then processed using a Multiple Instance
Learning (MIL) framework (Ilse et al.)48, with theWhisper model (Radford
et al.)34 serving as the feature extraction backbone. To address the presence
of languagedelay, children’s receptive and expressive languagedevelopment
ages were assessed. Children exhibiting a delay of 7 months or more com-
pared to their chronological age were labeled as having a language delay.
This language delay status was then predicted using the Whisper model
(Radford et al.)34 within theMIL framework (Ilse et al.)48, enabling effective
feature extraction from the variable-length audio inputs.

Model architecture
A multi-modal neural network was constructed to integrate both text
and audio data. This network was based on the pre-trained
‘RoBERTa-large’ and Whisper Encoder models. The ‘RoBERTa-
large’ model served as the text pathway, extracting features from the
preprocessed textual data derived from the questionnaires. Con-
currently, a pre-trained whisper Encoder model, which was fine-
tuned as part of this study, formed the audio pathway, extracting
features from the segmented audio data. The extracted text and audio
features were then concatenated to form a unified representation.
This combined feature vector was fed into a final classification layer,
which produced logits for classifying children into either the TD
group or the combined HR+ ASD group. As an auxiliary task, a
separate output layer was included to predict the presence or absence
of language delay (Yes/No) based on the fused features. Finally, a
hard ensemble approach was implemented to combine the predic-
tions generated by the MCHAT/SCQ-L-based binary classification
model and the language delay prediction model, ultimately classifying
children into the TD or combined HR+ ASD groups.

The overall loss function for Stage 1was a composite of losses from the
main classification task and the auxiliary languagedelay prediction task.The
total loss function, which equally weighted the classification loss and the
language-delay prediction loss, is defined in Eq. (1).

L ¼ 1
2
ðLCE þ LLDÞ ð1Þ

Here, LCE and LLD represent the cross-entropy losses for the main
classification task and the auxiliary language delay task, respectively.

The classification error for the primary task (classifying TD vs. High-
Risk/ASD) is computed using Eq. (2):

LCE ¼ � 1
N

XN
i¼1

yi � logðpiÞ þ ð1� yiÞ � logð1� piÞ
� � ð2Þ

In this equation, N is the total number of samples, yi is the true class
label for sample i (0 for TD, 1 for High-Risk/ASD), and pi is the predicted
probability of the positive class (High-Risk/ASD) for sample i.

The classification error for predicting language delay is computed
using Eq. (3):

LLD ¼ � 1
N

XN
i¼1

zi � logðqiÞ þ ð1� ziÞ � logð1� qiÞ
� � ð3Þ

Here,N represents the total number of samples, zi is the true binary label for
languagedelay (1 for delay, 0 fornodelay), andqi is thepredictedprobability
of language delay for sample i.

Model training and evaluation
Thedataset used for training andevaluation for Stage1 compriseddata from
273 TD, 175 high-risk, and 370 ASD participants. Model training was
conducted using 5-fold stratified cross-validation. For each fold, the data
was split into ~70% training, 10% validation, and 20%held-out test set. The
splitswere stratifiedby class (TD,HR,ASD) tomaintain class balance across
all subsets. The same partitioningwas used consistently across both training
stages.

The ‘RoBERTa-large’ model was initialized with pre-trained weights,
serving as the text pathway for feature extraction from the preprocessed
textual data. Concurrently, the Whisper model encoder was fine-tuned
across all its layers on our dataset, rather than being used as a frozen feature
extractor, to form the audio pathway. In addition to the primary classifi-
cation task (distinguishing typically developing from high-risk/ASD chil-
dren), an auxiliary classifier was included to predict language delay status,
leveraging the model’s ability to capture clinically relevant vocal features.
The model was trained using the cross-entropy loss function for both the
main classification task and the auxiliary language delay task. No explicit
data augmentation was applied to the audio recordings; this decision was
based on the natural variability and ambient noise present in the real-world
clinical and home environments, as preliminary experiments showed that
artificial augmentation degraded performance.

Features from the audio (Whisper encoder hidden states) and text
(RoBERTa embeddings) models were concatenated at the feature level
before being fed into a fully connectedneural network for classification.This
multimodal fusion allowed the model to jointly leverage both vocal and
linguistic information. No ensemble methods were employed during
inference; the final predictions were generated by this single integrated
multimodal model.

