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Background: Metabolic syndrome (MetS) is a complex health concern and the incidence of MetS is rising,
even among the general population, necessitating effective identification and management strategies. This
study aimed to determine if a predictive model using variables from fluorine-18 fluorodeoxyglucose positron
emission tomography/computed tomography (FDG PET/CT) and machine learning (ML) could enhance
the prediction of MetS.

Methods: We retrospectively reviewed the medical records of 1,250 adults who underwent FDG PET/CT
for cancer screening between 2014 and 2020. MetS was diagnosed according to the National Cholesterol
Education Program Adult Treatment Panel III criteria. The study analyzed standardized uptake values
(SUVs), area, and Hounsfield unit (HU) of various body organs from FDG PET/CT and developed a
multivariable predictive model for MetS integrating FDG PET/CT variables using least absolute shrinkage
and selection operator (LASSO) regression. The performance of a predictive model was assessed using the
area under the receiver operating characteristic curve (AUC).

Results: The study population comprised 720 men and 530 women with a median age of 54 years, and
MetS was present in 26.3% of the subjects. The LASSO regression identified the area of visceral adipose
tissue (VAT), mean HU of VAT, mean SUV of VAT, mean HU of skeletal muscle, mean SUV of blood pool,
and body mass index as meaningful variables. Our multivariable LASSO model effectively predicted MetS
with similar performance in both training and test sets (AUC, 0.792 and 0.828, respectively; P=0.173) and
demonstrated superior predictive performance compared to univariable models in the test set (AUC, 0.828)—
body mass index (0.794; P=0.017), the area of VAT (0.788; P<0.001), and the mean HU of VAT (0.777;
P<0.001).

Conclusions: Our findings established the potential of FDG PET/CT, enhanced with ML, in predicting
MetS.
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Introduction

Metabolic syndrome (MetS) is a complex and significant
health concern characterized by a constellation of
risk factors that elevate the likelihood of developing
cardiovascular diseases, type 2 diabetes mellitus, cancer,
and dementia (1-5). The current rise in MetS incidence,
even in the general population, presents significant
challenges in healthcare management (6). MetS has been
defined by multiple organizations with differing criteria,
and its application in individuals with established diabetes
remains controversial. Although MetS is widely recognized
in clinical and research settings, its diagnostic criteria
vary slightly across definitions from major organizations,
and there is ongoing debate regarding its classification in
individuals with pre-existing diabetes (2-4). Nonetheless,
given the increasing prevalence and complexity of MetS,
accurate identification and risk stratification remain essential
for effective management and prevention strategies.

Fluorine-18 fluorodeoxyglucose (FDG) positron
emission tomography/computed tomography (PET/
CT), traditionally used for tumor imaging, has also
shown promise in assessing MetS. Several studies suggest
that metabolic activity in visceral adipose tissue (VAT)
and blood pool (BP) uptake may serve as useful imaging
biomarkers for MetS (7,8). FDG uptake in the psoas
muscle has similarly been linked to early metabolic
disturbances (9). Other research has examined VAT and
subcutaneous adipose tissue (SAT), demonstrating their
associations with obesity-related clinical and biochemical
factors (10,11). Moreover, FDG uptake has been shown
to differ between metabolically healthy and obese
individuals (12). Collectively, these findings indicate that
FDG PET/CT can provide valuable insights into the
metabolic changes underlying MetS.

However, prior research has not fully utilized the
computed tomography (CT) component of PET/CT
scans. For instance, the volumes of VAT and SAT, easily
measured on CT scans have been thoroughly studied in
metabolic disorders, yet previous PET/CT studies have
overlooked the integration and comparative analysis of
these measurements. Additionally, the effectiveness of
models in identifying MetS has been generally limited, with
the area under the receiver operating characteristic curve
(AUC) typically below 0.8. Integrating a broader range
of PET/CT variables into more complex models could
enhance predictive accuracy. Moreover, the application of
machine learning (ML), which is increasingly prevalent in
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data analysis, feature selection, and predictive modeling,
can improve predictive capabilities by deriving significant
insights from extensive datasets.

Our goal was to assess the practicality and effectiveness
of an ML model that utilizes PET/CT data to predict
MetS in a generally healthy population. To achieve this,
we gathered data on the metabolic activities, volumes,
and densities of various organs, including adipose tissue,
skeletal muscle, BP, and liver, from FDG PET/CT scans.
We then created a multivariable predictive model using the
least absolute shrinkage and selection operator (LASSO)
and evaluated its ability to predict MetS. We present this
article in accordance with the TRIPOD+AI reporting
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-2025-117/rc).

