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Background: Metabolic syndrome (MetS) is a complex health concern and the incidence of MetS is rising, 
even among the general population, necessitating effective identification and management strategies. This 
study aimed to determine if a predictive model using variables from fluorine-18 fluorodeoxyglucose positron 
emission tomography/computed tomography (FDG PET/CT) and machine learning (ML) could enhance 
the prediction of MetS.
Methods: We retrospectively reviewed the medical records of 1,250 adults who underwent FDG PET/CT 
for cancer screening between 2014 and 2020. MetS was diagnosed according to the National Cholesterol 
Education Program Adult Treatment Panel III criteria. The study analyzed standardized uptake values 
(SUVs), area, and Hounsfield unit (HU) of various body organs from FDG PET/CT and developed a 
multivariable predictive model for MetS integrating FDG PET/CT variables using least absolute shrinkage 
and selection operator (LASSO) regression. The performance of a predictive model was assessed using the 
area under the receiver operating characteristic curve (AUC).
Results: The study population comprised 720 men and 530 women with a median age of 54 years, and 
MetS was present in 26.3% of the subjects. The LASSO regression identified the area of visceral adipose 
tissue (VAT), mean HU of VAT, mean SUV of VAT, mean HU of skeletal muscle, mean SUV of blood pool, 
and body mass index as meaningful variables. Our multivariable LASSO model effectively predicted MetS 
with similar performance in both training and test sets (AUC, 0.792 and 0.828, respectively; P=0.173) and 
demonstrated superior predictive performance compared to univariable models in the test set (AUC, 0.828)—
body mass index (0.794; P=0.017), the area of VAT (0.788; P<0.001), and the mean HU of VAT (0.777; 
P<0.001).
Conclusions: Our findings established the potential of FDG PET/CT, enhanced with ML, in predicting 
MetS. 
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Introduction

Metabolic syndrome (MetS) is a complex and significant 
health concern characterized by a constellation of 
risk factors that elevate the likelihood of developing 
cardiovascular diseases, type 2 diabetes mellitus, cancer, 
and dementia (1-5). The current rise in MetS incidence, 
even in the general population, presents significant 
challenges in healthcare management (6). MetS has been 
defined by multiple organizations with differing criteria, 
and its application in individuals with established diabetes 
remains controversial. Although MetS is widely recognized 
in clinical and research settings, its diagnostic criteria 
vary slightly across definitions from major organizations, 
and there is ongoing debate regarding its classification in 
individuals with pre-existing diabetes (2-4). Nonetheless, 
given the increasing prevalence and complexity of MetS, 
accurate identification and risk stratification remain essential 
for effective management and prevention strategies. 

Fluorine-18 fluorodeoxyglucose (FDG) positron 
emission tomography/computed tomography (PET/
CT), traditionally used for tumor imaging, has also 
shown promise in assessing MetS. Several studies suggest 
that metabolic activity in visceral adipose tissue (VAT) 
and blood pool (BP) uptake may serve as useful imaging 
biomarkers for MetS (7,8). FDG uptake in the psoas 
muscle has similarly been linked to early metabolic 
disturbances (9). Other research has examined VAT and 
subcutaneous adipose tissue (SAT), demonstrating their 
associations with obesity-related clinical and biochemical 
factors (10,11). Moreover, FDG uptake has been shown 
to differ between metabolically healthy and obese  
individuals (12). Collectively, these findings indicate that 
FDG PET/CT can provide valuable insights into the 
metabolic changes underlying MetS.

However, prior research has not fully utilized the 
computed tomography (CT) component of PET/CT 
scans. For instance, the volumes of VAT and SAT, easily 
measured on CT scans have been thoroughly studied in 
metabolic disorders, yet previous PET/CT studies have 
overlooked the integration and comparative analysis of 
these measurements. Additionally, the effectiveness of 
models in identifying MetS has been generally limited, with 
the area under the receiver operating characteristic curve 
(AUC) typically below 0.8. Integrating a broader range 
of PET/CT variables into more complex models could 
enhance predictive accuracy. Moreover, the application of 
machine learning (ML), which is increasingly prevalent in 

data analysis, feature selection, and predictive modeling, 
can improve predictive capabilities by deriving significant 
insights from extensive datasets.

Our goal was to assess the practicality and effectiveness 
of an ML model that utilizes PET/CT data to predict 
MetS in a generally healthy population. To achieve this, 
we gathered data on the metabolic activities, volumes, 
and densities of various organs, including adipose tissue, 
skeletal muscle, BP, and liver, from FDG PET/CT scans. 
We then created a multivariable predictive model using the 
least absolute shrinkage and selection operator (LASSO) 
and evaluated its ability to predict MetS. We present this 
article in accordance with the TRIPOD+AI reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-2025-117/rc).