Hyperparameters were set as follows: a batch size of 4, trained for 10
epochs, afixed learning rate of 1e-5, andaweightdecayof 0.01.TheAdamW
optimizer was employed, and no learning rate scheduler was used. While
explicit early stopping with patience was not applied, the model checkpoint
with the lowest validation loss during training was selected and saved for
evaluation. During inference, the trained model was set to evaluationmode
and processed test data in batches of 64, without shuffling. Model perfor-
mancewas evaluated usingAUC, accuracy, and loss, calculated on the held-
out test set for each fold.

Stage 2 model development
This stage integrated data from two sources: the outcomes of parent-
child interaction tasks and responses from the Social Responsiveness
Scale-2 (SRS-2). The success or failure of each of the six parent-child
interaction tasks was recorded. The criteria for determining success or
failure were based on clinically relevant behavioral markers. Examples of
these markers include responding to a name within two attempts, cor-
rectly imitating at least one action, and engaging in symbolic play. The
initial task success/failure labels were primarily provided by parents
during the assessment. To ensure validity and quality control, these
parent-reported labels for a stratified sample of 50 subjects (comprising
227 total task items) were rigorously validated against video-reviewed
ground truth by experienced clinicians. A subset of 10 subjects (46 tasks)
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underwent re-review by clinicians to ensure clarity and consistency.
Consistency was further ensured through a comprehensive inter-rater
reliability analysis; Cohen’s kappa (κ) was calculated to quantify the
agreement between parent-reported labels and clinician video reviews,
yielding κ = 0.885 (95% CI: 0.85–0.92). This indicates “almost perfect
agreement” according to Landis and Koch (1977)49 benchmarks. The raw
observed agreement was 94.27% (214 agreed items out of 227 total
items), with only 13 discrepancies identified, representing an excep-
tionally low mismatch rate of 5.7% for clinical and behavioral studies.
This robust reliability supports the validity and quality of the parent-
reported task outcomes used in our study. Like the text preprocessing in
Stage 1, SRS survey responses were mapped to ASD-related terms to
enhance the extraction of relevant information. The task success/failure
data, represented as binary outcomes for each task, and the mapped SRS
terms were combined to train a RoBERTa-Large model using fine-
tuning. The model was trained for 10 epochs with a batch size of 8 and a
learning rate of 2e-5. A cross-entropy loss function and the AdamW
optimizer were employed for training. To prevent overfitting, early
stopping based on validation loss was implemented. This trained model
achieved a promising AUC of 0.93.

Stage 2 model training and evaluation
For Stage 2, model training and evaluation involved a dataset of 162 High-
Risk and 353 ASD children. We employed StratifiedGroupKFold for all
splits to ensure consistency in labels and subject grouping across the dataset.
An initial approximate 80:10:10 (train:validation: test) split was performed,
whichwas later updated following the inclusion of new subjects, resulting in
final sample counts of Train (455), Validation (58), and Test (57). Fixed
train/validation/test sets were used for evaluation, rather than explicit cross-
validation folds in this stage.

The RoBERTa-Largemodel was fine-tuned for 10 epochs. An effective
batch size of 32was used, achievedwith a per-device train batch size of 8 and
a gradient accumulation of 4 steps. The learning rate was fixed at 2e-5, and a
weight decay of 1e-8 was used for regularization, with 0 warmup steps.
Evaluation and model saving occurred per epoch, and the best model was
loaded based on the lowest evaluation loss on the validation set (load_-
best_model_at_end = True, metric_for_best_model = “eval_loss”). No
explicit hyperparameter search was performed, with the listed values being
those used for fine-tuning. A cross-entropy loss function and the AdamW
optimizer were employed for training.

Model performance was comprehensively evaluated using several
metrics. The Area Under the Receiver Operating Characteristic curve
(AUROC) was used to assess the model’s ability to discriminate between
classes. The F1-score, the harmonicmean of precision and recall, provided a
balanced measure of accuracy, while overall accuracy measured the cor-
rectness of the model’s predictions. Precision, the proportion of accurate
positive predictions among all positive predictions, and recall, the propor-
tion of accurate positive predictions among all actual positive cases, were
also calculated.