Methods
Subject characteristics

Initially, we reviewed the medical records of 1,372 adult
subjects who underwent FDG PET/CT for cancer
screening from January 2014 to December 2020. The
clinical data included sex, body mass index (BMI), waist
circumference, systolic and diastolic blood pressure, history
of hypertension and diabetes, triglycerides, high-density
lipoprotein (HDL) cholesterol, and serum glucose level.
Subjects were excluded if they: (I) lacked documented
clinical data within 30 days of the PET/CT examination;
(II) had a history of malignancy or active inflammatory
disease; or (III) had PET/CT data that was unavailable
for measurement. Finally, the current study included
1,250 subjects (Figure 1).

This study was conducted in accordance with the
Declaration of Helsinki and its subsequent amendments.
The study was approved by the institutional review board
of Gangnam Severance Hospital (No. 3-2023-0069) and
individual consent for this retrospective analysis was waived.

Determination of MetS

MetS was determined based on the National Cholesterol
Education Program-Adult Treatment Panel III criteria (1).
MetS was confirmed if any three or more of the following
five criteria were met: (I) abdominal obesity, defined as waist
circumference >90 cm (Eastern subjects) or 102 cm (Western
subjects) in men and >80 cm (Eastern subjects) or 88 cm
(Western subjects) in women (13); (II) fasting triglyceride
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Adults who underwent FDG PET/CT for
health screening between 2014 and 2020
n=1,372

Exclusion (n=122):
* Absence of clinical data within
30 days of PET/CT (n=68)
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e Active inflammatory disease (n=2)
® Unavailability of PET/CT data (n=4)
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Figure 1 Study design and flow chart of subject selection. FDG,
fluorine-18 fluorodeoxyglucose; PET/CT, positron emission

tomography/computed tomography.

concentrations >150 mg/dL or a treatment history of
dyslipidemia; (IIT) fasting HDL cholesterol <40 mg/dL in
men and <50 mg/dL in women or a treatment history of
dyslipidemia; (IV) systolic blood pressure >130 mmHg or
diastolic blood pressure >85 mmHg or treatment for known
hypertension; and (V) fasting blood glucose level >110 mg/dL
or a history of diabetes.

FDG PET/CT acquisition

All patients fasted for at least 6 hours before FDG
PET/CT examination and had blood glucose levels of
<140 mg/dL. PET/CT scans were performed 60 min
after the intravenous administration of FDG (5.5 MBg/
kg of body weight) using a hybrid PET/CT scanner
(Biograph mCT 64, Siemens Healthcare Solutions USA,
Inc., Knoxville, TN, USA). A low-dose, non-contrast-
enhanced CT scan was obtained for attenuation correction
with the following parameters: automatic dose modulation
with a reference of 120 kVp and 50-80 mAs, slice thickness
=3.0 mm, and kernel =B30f. PET data was then acquired
from the skull base to the upper thigh at 3 minutes per
bed position. PET images were reconstructed onto a
200x200 matrix using three-dimensional ordered subset
expectation maximization with point spread function and
time-of-flight modeling using two iterations and 21 subsets.

© AME Publishing Company.

Kang et al. Prediction of MetS using FDG PET/CT and ML

Image analysis

Three board-certified nuclear medicine physicians, blinded
to participants’ MetS status, analyzed all FDG PET/
CT data employing the open-source LIFEx software
(RRID:SCR_025284; version 7.3.6) (14). In cases of
measurement discrepancy, final values were determined by
consensus through joint review by the three physicians.

The calculation of the standardized uptake value (SUV)
followed this formula: SUV = [decay-corrected activity (kBq)
per mL of tissue volume]/[injected FDG activity (kBq) per
gram of body mass]. Unless otherwise specified, all SUV values
in the main analysis were normalized to body weight (SUV,).

The selection of target organs for image analysis was
primarily guided by previous FDG PET/CT research on
MetS (7-9). These organs included VAT and SAT, skeletal
muscle, liver, spleen, bone marrow, and BP.