Methods

Subject characteristics

Initially, we reviewed the medical records of 1,372 adult 
subjects who underwent FDG PET/CT for cancer 
screening from January 2014 to December 2020. The 
clinical data included sex, body mass index (BMI), waist 
circumference, systolic and diastolic blood pressure, history 
of hypertension and diabetes, triglycerides, high-density 
lipoprotein (HDL) cholesterol, and serum glucose level. 
Subjects were excluded if they: (I) lacked documented 
clinical data within 30 days of the PET/CT examination; 
(II) had a history of malignancy or active inflammatory 
disease; or (III) had PET/CT data that was unavailable 
for measurement. Finally, the current study included  
1,250 subjects (Figure 1).

This study was conducted in accordance with the 
Declaration of Helsinki and its subsequent amendments. 
The study was approved by the institutional review board 
of Gangnam Severance Hospital (No. 3-2023-0069) and 
individual consent for this retrospective analysis was waived.

Determination of MetS

MetS was determined based on the National Cholesterol 
Education Program-Adult Treatment Panel III criteria (1). 
MetS was confirmed if any three or more of the following 
five criteria were met: (I) abdominal obesity, defined as waist 
circumference >90 cm (Eastern subjects) or 102 cm (Western 
subjects) in men and >80 cm (Eastern subjects) or 88 cm 
(Western subjects) in women (13); (II) fasting triglyceride 
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concentrations ≥150 mg/dL or a treatment history of 
dyslipidemia; (III) fasting HDL cholesterol <40 mg/dL in 
men and <50 mg/dL in women or a treatment history of 
dyslipidemia; (IV) systolic blood pressure ≥130 mmHg or 
diastolic blood pressure ≥85 mmHg or treatment for known 
hypertension; and (V) fasting blood glucose level ≥110 mg/dL  
or a history of diabetes.

FDG PET/CT acquisition

All patients fasted for at least 6 hours before FDG 
PET/CT examination and had blood glucose levels of  
<140 mg/dL. PET/CT scans were performed 60 min 
after the intravenous administration of FDG (5.5 MBq/
kg of body weight) using a hybrid PET/CT scanner 
(Biograph mCT 64, Siemens Healthcare Solutions USA, 
Inc., Knoxville, TN, USA). A low-dose, non-contrast-
enhanced CT scan was obtained for attenuation correction 
with the following parameters: automatic dose modulation 
with a reference of 120 kVp and 50–80 mAs, slice thickness  
=3.0 mm, and kernel =B30f. PET data was then acquired 
from the skull base to the upper thigh at 3 minutes per 
bed position. PET images were reconstructed onto a  
200×200 matrix using three-dimensional ordered subset 
expectation maximization with point spread function and 
time-of-flight modeling using two iterations and 21 subsets. 

Image analysis

Three board-certified nuclear medicine physicians, blinded 
to participants’ MetS status, analyzed all FDG PET/
CT data employing the open-source LIFEx software 
(RRID:SCR_025284; version 7.3.6) (14). In cases of 
measurement discrepancy, final values were determined by 
consensus through joint review by the three physicians. 

The calculation of the standardized uptake value (SUV) 
followed this formula: SUV = [decay-corrected activity (kBq) 
per mL of tissue volume]/[injected FDG activity (kBq) per 
gram of body mass]. Unless otherwise specified, all SUV values 
in the main analysis were normalized to body weight (SUVbw).

The selection of target organs for image analysis was 
primarily guided by previous FDG PET/CT research on 
MetS (7-9). These organs included VAT and SAT, skeletal 
muscle, liver, spleen, bone marrow, and BP. 

Initially, we quantified the maximum and mean SUVs 
for VAT (VAT SUVmax and VAT SUVmean) and SAT (SAT 
SUVmax and SAT SUVmean) from PET images (Figure 2A), 
along with area (cm2) (VAT area and SAT area) and mean 
Hounsfield unit (HU) values (VAT HU and SAT HU) from 
CT images using HU threshold range of −190 to −30 HU 
for the adipose tissue (Figure 2), as previously described (15). 