Model calibration and correlation analysis
Furthermore, the ECE was computed to quantify the alignment between
predicted probabilities and observed frequencies across multiple bins. The
ECE is calculated using the formula shown in Eq. (4):

ECE ¼
XNbins

i¼1f g
Bi

�� ��
N

� jaccuracy Bi

� �� confidence Bi

� �j ð4Þ

In this equation, Bi represents the i-th bin containing predicted
probabilities, jBij is the number of predictions within that bin, and N is the
total number of predictions. The term accuracy Bi

� �
refers to the fraction of

truepositives in bin i,while confidence Bi

� �
is themeanpredictedprobability

for the predictions in that same bin.
A lower ECE indicates better calibration, meaning the predicted

probabilities more accurately reflect the actual likelihood of the outcome.

Isotonic regression was employed for calibration to ensure that the
model’s predicted probabilities aligned with clinically defined ADOS-2 risk
categories. Isotonic regression is a non-parametric method that adjusts the
predicted probabilities to better match the observed outcomes while pre-
serving the original ranking of predictions (monotonicity).

The calibrated probabilities pcal are obtained by solving the optimi-
zation problem shown in Eq. (5):

Pcal ¼ argmin
XN

i¼1f g;Piso
Piso;i � yi
� �2

subject toP iso;if g ≤ Piso;jfor i < jÞ
ð5Þ

In this equation, Piso represents the isotonic probabilities, yi is the true
label for the ith sample, and N is the total number of samples.

Weused10 equal-widthbins (edges at 0.0, 0.1,…, 1.0) to computeECE
(Eq. 4), and we fitted a scikit-learn Isotonic Regression (PAV algorithm,
out_of_bounds = “clip”) to obtain calibrated probabilities under the
monotonicity constraint (Eq. 5).

To investigate the relationship between the model’s predicted prob-
abilities andADOS scores, both Pearson and Spearman correlation analyses
were conducted. The Pearson correlation coefficient (“r”), which measures
the linear relationship between two variables, was calculated using the fol-
lowing formula.

The Pearson correlation coefficient, which measures the linear rela-
tionship between two variables, is calculated using Eq. (6):

r ¼
Pn

i¼1 xi � �x
� �

yi � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � �x
� �2 Pn

i¼1
yi � �y
� �2s

ð6Þ

In this equation, xi and yi are the values of the first variable (Mean
Calibrated Probabilities) and the second variable (ADOS-2 total(T) score)
respectively, while �x and �y are the means of each variable. The term n
represents the total number of data points.

The Spearman rank correlation coefficient ρ, a non-parametric mea-
sure of rank correlation, was also calculated using Eq. (7):

ρ ¼ 1� 6Σdi2
� �
n n2 � 1ð Þ ð7Þ

Here, di is the difference in ranks between the two variables for each
data point i (i.e., Rank xi

� �� Rank yi
� �

and n is the number of data points.
ADOS scores were scaled to a range of 0–1 for these analyses. For risk

stratification, a data-driven threshold optimization procedure was
employed to define thresholds for classifying individuals into “Low Risk,”
“Moderate Risk,” and “High Risk” categories based on the calibrated pre-
dicted probabilities. The thresholds were optimized tomaximize agreement
(measured by accuracy) withADOS-2 based risk categories. These ADOS-2
based risk categories were defined as follows: Low Risk: ADOS-2
TOTAL(T) < 7; Moderate Risk: 7 ≤ADOS-2 TOTAL(T) ≤ 13; and High
Risk: ADOS-2 TOTAL(T) > 13. The optimization process involved a grid
search over a range of threshold values. The lower threshold (t1) varied from
0.1 to 0.45 in increments of 0.05, and the upper threshold (t2) ranged from
t1+ 0.1 to 0.85 in increments of 0.05.

Risk stratification and threshold optimization
As shown inEq. (8), the predicted riskRp is classifiedbased on the calibrated
probability (P) using two thresholds T1 and T2:

Rp ¼
Low Risk; P <T1

Moderate Risk;T1 ≤ P ≤T2

High Risk; P >T2

8><
>: ð8Þ
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In this equation, P represents the predicted probability (e.g., the mean
calibrated probability for an individual), while T1 and T2 T2 are the
thresholds that separate the risk groups.