Initially, we quantified the maximum and mean SUVs
for VAT (VAT SUV,,, and VAT SUV,,) and SAT (SAT
SUV,... and SAT SUV, ... from PET images (Figure 2A4),
along with area (cm’) (VAT area and SAT area) and mean
Hounsfield unit (HU) values (VAT HU and SAT HU) from
CT images using HU threshold range of -190 to -30 HU
for the adipose tissue (Figure 2), as previously described (15).

Subsequently, an region of interest (ROI) was
meticulously delineated to encompass the skeletal muscles,
with a specific focus on the psoas, paraspinal, and abdominal
wall muscles. This process involved applying a threshold
of -29 to 150 HU within an axial CT image taken at the
level of the third lumbar vertebra (Figure 2B). Any inner
voids within the ROI were filled to ensure the inclusion
of the intramuscular fat component. The mean HU of
skeletal muscles within the ROI was defined as Muscle HU.
The cross-sectional muscle area was then normalized by
the square of the height and defined as the skeletal muscle
index. The maximum and mean SUVs were measured
exclusively for the psoas muscle (Psoas SUV,,,, and Psoas
SUV,,...) to replicate the previous research (Figure 3) (9).

Finally, the mean SUVs of the liver (Liver SUV,,.,,) and
spleen (Spleen SUV,,.,.) were acquired (Figure 44,4B), as
previously described (16). The maximum and mean SUVs of
BP (BP SUV,

max

and BP SUV_.,.) were also obtained using
a spherical ROI placed at the center of the ascending aorta
while avoiding FDG uptake in the aortic wall (Figure 4C).
Additionally, the mean SUV of BM (BM SUV,.,.) was
assigned by the mean value of 75% SUV_,, isocontours
placed on each lumbar vertebra (Figure 4D), as previously

described (16).
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Figure 2 Defining the ROIs for adipose tissues and abdominal skeletal muscles. (A) Circular ROIs (5-15 mm radius) were placed on

VAT (blue) and SAT (red) regions of PET images, excluding background contamination, on three consecutive axial PET images at the
L3 vertebral level. (B) On three consecutive axial CT images at the L3 vertebral level, the volume of VAT (blue) and SAT (red) were
automatically delineated using CT attenuation threshold of -190 to -30 HU, and abdominal skeletal muscles (yellow) using a threshold of

-29 to 150 HU. CT, computed tomography; HU, Hounsfield unit; PET, positron emission tomography; ROISs, regions of interest; SAT,

subcutaneous adipose tissue; VAT, visceral adipose tissue.

Predictive model generation using the LASSO regression

The complete study population was randomly divided into
training and test sets, maintaining a fixed ratio of 3:2. The
predictive model was constructed utilizing the LASSO
regression technique within the training set, incorporating
17 FDG PET/CT variables and three clinical variables: sex,
age, and BMI. LASSO was chosen for its ability to perform
simultaneous variable selection and regularization, thereby
reducing overfitting in high-dimensional data. The optimal
regularization parameter (A) was determined via 10-fold
cross-validation within the training set. Model performance
was subsequently assessed in the test set using the AUC.

Lean body mass (LBM)-adjusted SUV analysis

To address the potential confounding effects of body weight
on SUVs (17), we conducted an additional analysis using
SUVs normalized to LBM (SUL). This normalization was
performed using the James formula, which estimates LBM
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based on sex, height, and weight as follows (18): for men,
LBM =1.10 x weight (kg) - 128 x (weight'/height’); and for
women, LBM =1.07 x weight (kg) - 148 x (weight’/height’).
The same FDG PET/CT variables were recalculated by
converting SUV,, to SUL using the James formula, and
then analyzed using the same procedures applied to SUV,-
based data in the previously developed LASSO regression
framework, to evaluate whether SUL improved predictive
performance compared to conventional SUV, -based
measurements.

Sex-stratified predictive modeling

To explore potential sex-based variation, we applied the
same LASSO regression procedure separately to male and
female participants. Each subgroup model was constructed
using the identical predictor set and outcome definition as
in the main analysis. The discriminative performance of the
models was assessed using the AUC, and DeLong’s test was
used to compare the performance between sexes.
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Figure 3 Defining ROI for the psoas muscle. An ROI was defined for the psoas muscle (orange) using a -29 to 150 HU threshold on the
CT image (left). This ROI was then transferred to the corresponding PET image to measure FDG uptake of the psoas muscle (right). CT,
computed tomography; FDG, fluorine-18 fluorodeoxyglucose; HU, Hounsfield unit; PET, positron emission tomography; ROI, region of

interest.