Subsequently,  an region of  interest  (ROI) was 
meticulously delineated to encompass the skeletal muscles, 
with a specific focus on the psoas, paraspinal, and abdominal 
wall muscles. This process involved applying a threshold 
of −29 to 150 HU within an axial CT image taken at the 
level of the third lumbar vertebra (Figure 2B). Any inner 
voids within the ROI were filled to ensure the inclusion 
of the intramuscular fat component. The mean HU of 
skeletal muscles within the ROI was defined as Muscle HU. 
The cross-sectional muscle area was then normalized by 
the square of the height and defined as the skeletal muscle 
index. The maximum and mean SUVs were measured 
exclusively for the psoas muscle (Psoas SUVmax and Psoas 
SUVmean) to replicate the previous research (Figure 3) (9).

Finally, the mean SUVs of the liver (Liver SUVmean) and 
spleen (Spleen SUVmean) were acquired (Figure 4A,4B), as 
previously described (16). The maximum and mean SUVs of 
BP (BP SUVmax and BP SUVmean) were also obtained using 
a spherical ROI placed at the center of the ascending aorta 
while avoiding FDG uptake in the aortic wall (Figure 4C).  
Additionally, the mean SUV of BM (BM SUVmean) was 
assigned by the mean value of 75% SUVmax isocontours 
placed on each lumbar vertebra (Figure 4D), as previously 
described (16). 

Adults who underwent FDG PET/CT for 
health screening between 2014 and 2020

n=1,372

Exclusion (n=122):
•	Absence of clinical data within  

30 days of PET/CT (n=68)
•	History of malignancy (n=48)
•	Active inflammatory disease (n=2)
•	Unavailability of PET/CT data (n=4)

Study population
n=1,250

Training set
n=750

Test set
n=500

Figure 1 Study design and flow chart of subject selection. FDG, 
fluorine-18 fluorodeoxyglucose; PET/CT, positron emission 
tomography/computed tomography.
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Predictive model generation using the LASSO regression

The complete study population was randomly divided into 
training and test sets, maintaining a fixed ratio of 3:2. The 
predictive model was constructed utilizing the LASSO 
regression technique within the training set, incorporating 
17 FDG PET/CT variables and three clinical variables: sex, 
age, and BMI. LASSO was chosen for its ability to perform 
simultaneous variable selection and regularization, thereby 
reducing overfitting in high-dimensional data. The optimal 
regularization parameter (λ) was determined via 10-fold 
cross-validation within the training set. Model performance 
was subsequently assessed in the test set using the AUC.

Lean body mass (LBM)-adjusted SUV analysis

To address the potential confounding effects of body weight 
on SUVs (17), we conducted an additional analysis using 
SUVs normalized to LBM (SUL). This normalization was 
performed using the James formula, which estimates LBM 

based on sex, height, and weight as follows (18): for men, 
LBM =1.10 × weight (kg) − 128 × (weight2/height2); and for 
women, LBM =1.07 × weight (kg) − 148 × (weight2/height2). 
The same FDG PET/CT variables were recalculated by 
converting SUVbw to SUL using the James formula, and 
then analyzed using the same procedures applied to SUVbw-
based data in the previously developed LASSO regression 
framework, to evaluate whether SUL improved predictive 
performance compared to conventional SUVbw-based 
measurements.

Sex-stratified predictive modeling

To explore potential sex-based variation, we applied the 
same LASSO regression procedure separately to male and 
female participants. Each subgroup model was constructed 
using the identical predictor set and outcome definition as 
in the main analysis. The discriminative performance of the 
models was assessed using the AUC, and DeLong’s test was 
used to compare the performance between sexes.

A

B

Figure 2 Defining the ROIs for adipose tissues and abdominal skeletal muscles. (A) Circular ROIs (5–15 mm radius) were placed on 
VAT (blue) and SAT (red) regions of PET images, excluding background contamination, on three consecutive axial PET images at the 
L3 vertebral level. (B) On three consecutive axial CT images at the L3 vertebral level, the volume of VAT (blue) and SAT (red) were 
automatically delineated using CT attenuation threshold of −190 to −30 HU, and abdominal skeletal muscles (yellow) using a threshold of 
−29 to 150 HU. CT, computed tomography; HU, Hounsfield unit; PET, positron emission tomography; ROIs, regions of interest; SAT, 
subcutaneous adipose tissue; VAT, visceral adipose tissue.