Asdefined inEq. (9), theADOSriskRa is determinedusing theADOS-
2 TOTAL(T) score(S) with fixed thresholds S1 and S2:

Ra ¼
Low Risk; S < S1

ModerateRisk; S1 ≤ S≤ S2
High Risk; S > S2

8><
>: ð9Þ

In this equation, S is the ADOS-2 TOTAL(T) score for an individual,
while S1 and S2 are the thresholds for the ADOS risk categories (e.-
g.,S1 = 7, S2 = 13).

The combined risk Rc is fusion of Rp and Ra, is defined as shown in
Eq. (10):

The agreement metric (A) measures the similarity between Rp and Ra,
can be computed using accuracy as defined in Eq. (11):

A ¼ Number of CorrectMatches BetweenRpand Ra

Total Number of Predictions
ð11Þ

Alternatively, Eq. (12) defines the agreement using aweighted F1 score
formulation:

F1Score ¼
Pn

i¼1Wi � 2�TPi
2�TPiþFPiþFNiPn

i¼1Wi

ð12Þ

In this formula, TPi, FPi, and FNi are the true positives, false positives,
and false negatives for class i, respectively. The term Wi represents the
weight for class i, which is proportional to its representation in the dataset.

The optimal thresholds T�
1 ;T

�
2

� �
, which maximize the agreement

metric, are determined by solving the optimization problem shown in Eq.
(13):

T�
1 ;T

�
2

� � ¼ argmaxA T1;T2

� � ð13Þ

This optimization is performed by iterating the thresholds T1andT2
over a defined range (e.g., T1 2 0:1; 0:5½ �;T2 2 T1 þ 0:1; 0:9

� �
), where

A T1;T2

� �
is the agreement metric computed for each pair of thresholds.

A combined risk assessment strategy was implemented by inte-
grating both the model-predicted risk and the ADOS-2-based risk. This
combined risk was determined according to the following criteria: An
individual was classified as “High Risk” if either the model-predicted
risk or the ADOS-2 risk was high. “Moderate Risk” was assigned if one
of the risks was moderate and the other was high. Finally, an individual
was classified as “Low Risk” if both the model-predicted risk and the
ADOS-2 risk were either low or moderate. This combined approach
aimed to leverage the strengths of the AI model and the established
clinical assessment.

Statistical analysis
Descriptive statistics summarized participant characteristics. Chi-square
tests with post-hoc Bonferroni correction examined associations between
categorical variables. Statistical significance was set at p < 0.05. Analyses

used Python (version 3.9) with pandas, NumPy, SciPy, scikit-learn, stats-
models, Matplotlib, torch, torchaudio, transformers, and Seaborn libraries.
We trained the model using a Quadro RTX 8000. The model was imple-
mented using PyTorch, utilizing a GPU with fixed random seeds for
ensuring reproducibility.

Data availability
The raw datasets generated and analyzed during the current study are not
publicly available due to their sensitive nature, which includes identifiable
clinical information and audio recordings of child participants. Public
dissemination of this data would breach patient privacy and violate the
terms of the Institutional Review Board (IRB) approval under which it
was collected. To facilitate reproducibility, a comprehensive data schema
defining the structure and variables of the minimal dataset is provided in
Supplementary Data 1. This schema details all variables derived from
clinical assessments (ADOS-2, PRES, SELSI), screening questionnaires

(MCHAT, SCQ-L, SRS-2), and audio feature extraction, as used in the
final analyses. The processed data itself cannot be shared. However, the
provided schema allows other researchers to structure their own datasets
in the same format, enabling them to replicate our methodology and
analyses.

Code availability
The complete source code used for data preprocessing,model development,
training, and analysis is openly available in a GitHub repository: https://
github.com/skwgbobf/Multimodal-AI-ASD-Risk-ScreeningF. The reposi-
tory includes the Jupyter notebooks used to generate the final datasets
for both stages of the model (e.g., Stage1_model/notebooks/1.Pre-
process_git.ipynb and stage2_model/notebooks/1_Data_Preprocessing/
model2_data preprocess_Final.ipynb), the implementation of the two-stage
deep learning framework, and all scripts required to reproduce the results
presented in the manuscript.
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