Figure 4 Defining ROIs for the liver, spleen, blood pool, and bone marrow. (A) Liver (green): a spherical ROI (4 cm in diameter) was placed in
the right lobe on the PET image. (B) Spleen (pink): a spherical ROI (1.5 cm in diameter) was placed at the center of the spleen. (C) Blood pool
(red): a spherical ROI was placed at the center of the ascending aorta, avoiding uptake by the aortic wall on the PET image. (D) Bone marrow
(yellow): multiple spheroid ROIs were placed over the lumbar and lower thoracic vertebral bodies on PET images. A 75% SUV,,, isocontour
was generated for each ROI, and the FDG uptake within this contour defined the bone marrow SUV. FDG, fluorine-18 fluorodeoxyglucose;
PET, positron emission tomography; ROIs, regions of interest; SUV, standardized uptake value; SUV,,,,,, maximum SUV.
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Table 1 Baseline characteristics of study subjects

Value (n=1,250)

Characteristics

Age (years) 54 [47-60]
Male 720 (57.6)
BMI (kg/m?) 24.6 [22.2-27.0]
Fasting serum glucose (mg/dL) 99 [92-102.8]

Triglyceride (mg/dL) 114 [83.0-162.8]

LDL cholesterol (mg/dL) 134 [109.2-158.0]

HDL cholesterol (mg/dL) 54 [45.0-63.8]
Total cholesterol (mg/dL) 205 [176-233]
Systolic blood pressure (mmHg) 122 [113-132]
Diastolic blood pressure (mmHg) 73 [66-80]
History of dyslipidemia 217 (17.4)
History of hypertension 331 (26.5)
History of diabetes 137 (11.0)
Metabolic syndrome 329 (26.3)

Qualitative data are presented as number (percentage);
continuous data are presented as median [interquartile range].
BMI, body mass index; HDL, high-density lipoprotein; LDL, low-
density lipoprotein.

Statistical analysis

Continuous data are reported as mean = standard
deviation or as median with interquartile range (IQR), and
comparisons were made using Student’s #-test or the Mann-
Whitney U test. Categorical data were presented as counts
(percentages) and were compared using the chi-square or
Fisher’s exact test. The AUC, a performance measure, was
presented with a 95% confidence interval (CI). To assess
the performance of the developed predictive model, we
compared it with other models using DeLong’s test for
AUC:s and decision curve analysis (DCA). A two-sided P
value of <0.05 was considered statistically significant. All
statistical analyses were conducted using R (version 3.6.3; R
Foundation for Statistical Computing, Vienna, Austria).

Results
Study population characteristics

The study population comprised 720 men and 530 women.
The median age was 54 years (IQR, 47-60 years), and BMI
was 24.6 kg/m’ (22.2-27.0 kg/m®). Three hundred and
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twenty-nine participants out of 1,250 (26.3%) satisfied the
criteria of MetS. 7able 1 summarizes the demographics of
the study population.

There were no significant differences in the clinical and
FDG PET/CT variables between the training (n=750)
and test sets (n=500) except for SAT area, spleen SUV, BP
SUV.,..., and BP SUV, ... (Table 2). The incidence of MetS
was 25.5% (191/750) in the training and 27.6% (138/500)

in the test sets.

Generation of the predictive model using LASSO regression

In the training set, variable selection for the predictive
model was performed using LASSO regression. The
variables selected at the minimum lambda value (Figure 5)
were VAT area (coefficient =0.006), VAT HU (-0.025), VAT
SUV,ean (-0.244), Muscle HU (-0.029), BP SUV,,,, (0.289),
and BMI (0.072).

Predictive model evaluation and comparison

The predictive model using LASSO regression showed
excellent performance in predicting MetS in both the
training set [AUC (95% CI), 0.792 (0.757-0.827)] and the
test set [AUC (95% CI), 0.828 (0.791-0.864); P=0.173]
(Figure 6). To determine if the multivariable predictive
model outperformed univariable predictive models, AUC
was calculated for each PET/CT and clinical variable to
predict MetS in the test set (7able 3). The best three single
predictors were BMI [AUC (95% CI), 0.794 (0.753-0.836)],
VAT area [AUC (95% CI), 0.788 (0.748-0.828)], and VAT
HU [AUC (95% CI), 0.777 (0.735-0.819)], compared
with the LASSO predictive model using DeLong’s test
and DCA. As shown in Figure 7, the LASSO predictive
model significantly outperformed BMI (P=0.017), VAT
area (P<0.001), and VAT HU (P<0.001) in the test set. In
addition, DCA demonstrated that the LASSO multivariable
model yielded more net benefits than univariable models.