Kang et al. Prediction of MetS using FDG PET/CT and ML7528

© AME Publishing Company.   Quant Imaging Med Surg 2025;15(8):7524-7536 | https://dx.doi.org/10.21037/qims-2025-117

C

D

B

A

Figure 4 Defining ROIs for the liver, spleen, blood pool, and bone marrow. (A) Liver (green): a spherical ROI (4 cm in diameter) was placed in 
the right lobe on the PET image. (B) Spleen (pink): a spherical ROI (1.5 cm in diameter) was placed at the center of the spleen. (C) Blood pool 
(red): a spherical ROI was placed at the center of the ascending aorta, avoiding uptake by the aortic wall on the PET image. (D) Bone marrow 
(yellow): multiple spheroid ROIs were placed over the lumbar and lower thoracic vertebral bodies on PET images. A 75% SUVmax isocontour 
was generated for each ROI, and the FDG uptake within this contour defined the bone marrow SUV. FDG, fluorine-18 fluorodeoxyglucose; 
PET, positron emission tomography; ROIs, regions of interest; SUV, standardized uptake value; SUVmax, maximum SUV.

Figure 3 Defining ROI for the psoas muscle. An ROI was defined for the psoas muscle (orange) using a −29 to 150 HU threshold on the 
CT image (left). This ROI was then transferred to the corresponding PET image to measure FDG uptake of the psoas muscle (right). CT, 
computed tomography; FDG, fluorine-18 fluorodeoxyglucose; HU, Hounsfield unit; PET, positron emission tomography; ROI, region of 
interest.
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Statistical analysis

Continuous data are reported as mean ± standard 
deviation or as median with interquartile range (IQR), and 
comparisons were made using Student’s t-test or the Mann-
Whitney U test. Categorical data were presented as counts 
(percentages) and were compared using the chi-square or 
Fisher’s exact test. The AUC, a performance measure, was 
presented with a 95% confidence interval (CI). To assess 
the performance of the developed predictive model, we 
compared it with other models using DeLong’s test for 
AUCs and decision curve analysis (DCA). A two-sided P 
value of <0.05 was considered statistically significant. All 
statistical analyses were conducted using R (version 3.6.3; R 
Foundation for Statistical Computing, Vienna, Austria).

Results

Study population characteristics 

The study population comprised 720 men and 530 women. 
The median age was 54 years (IQR, 47–60 years), and BMI 
was 24.6 kg/m2 (22.2–27.0 kg/m2). Three hundred and 

twenty-nine participants out of 1,250 (26.3%) satisfied the 
criteria of MetS. Table 1 summarizes the demographics of 
the study population.

There were no significant differences in the clinical and 
FDG PET/CT variables between the training (n=750) 
and test sets (n=500) except for SAT area, spleen SUV, BP 
SUVmax, and BP SUVmean (Table 2). The incidence of MetS 
was 25.5% (191/750) in the training and 27.6% (138/500) 
in the test sets. 

Generation of the predictive model using LASSO regression

In the training set, variable selection for the predictive 
model was performed using LASSO regression. The 
variables selected at the minimum lambda value (Figure 5) 
were VAT area (coefficient =0.006), VAT HU (−0.025), VAT 
SUVmean (−0.244), Muscle HU (−0.029), BP SUVmean (0.289), 
and BMI (0.072).

Predictive model evaluation and comparison

The predictive model using LASSO regression showed 
excellent performance in predicting MetS in both the 
training set [AUC (95% CI), 0.792 (0.757–0.827)] and the 
test set [AUC (95% CI), 0.828 (0.791–0.864); P=0.173] 
(Figure 6). To determine if the multivariable predictive 
model outperformed univariable predictive models, AUC 
was calculated for each PET/CT and clinical variable to 
predict MetS in the test set (Table 3). The best three single 
predictors were BMI [AUC (95% CI), 0.794 (0.753–0.836)], 
VAT area [AUC (95% CI), 0.788 (0.748–0.828)], and VAT 
HU [AUC (95% CI), 0.777 (0.735–0.819)], compared 
with the LASSO predictive model using DeLong’s test 
and DCA. As shown in Figure 7, the LASSO predictive 
model significantly outperformed BMI (P=0.017), VAT 
area (P<0.001), and VAT HU (P<0.001) in the test set. In 
addition, DCA demonstrated that the LASSO multivariable 
model yielded more net benefits than univariable models.

LBM-adjusted SUV analysis

The median LBM was 49.56 kg (IQR, 38.62–58.17 kg). 
The results were comparable to those obtained using 
SUVbw. The variables selected by the LASSO model using 
SUL were similar to those identified in the SUVbw-based 
model. These included VAT area (coefficient =0.006), VAT 
HU (−0.037), VAT SUVmean (−1.691), Muscle HU (−0.037), 
BP SUVmean (0.402), Spleen SUV (−0.252), and BMI (0.043). 

Table 1 Baseline characteristics of study subjects

Characteristics Value (n=1,250)

Age (years) 54 [47–60]

Male 720 (57.6)

BMI (kg/m2) 24.6 [22.2–27.0]

Fasting serum glucose (mg/dL) 99 [92–102.8]

Triglyceride (mg/dL) 114 [83.0–162.8]

LDL cholesterol (mg/dL) 134 [109.2–158.0]

HDL cholesterol (mg/dL) 54 [45.0–63.8]

Total cholesterol (mg/dL) 205 [176–233]

Systolic blood pressure (mmHg) 122 [113–132]

Diastolic blood pressure (mmHg) 73 [66–80]

History of dyslipidemia 217 (17.4)

History of hypertension 331 (26.5)

History of diabetes 137 (11.0)

Metabolic syndrome 329 (26.3)

Qualitative data are presented as number (percentage); 
continuous data are presented as median [interquartile range]. 
BMI, body mass index; HDL, high-density lipoprotein; LDL, low-
density lipoprotein. 
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Table 2 Comparison of FDG PET/CT and clinical variables between the training and test sets

Variables Training (n=750) Test (n=500) P value

VAT area (cm2) 138.19 [84.89–196.88] 144.81 [88.72–208.63] 0.167

VAT HU −94.22 [−98.62 to −87.36] −94.56 [−98.98 to −88.12] 0.394

VAT SUVmax 1.35 [1.17–1.56] 1.34 [1.16–1.57] 0.764

VAT SUVmean 0.56 [0.49–0.63] 0.56 [0.49–0.64] 0.952

SAT area (cm2) 134.70 [105.09–178.71] 141.74 [108.99–187.32] 0.037

SAT HU −99.48 [−102.63 to −95.59] −99.72 [−103.08 to −96.47] 0.081

SAT SUVmax 0.65 [0.56–0.75] 0.64 [0.55–0.74] 0.454

SAT SUVmean 0.31 [0.28–0.35] 0.31 [0.27–0.35] 0.678

Muscle HU 34.96 [28.79–39.21] 34.78 [29.69–38.35] 0.605

L3SMI (cm2/m2) 43.06 [35.71–49.11] 42.87 [36.32–49.80] 0.606

Psoas SUVmax 1.12 [1.00–1.26] 1.12 [1.01–1.27] 0.782

Psoas SUVmean 0.62 [0.56–0.69] 0.63 [0.58–0.68] 0.369

Liver SUV 2.40 [2.19–2.63] 2.45 [2.22–2.67] 0.089

Spleen SUV 1.97 [1.81–2.13] 2.01 [1.82–2.18] 0.027

BM SUV 1.78 [1.59–2.06] 1.84 [1.60–2.12] 0.159

BP SUVmax 2.31 [2.11–2.54] 2.34 [2.12–2.62] 0.022

BP SUVmean 2.12 [1.93–2.34] 2.14 [1.94–2.42] 0.017

Age (years) 54 [48–60] 54 [47–60] 0.504

Male 434 (57.9) 286 (57.2) 0.861

BMI (kg/m2) 24.50 [22.10–26.90] 24.65 [22.30–27.20] 0.261

Qualitative data are presented as number (percentage); continuous data are presented as median [interquartile range]. BMI, body mass 
index; BM, bone marrow; BP, blood pool; FDG, fluorine-18 fluorodeoxyglucose; HU, Hounsfield unit; L3SMI, skeletal muscle index 
measured at the third lumbar vertebra level; max, maximum; PET/CT, positron emission tomography/computed tomography; SAT, 
subcutaneous adipose tissue; SUV, standardized uptake value; SUVmax, maximum SUV; SUVmean, mean SUV; VAT, visceral adipose tissue.
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Among the univariable models, BMI, VAT area, and VAT 
HU demonstrated the strongest predictive performance 
for MetS. The multivariable model using SUL achieved 
comparable performance to the SUVbw-based model, with 
an AUC (95% CI) of 0.823 (0.785–0.860) versus 0.828 
(0.791–0.864), respectively (P=0.273). Additionally, the 
SUL-based multivariable model significantly outperformed 
all univariable models in the test set (Table 4) and yielded 
greater net benefits on DCA (Figure 8).

In the sex-stratified analysis, the male-specific model 
yielded an AUC of 0.804 (95% CI: 0.749–0.859), and the 
female-specific model achieved an AUC of 0.845 (95% 
CI: 0.787–0.902). DeLong’s test showed no statistically 
significant difference in performance between the two 
(P=0.273). Selected features differed partially across sexes, 
indicating potential biological heterogeneity. Table S1 
summarizes these results.