LBM-adjusted SUV analysis

The median LBM was 49.56 kg (IQR, 38.62-58.17 kg).
The results were comparable to those obtained using
SUV,,. The variables selected by the LASSO model using
SUL were similar to those identified in the SUV, -based
model. These included VAT area (coefficient =0.006), VAT
HU (-0.037), VAT SUV,,... (-1.691), Muscle HU (-0.037),
BP SUV,.... (0.402), Spleen SUV (<0.252), and BMI (0.043).
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Table 2 Comparison of FDG PET/CT and clinical variables between the training and test sets
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Variables Training (n=750) Test (n=500) P value
VAT area (cm?) 138.19 [84.89-196.88] 144.81 [88.72-208.63] 0.167
VAT HU —-94.22 [-98.62 to —87.36] —-94.56 [-98.98 to -88.12] 0.394
VAT SUV, 1.35[1.17-1.56] 1.34[1.16-1.57] 0.764
VAT SUV,ean 0.56 [0.49-0.63] 0.56 [0.49-0.64] 0.952
SAT area (cm?) 134.70 [105.09-178.71] 141.74 [108.99-187.32] 0.037
SAT HU -99.48 [-102.63 to —95.59] -99.72 [-103.08 to —96.47] 0.081
SAT SUV, . 0.65 [0.56-0.75] 0.64 [0.55-0.74] 0.454
SAT SUV,can 0.31[0.28-0.35] 0.31 [0.27-0.35] 0.678
Muscle HU 34.96 [28.79-39.21] 34.78 [29.69-38.35] 0.605
L3SMI (cm?*/m?) 43.06 [35.71-49.11] 42.87 [36.32-49.80] 0.606
Psoas SUV,,. 1.12 [1.00-1.26] 1.12 [1.01-1.27] 0.782
Psoas SUV,can 0.62 [0.56-0.69] 0.63 [0.58-0.68] 0.369
Liver SUV 2.40[2.19-2.63] 2.45[2.22-2.67] 0.089
Spleen SUV 1.97 [1.81-2.13] 2.01[1.82-2.18] 0.027
BM SUV 1.78 [1.59-2.06] 1.84 [1.60-2.12] 0.159
BP SUV, . 2.31[2.11-2.54] 2.34 [2.12-2.62] 0.022
BP SUV,can 2.12[1.93-2.34] 2.14[1.94-2.42] 0.017
Age (years) 54 [48-60] 54 [47-60] 0.504
Male 434 (57.9) 286 (57.2) 0.861
BMI (kg/m?) 24.50 [22.10-26.90] 24.65 [22.30-27.20] 0.261

Qualitative data are presented as number (percentage); continuous data are presented as median [interquartile range]. BMI, body mass
index; BM, bone marrow; BP, blood pool; FDG, fluorine-18 fluorodeoxyglucose; HU, Hounsfield unit; L3SMI, skeletal muscle index
measured at the third lumbar vertebra level; max, maximum; PET/CT, positron emission tomography/computed tomography; SAT,
subcutaneous adipose tissue; SUV, standardized uptake value; SUV,,,,, maximum SUV; SUV,..., mean SUV; VAT, visceral adipose tissue.
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Figure 6 Comparison of AUC of the predictive model in the
training and test sets. AUC, area under the curve; CI, confidence

interval.

Among the univariable models, BMI, VAT area, and VAT
HU demonstrated the strongest predictive performance
for MetS. The multivariable model using SUL achieved
comparable performance to the SUV, -based model, with
an AUC (95% CI) of 0.823 (0.785-0.860) versus 0.828
(0.791-0.864), respectively (P=0.273). Additionally, the
SUL-based multivariable model significantly outperformed
all univariable models in the test set (Table 4) and yielded
greater net benefits on DCA (Figure §8).

In the sex-stratified analysis, the male-specific model
yielded an AUC of 0.804 (95% CI: 0.749-0.859), and the
female-specific model achieved an AUC of 0.845 (95%
CI: 0.787-0.902). DeLong’s test showed no statistically
significant difference in performance between the two
(P=0.273). Selected features differed partially across sexes,
indicating potential biological heterogeneity. Table S1
summarizes these results.

Discussion

Our principal findings are twofold. First, we reinforced
the feasibility of using FDG PET/CT to identify MetS
in adults undergoing cancer screening. Second, the use of
comprehensive FDG PET/CT variables and ML could
enhance the performance of the predictive model. In our
analysis, the LASSO predictive model integrated VAT area,
VAT HU, VAT SUV,...,, Muscle HU, BP SUV,,.,,, and
BMI as significant predictors. Our predictive model not only
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Table 3 Comparison of predictive performance (AUC) between the
LASSO multivariable model and univariable models in the training

and test sets

Variables Training (n=750) Test (n=500)

LASSO model 0.792 (0.757-0.827) 0.828 (0.791-0.864)
VAT area 0.772 (0.735-0.808) 0.788 (0.748-0.828)
VAT HU 0.731 (0.692-0.770) 0.777 (0.735-0.819)
VAT SUV,o 0.533 (0.486-0.580) 0.555 (0.498-0.612)
VAT SUVean 0.626 (0.584-0.669) 0.634 (0.582-0.687)
SAT area 0.663 (0.618-0.708) 0.686 (0.634-0.738)
SAT HU 0.606 (0.560-0.651) 0.624 (0.569-0.679)
SAT SUV, 0.531 (0.483-0.579) 0.570 (0.511-0.629)
SAT SUV,can 0.507 (0.461-0.553) 0.542 (0.488-0.597)
Muscle HU 0.641 (0.594-0.687) 0.626 (0.570-0.681)
L3SMI 0.620 (0.574-0.667) 0.562 (0.504-0.620)
Psoas SUV, . 0.622 (0.579-0.665) 0.585 (0.530-0.640)

Psoas SUV,can

0.605 (0.560-0.651)

0.569 (0.510-0.628)

Liver SUV 0.614 (0.568-0.660)  0.599 (0.546-0.653)
Spleen SUV 0.628 (0.583-0.674)  0.631 (0.579-0.684)
BM SUV 0.629 (0.584-0.675)  0.646 (0.592-0.700)
BP SUV, 0.654 (0.608-0.699)  0.672 (0.620-0.724)
BP SUV,ean 0.654 (0.609-0.700)  0.677 (0.625-0.729)
Age 0.548 (0.499-0.598)  0.559 (0.505-0.613)
Sex 0.562 (0.523-0.601)  0.520 (0.471-0.568)
BMI 0.764 (0.726-0.801)  0.794 (0.753-0.836)

Data are presented as AUC with a 95% confidence interval in
parentheses. AUC, area under the curve; BMI, body mass index;
BM, bone marrow; BP, blood pool; HU, Hounsfield unit; L3SMI,
skeletal muscle index measured at the third lumbar vertebra
level; LASSO, least absolute shrinkage and selection operator;
max, maximum; SAT, subcutaneous adipose tissue; SUV,
standardized uptake value; SUV,,,,, maximum SUV; SUV, ...,
mean SUV; VAT, visceral adipose tissue.

exhibited excellent performance with an AUC of 0.828 in
predicting MetS among our large dataset of 1,250 subjects
but also significantly outperformed univariable models.
Notably, VAT area (AUC =0.788) and VAT HU (0.777) were
found to be the most effective single predictors, emphasizing
the utility of CT data in PET/CT analysis.

ML methodologies process, train, and analyze extensive

datasets to discover underlying patterns and build models
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Figure 7 Comparison of AUC between the LASSO model and
three univariable models in the test set. AUC, area under the curve;
BMI, body mass index; CI, confidence interval; HU, Hounsfield
unit; LASSO, least absolute shrinkage and selection operator; VAT,

visceral adipose tissue.

Table 4 Comparison of predictive performance between the SUL-
based LASSO model and comparator models

Model AUC (95% ClI) P value'
LASSO (SUL) 0.823 (0.785-0.860) -
Compared model
LASSO (SUV,,) 0.828 (0.791-0.864) 0.273
BMI (SUL) 0.794 (0.753-0.836) 0.047
VAT area (SUL) 0.788 (0.748-0.828) 0.001
VAT HU (SUL) 0.777 (0.735-0.819) 0.009

T P values are derived from Delong’s test comparing the SUL-
based LASSO model to each listed comparator. AUC, area
under the receiver operating characteristic curve; BMI, body
mass index; CIl, confidence interval; HU, Hounsfield unit;
LASSO, least absolute shrinkage and selection operator; SUL,
standardized uptake value normalized to lean body mass;
SUV,,, standardized uptake value normalized to body weight;
VAT, visceral adipose tissue.