Discussion

Our principal findings are twofold. First, we reinforced 
the feasibility of using FDG PET/CT to identify MetS 
in adults undergoing cancer screening. Second, the use of 
comprehensive FDG PET/CT variables and ML could 
enhance the performance of the predictive model. In our 
analysis, the LASSO predictive model integrated VAT area, 
VAT HU, VAT SUVmean, Muscle HU, BP SUVmean, and 
BMI as significant predictors. Our predictive model not only 

exhibited excellent performance with an AUC of 0.828 in 
predicting MetS among our large dataset of 1,250 subjects 
but also significantly outperformed univariable models. 
Notably, VAT area (AUC =0.788) and VAT HU (0.777) were 
found to be the most effective single predictors, emphasizing 
the utility of CT data in PET/CT analysis.

ML methodologies process, train, and analyze extensive 
datasets to discover underlying patterns and build models 
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Figure 6 Comparison of AUC of the predictive model in the 
training and test sets. AUC, area under the curve; CI, confidence 
interval.

Table 3 Comparison of predictive performance (AUC) between the 
LASSO multivariable model and univariable models in the training 
and test sets

Variables Training (n=750) Test (n=500)

LASSO model 0.792 (0.757–0.827) 0.828 (0.791–0.864)

VAT area 0.772 (0.735–0.808) 0.788 (0.748–0.828)

VAT HU 0.731 (0.692–0.770) 0.777 (0.735–0.819)

VAT SUVmax 0.533 (0.486–0.580) 0.555 (0.498–0.612)

VAT SUVmean 0.626 (0.584–0.669) 0.634 (0.582–0.687)

SAT area 0.663 (0.618–0.708) 0.686 (0.634–0.738)

SAT HU 0.606 (0.560–0.651) 0.624 (0.569–0.679)

SAT SUVmax 0.531 (0.483–0.579) 0.570 (0.511–0.629)

SAT SUVmean 0.507 (0.461–0.553) 0.542 (0.488–0.597)

Muscle HU 0.641 (0.594–0.687) 0.626 (0.570–0.681)

L3SMI 0.620 (0.574–0.667) 0.562 (0.504–0.620)

Psoas SUVmax 0.622 (0.579–0.665) 0.585 (0.530–0.640)

Psoas SUVmean 0.605 (0.560–0.651) 0.569 (0.510–0.628)

Liver SUV 0.614 (0.568–0.660) 0.599 (0.546–0.653)

Spleen SUV 0.628 (0.583–0.674) 0.631 (0.579–0.684)

BM SUV 0.629 (0.584–0.675) 0.646 (0.592–0.700)

BP SUVmax 0.654 (0.608–0.699) 0.672 (0.620–0.724)

BP SUVmean 0.654 (0.609–0.700) 0.677 (0.625–0.729)

Age 0.548 (0.499–0.598) 0.559 (0.505–0.613)

Sex 0.562 (0.523–0.601) 0.520 (0.471–0.568)

BMI 0.764 (0.726–0.801) 0.794 (0.753–0.836)

Data are presented as AUC with a 95% confidence interval in 
parentheses. AUC, area under the curve; BMI, body mass index; 
BM, bone marrow; BP, blood pool; HU, Hounsfield unit; L3SMI, 
skeletal muscle index measured at the third lumbar vertebra 
level; LASSO, least absolute shrinkage and selection operator; 
max, maximum; SAT, subcutaneous adipose tissue; SUV, 
standardized uptake value; SUVmax, maximum SUV; SUVmean, 
mean SUV; VAT, visceral adipose tissue.
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for precise classification or prediction. In our research, we 
employed LASSO regression to analyze a large dataset, 
identifying VAT area, VAT HU, VAT SUVmean, Muscle HU, 
BP SUVmean, and BMI as independent predictors for MetS 
identification. A prior study has indicated the potential 
of FDG uptake in the psoas muscle as a surrogate marker 
for metabolic abnormalities (9). The SUVmax of the psoas 

muscle demonstrated promising predictive performance 
for MetS with an AUC of 0.779. However, it did not 
significantly surpass other clinical predictors like BMI 
in predicting MetS. Another investigation revealed that 
SUV of BP independently differentiated the metabolically 
unhealthy group from the metabolically healthy group 
among obese subjects with modest performance (AUC 
=0.602) (7). In contrast, our LASSO-based predictive model 
showed excellent performance with an AUC of 0.828, 
significantly outperforming other univariable models, 
including BP SUV, Psoas SUV, and BMI. However, the 
differences in the study population and measurement 
technique among the studies need to be acknowledged. 
Importantly, SUVmean is preferred over SUVmax to represent 
the relatively homogeneous metabolic change within a 
target organ because SUVmax reflects a single pixel and may 
introduce bias and noise.