for precise classification or prediction. In our research, we
employed LASSO regression to analyze a large dataset,
identifying VAT area, VAT HU, VAT SUV_,..., Muscle HU,
BP SUV,,..., and BMI as independent predictors for MetS
identification. A prior study has indicated the potential
of FDG uptake in the psoas muscle as a surrogate marker
for metabolic abnormalities (9). The SUV,,, of the psoas

© AME Publishing Company.
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muscle demonstrated promising predictive performance
for MetS with an AUC of 0.779. However, it did not
significantly surpass other clinical predictors like BMI
in predicting MetS. Another investigation revealed that
SUV of BP independently differentiated the metabolically
unhealthy group from the metabolically healthy group
among obese subjects with modest performance (AUC
=0.602) (7). In contrast, our LASSO-based predictive model
showed excellent performance with an AUC of 0.828,
significantly outperforming other univariable models,
including BP SUV, Psoas SUV, and BMI. However, the
differences in the study population and measurement
technique among the studies need to be acknowledged.
Importantly, SUV,

mean

is preferred over SUV,,, to represent
the relatively homogeneous metabolic change within a
target organ because SUV,,, reflects a single pixel and may
introduce bias and noise.

Herein, a significant association was observed between
reduced VAT SUV, ., and the presence of MetS, as well
as an increase in BP SUV,,.,,. While previous research
has emphasized the significance of VAT SUV, the specific
nature of the correlation between VAT SUV and MetS
appears to differ among these studies. Consistent with
our findings, prior research has shown a decrease in VAT
SUV, ... among individuals with MetS (8), which could be
attributed to factors such as insulin resistance in adipocytes,
impaired vascular function, or reduced capillary density,
commonly seen in obesity (12). It has been posited that
a more metabolically active VAT may act protectively
against weight gain (19). In contrast, two other studies have
reported higher VAT SUV in MetS patients compared to
those without and a positive correlation between adipose
tissue metabolic activity and both inflammatory state
and metabolic risk (9,11). This inconsistency may be
derived from the varied and subjective methodologies in
measuring VAT SUV. Currently, there is no standardized
or automated approach for accurately segmenting VAT
SUVs; hence, most measurements in existing literature rely
on manual, visually based assessments. Furthermore, VAT
SUV, typically ranging between 0 and 1, is inherently low
and falls within a narrow spectrum, making it particularly
susceptible to noise, observer variation, and minor group
differences that may only be discernible through meticulous
image analysis. In this context, measuring FDG uptake
of BP might be a more convenient and reproducible
method in clinical settings. However, the exact mechanism
of increased BP SUV in MetS remains uncertain and
potentially complex, although it has been suggested that
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Figure 8 Decision curve analysis of the LASSO model in comparison to VAT area (A), VAT HU (B), and BMI (C). BMI, body mass index;
HU, Hounsfield unit; LASSO, least absolute shrinkage and selection operator; VAT, visceral adipose tissue.

insulin resistance and altered biodistribution in body organs
during the development of MetS may contribute to elevated
FDG uptake in BP (7,20).

Both VAT HU and Muscle HU were found to be
meaningful predictors in MetS risk assessment. While
extensive research has focused on the volume of VAT,
the study of VAT quality (i.e., VAT HU) has not been as
thoroughly explored. Prior studies have demonstrated
that fat density, as determined by CT attenuation (HU),
was significantly associated with MetS development and
progression (21-23). Lower HU values, which suggest fat
tissue with larger, lipid-rich adipocytes, were correlated
with a heightened risk of MetS (24). This correlation
arises because such fat tissue characteristics are strongly
associated with adverse cardiometabolic profiles, including

© AME Publishing Company.

insulin resistance and inflammation, both key elements
in MetS pathogenesis (25). However, reduced muscle
HU, indicative of myosteatosis, is linked with functional
impairments in body organs and an elevated metabolic
risk. Longitudinal studies have demonstrated that
increased intermuscular adipose tissue, denoted by lower
muscle HU values, was independently associated with a
heightened risk of developing type 2 diabetes, beyond the
contributions of overall and central adiposity and lifestyle
risk factors (26,27). Moreover, the accumulation of adipose
tissue within skeletal muscle correlated with markers of
systemic inflammation and metabolic dysregulation, such as
C-reactive protein (28), adiponectin, and leptin (29). This
highlights the importance of considering both adipose
tissue quality and skeletal muscle density in comprehensive

Quant Imaging Med Surg 2025;15(8):7524-7536 | https://dx.doi.org/10.21037/qims-2025-117



7534

MetS risk assessments.

Based on the above content, it can be suggested that in
the analysis of FDG PET/CT data, CT data offers crucial
metabolic information in addition to that provided by PET.
While most previous FDG PET/CT studies have focused
solely on PET measures, data obtainable from CT, such as
VAT area, VAT HU, and Muscle HU, were closely linked to
MetS in our study. The integration of this CT information
may be a key reason our predictive model exhibited superior
performance in identifying MetS compared to existing
models. However, one aspect to consider is that although
our study demonstrated a high probability of predicting
MetS through a comprehensive analysis of FDG PET/CT
variables and ML, MetS can typically be diagnosed easily
via physical measurements and blood tests. Therefore, the
results of this research should be interpreted as providing
supplemental information about MetS through image
analysis in FDG PET/CT, which was primarily intended for
early cancer detection in cancer screenings. Furthermore,
the significance of this research extends to providing
baseline metabolic data for studies on how changes in
FDG uptake in non-tumoral organs observed in PET/CT
might affect cancer treatment and prognosis. Additionally,
the current manual measurement of body organs can be
facilitated with the use of whole-body organ segmentation
software utilizing artificial intelligence.

Despite the known limitations of SUV,,, such as
potential overestimation of metabolic activity in individuals
with high adiposity, we retained SUV,, as the primary
normalization method in this study. This decision was
based on several considerations. First, SUV,, remains the
standard normalization method in clinical and research
PET/CT practice, enabling consistency with prior literature
and broader applicability across institutions. Second, in
our cohort—which consisted exclusively of an East Asian
population with relatively low rates of obesity—the impact
of excess adiposity on SUV,, values is likely to be minimal.
Third, the LASSO model using SUL demonstrated
comparable predictive performance to the SUV,-based
model, with no statistically significant difference in AUC
(P=0.273) and nearly identical variable selection. These
findings suggest that SUV-based modeling was robust
and not meaningfully biased by body composition in
this generally healthy population. While SUL offers a
theoretical advantage in highly obese or heterogeneous
populations, its added complexity and lack of demonstrated
benefit in our dataset did not justify replacing SUV, in
the primary analysis. Instead, we provided the SUL-based

© AME Publishing Company.
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analysis as a complementary result, further supporting the
validity and generalizability of our main findings.

Our sex-stratified analysis revealed comparable model
performance between men and women, yet partially differing
sets of selected predictors. This may reflect known sex-related
differences in fat distribution, insulin resistance, and metabolic
response, as reported in previous studies (30-34). Although
such divergence in feature selection could support sex-specific
modeling, the lack of a significant performance gain, combined
with added model complexity, led us to retain a unified model.
Nonetheless, the findings highlight the biological plausibility
of sex-specific metabolic signatures, and suggest directions for
future work in larger, more diverse cohorts.

Our study has several limitations. First, it is a cross-
sectional, single-center investigation, which may limit the
generalizability of our findings to broader populations.
Heterogeneity in CT scan protocols, including variations in
kVp and automatic exposure control across institutions, can
affect the image quality and subsequent HU measurements,
potentially impacting the performance of our LASSO model.
Therefore, further research is needed to validate whether
our LASSO model can predict the development or course
of MetS in a larger, multi-institutional cohort. Second, we
did not perform correlative studies between FDG PET/CT
variables and metabolic or inflammatory biomarkers. This
omission was because there was significant variability in the
availability of metabolic and inflammatory biomarkers within
our population, and our primary objective was to determine
if the use of ML and PET/CT information could enhance
the predictive performance in identifying MetS in a healthy
population, compared to previous studies.

Conclusions

In our research, we employed an ML algorithm integrating
FDG PET/CT variables to develop a predictive model
aimed at identifying MetS in individuals undergoing FDG
PET/CT for cancer screening. The predictive model we
devised demonstrated feasibility and excellent performance
in predicting MetS within our study cohort. Notably, it
outperformed other models that rely on single variables.
These findings may emphasize the significant advantage
of incorporating CT data from FDG PET/CT scans in

evaluating metabolic status.
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