Herein, a significant association was observed between 
reduced VAT SUVmean and the presence of MetS, as well 
as an increase in BP SUVmean. While previous research 
has emphasized the significance of VAT SUV, the specific 
nature of the correlation between VAT SUV and MetS 
appears to differ among these studies. Consistent with 
our findings, prior research has shown a decrease in VAT 
SUVmean among individuals with MetS (8), which could be 
attributed to factors such as insulin resistance in adipocytes, 
impaired vascular function, or reduced capillary density, 
commonly seen in obesity (12). It has been posited that 
a more metabolically active VAT may act protectively 
against weight gain (19). In contrast, two other studies have 
reported higher VAT SUV in MetS patients compared to 
those without and a positive correlation between adipose 
tissue metabolic activity and both inflammatory state 
and metabolic risk (9,11). This inconsistency may be 
derived from the varied and subjective methodologies in 
measuring VAT SUV. Currently, there is no standardized 
or automated approach for accurately segmenting VAT 
SUVs; hence, most measurements in existing literature rely 
on manual, visually based assessments. Furthermore, VAT 
SUV, typically ranging between 0 and 1, is inherently low 
and falls within a narrow spectrum, making it particularly 
susceptible to noise, observer variation, and minor group 
differences that may only be discernible through meticulous 
image analysis. In this context, measuring FDG uptake 
of BP might be a more convenient and reproducible 
method in clinical settings. However, the exact mechanism 
of increased BP SUV in MetS remains uncertain and 
potentially complex, although it has been suggested that 
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Figure 7 Comparison of AUC between the LASSO model and 
three univariable models in the test set. AUC, area under the curve; 
BMI, body mass index; CI, confidence interval; HU, Hounsfield 
unit; LASSO, least absolute shrinkage and selection operator; VAT, 
visceral adipose tissue.

Table 4 Comparison of predictive performance between the SUL-
based LASSO model and comparator models

Model AUC (95% CI) P value†

LASSO (SUL) 0.823 (0.785–0.860) −

Compared model

LASSO (SUVbw) 0.828 (0.791–0.864) 0.273

BMI (SUL) 0.794 (0.753–0.836) 0.047

VAT area (SUL) 0.788 (0.748–0.828) 0.001

VAT HU (SUL) 0.777 (0.735–0.819) 0.009
†, P values are derived from DeLong’s test comparing the SUL-
based LASSO model to each listed comparator. AUC, area 
under the receiver operating characteristic curve; BMI, body 
mass index; CI, confidence interval; HU, Hounsfield unit; 
LASSO, least absolute shrinkage and selection operator; SUL, 
standardized uptake value normalized to lean body mass; 
SUVbw, standardized uptake value normalized to body weight; 
VAT, visceral adipose tissue.
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Figure 8 Decision curve analysis of the LASSO model in comparison to VAT area (A), VAT HU (B), and BMI (C). BMI, body mass index; 
HU, Hounsfield unit; LASSO, least absolute shrinkage and selection operator; VAT, visceral adipose tissue.

insulin resistance and altered biodistribution in body organs 
during the development of MetS may contribute to elevated 
FDG uptake in BP (7,20).

Both VAT HU and Muscle HU were found to be 
meaningful predictors in MetS risk assessment. While 
extensive research has focused on the volume of VAT, 
the study of VAT quality (i.e., VAT HU) has not been as 
thoroughly explored. Prior studies have demonstrated 
that fat density, as determined by CT attenuation (HU), 
was significantly associated with MetS development and 
progression (21-23). Lower HU values, which suggest fat 
tissue with larger, lipid-rich adipocytes, were correlated 
with a heightened risk of MetS (24). This correlation 
arises because such fat tissue characteristics are strongly 
associated with adverse cardiometabolic profiles, including 

insulin resistance and inflammation, both key elements 
in MetS pathogenesis (25). However, reduced muscle 
HU, indicative of myosteatosis, is linked with functional 
impairments in body organs and an elevated metabolic 
risk. Longitudinal studies have demonstrated that 
increased intermuscular adipose tissue, denoted by lower 
muscle HU values, was independently associated with a 
heightened risk of developing type 2 diabetes, beyond the 
contributions of overall and central adiposity and lifestyle 
risk factors (26,27). Moreover, the accumulation of adipose 
tissue within skeletal muscle correlated with markers of 
systemic inflammation and metabolic dysregulation, such as 
C-reactive protein (28), adiponectin, and leptin (29). This 
highlights the importance of considering both adipose 
tissue quality and skeletal muscle density in comprehensive 
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MetS risk assessments.
Based on the above content, it can be suggested that in 

the analysis of FDG PET/CT data, CT data offers crucial 
metabolic information in addition to that provided by PET. 
While most previous FDG PET/CT studies have focused 
solely on PET measures, data obtainable from CT, such as 
VAT area, VAT HU, and Muscle HU, were closely linked to 
MetS in our study. The integration of this CT information 
may be a key reason our predictive model exhibited superior 
performance in identifying MetS compared to existing 
models. However, one aspect to consider is that although 
our study demonstrated a high probability of predicting 
MetS through a comprehensive analysis of FDG PET/CT 
variables and ML, MetS can typically be diagnosed easily 
via physical measurements and blood tests. Therefore, the 
results of this research should be interpreted as providing 
supplemental information about MetS through image 
analysis in FDG PET/CT, which was primarily intended for 
early cancer detection in cancer screenings. Furthermore, 
the significance of this research extends to providing 
baseline metabolic data for studies on how changes in 
FDG uptake in non-tumoral organs observed in PET/CT 
might affect cancer treatment and prognosis. Additionally, 
the current manual measurement of body organs can be 
facilitated with the use of whole-body organ segmentation 
software utilizing artificial intelligence.

Despite the known limitations of SUVbw, such as 
potential overestimation of metabolic activity in individuals 
with high adiposity, we retained SUVbw as the primary 
normalization method in this study. This decision was 
based on several considerations. First, SUVbw remains the 
standard normalization method in clinical and research 
PET/CT practice, enabling consistency with prior literature 
and broader applicability across institutions. Second, in 
our cohort—which consisted exclusively of an East Asian 
population with relatively low rates of obesity—the impact 
of excess adiposity on SUVbw values is likely to be minimal. 
Third, the LASSO model using SUL demonstrated 
comparable predictive performance to the SUVbw-based 
model, with no statistically significant difference in AUC 
(P=0.273) and nearly identical variable selection. These 
findings suggest that SUVbw-based modeling was robust 
and not meaningfully biased by body composition in 
this generally healthy population. While SUL offers a 
theoretical advantage in highly obese or heterogeneous 
populations, its added complexity and lack of demonstrated 
benefit in our dataset did not justify replacing SUVbw in 
the primary analysis. Instead, we provided the SUL-based 

analysis as a complementary result, further supporting the 
validity and generalizability of our main findings.

Our sex-stratified analysis revealed comparable model 
performance between men and women, yet partially differing 
sets of selected predictors. This may reflect known sex-related 
differences in fat distribution, insulin resistance, and metabolic 
response, as reported in previous studies (30-34). Although 
such divergence in feature selection could support sex-specific 
modeling, the lack of a significant performance gain, combined 
with added model complexity, led us to retain a unified model. 
Nonetheless, the findings highlight the biological plausibility 
of sex-specific metabolic signatures, and suggest directions for 
future work in larger, more diverse cohorts.

Our study has several limitations. First, it is a cross-
sectional, single-center investigation, which may limit the 
generalizability of our findings to broader populations. 
Heterogeneity in CT scan protocols, including variations in 
kVp and automatic exposure control across institutions, can 
affect the image quality and subsequent HU measurements, 
potentially impacting the performance of our LASSO model. 
Therefore, further research is needed to validate whether 
our LASSO model can predict the development or course 
of MetS in a larger, multi-institutional cohort. Second, we 
did not perform correlative studies between FDG PET/CT 
variables and metabolic or inflammatory biomarkers. This 
omission was because there was significant variability in the 
availability of metabolic and inflammatory biomarkers within 
our population, and our primary objective was to determine 
if the use of ML and PET/CT information could enhance 
the predictive performance in identifying MetS in a healthy 
population, compared to previous studies.

Conclusions

In our research, we employed an ML algorithm integrating 
FDG PET/CT variables to develop a predictive model 
aimed at identifying MetS in individuals undergoing FDG 
PET/CT for cancer screening. The predictive model we 
devised demonstrated feasibility and excellent performance 
in predicting MetS within our study cohort. Notably, it 
outperformed other models that rely on single variables. 
These findings may emphasize the significant advantage 
of incorporating CT data from FDG PET/CT scans in 
evaluating metabolic status.
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