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Objective: The association between panic disorder (PD) and heart rate variability (HRV) has long been studied with 
a focus on the imbalance of the autonomic nervous system. This study aims to demonstrate the predictive capability 
of HRV in determining PD severity using machine learning.
Methods: Psychometric scales and various HRV components were measured from 507 PD patients who were recruited. 
We designed three experiments with different sets of input features for comparison. The input features of each experi-
ment were 1) both psychometric scales and HRV together (ExSH), or 2) only the scales (ExS), or 3) only the HRV 
components. In each experiment, nine machine learning models were used to predict the Panic Disorder Severity Scale. 
We compared the predictive capability of the three sets of input features by statistically analyzing the performance 
metrics of the models in the three experiments. SHapley Additive exPlanation (SHAP) was further employed to assess 
the importance of the input features.
Results: The Random Forest model in ExSH, which incorporated both psychometric scales and HRV, achieved the high-
est f1-score (76.50%) and sensitivity (75.35%). ExSH showed significantly higher sensitivity and f1-score compared to 
ExS. For the RF model of ExSH, the highest SHAP importance value was found for the Hamilton Rating Scale for Anxiety, 
followed by the Hamilton Depression Rating Scale, and the low-frequency power (LF).
Conclusion: Our findings demonstrate that integrating HRV with psychometric scales improves machine learning-based 
prediction of PD severity. We also highlighted LF as a promising variable among HRV components.
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INTRODUCTION

Panic disorder (PD) is a common anxiety disorder af-
fecting about 2 to 3% of the entire population [1]. PD is 
characterized by recurring unexpected panic attacks and 
persistent concern about experiencing subsequent attacks. 
A panic attack is defined as a surge of intense fear or dis-
comfort that quickly reaches its peak. It can include vari-

ous physical or cognitive symptoms such as palpitation, 
sweating, trembling, chest discomfort, and derealization, 
which can significantly affect one’s daily functioning [2]. 
The symptoms of panic attacks, such as palpitation or 
sweating, are known to be related to autonomic nervous 
system (ANS) dysfunction [3].

Given that heart rate variability (HRV) can measure the 
level of ANS dysfunction, it has been regarded as one of 
the potential key indicators of PD in previous studies [4]. 
In particular, patients with PD exhibit low parasym-
pathetic activity and an imbalance between sympathetic 
and parasympathetic activities [5]. The neurovisceral in-
tegration (NVI) model is a theoretical model that in-
tegrates the explanation of these relationships between 
anxiety, ANS, and HRV [6]. According to the NVI model, 
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anxiety disorders, including PD, are characterized by a 
systemic inflexibility grounded in the disinhibition of 
sympathoexcitatory circuits within the central autonomic 
network (CAN), leading to a decrease in vagally mediated 
HRV [6-8]. CAN is an internal regulation system that con-
trols visceromotor, neuroendocrine, and behavioral re-
sponses, which are critical for goal-directed behavior and 
adaptability [9].

This theoretical background of NVI has led to research 
on the relationship between various components of HRV 
and PD. Here, the components refer to various meas-
urable quantities related to the variability derived from the 
raw heart rate recordings, covering 1) time-domain, 2) fre-
quency-domain, and 3) non-linear domain features [10]. 
The time-domain components quantify the amount of var-
iability in measurements of the inter-beat interval, which 
is the period in seconds between successive heartbeats. 
The time-domain components include the mean nor-
mal-to-normal interval (MeanNNI), the standard devia-
tion of normal-to-normal interval (SDNN), the square root 
of the mean squared differences of successive nor-
mal-to-normal interval (RMSSD), and the triangular index 
(TriangularIndex), which represents the integral of the 
density distribution divided by the maximum of the den-
sity distribution [11]. Frequency-domain components es-
timate the distribution of absolute or relative power be-
tween different frequency bands. The frequency-domain 
components include low-frequency power (LF), high-fre-
quency power (HF), and the ratio of LF-to-HF (LF/HF). 
Non-linear domain components allow us to quantify the 
unpredictability of a time series [12]. The non-linear do-
main components include measures such as the approx-
imate entropy (ApEn) and the sample entropy (SampEn). 
Some of these components are thought to be related to the 
existence of PD. For example, the HF can reflect the level 
of parasympathetic activity, which leads to PD being as-
sociated with a lower HF [13]. On the other hand, the LF 
is thought to reflect sympathetic activity in PD, but some 
controversies exist [14,15]. The LF/HF is also suggested to 
be related to PD from several studies [16-18]. Specifically, 
meta-analysis results indicate that patients with PD show 
elevated LF/HF when compared to healthy controls 
[19,20]. The SDNN, one of the time-domain components 
that represents autonomic influence, was also found to be 
lower in PD compared to healthy controls [10].

Accurate and reliable measurement of PD symptom se-

verity can be helpful for making clinical decisions in prac-
tice, as in determining the treatment response. Convention-
al assessments make use of a few psychometric scales, 
such as the Panic Disorder Severity Scale (PDSS) [21], the 
Hamilton Rating Scale for Anxiety (HAM-A) [22], or the 
Hamilton Depression Rating Scale (HAM-D) [23]. Al-
though these scales are thoroughly validated and widely 
used, limitations often arise from the fact that they mostly 
rely on subjective reporting and judgment. Accordingly, 
attempts are being made to utilize HRV as an objective bi-
omarker for PD severity. More specifically, research is be-
ing conducted on the relationship between the HRV com-
ponents and PD severity. For example, the MeanNNI ex-
hibited a negative correlation with PDSS [24] and the 
Beck Anxiety Inventory (BAI) [25,26]. The BAI also show-
ed a negative correlation with the variance of NNI, LF, 
and HF, while a positive correlation was found with the 
LF/HF [26]. Moreover, the recent rise of interest in ma-
chine learning techniques has led to studies in training a 
model that can directly predict PD based on HRV compo-
nents [27,28]. Despite these possibilities and the theoret-
ical background of HRV, research examining the pre-
dictive capability of HRV in determining PD severity is 
lacking.

Therefore, this study aims to demonstrate the predictive 
capability of HRV in determining PD severity using ma-
chine learning. Specifically, we investigate whether 1) 
HRV data can improve the predictive capability of PD se-
verity when augmented with psychometric scales, and 2) 
to what extent the predictive capability can be obtained 
with machine learning models. Utilizing prior research 
and background knowledge, we designed three experi-
ments with different sets of input features for comparison. 
The input features of each experiment were 1) both psy-
chometric scales and HRV together, 2) only the scales, or 
3) only the HRV components. In each experiment, nine 
machine learning models are used to classify PD severity 
into two groups: PDSS scores of five or less, and scores 
greater than five, which is the cutoff value of PDSS [29]. 
We compared the predictive capability of the three sets of 
input features by statistically analyzing the performance 
metrics (accuracy, sensitivity, positive predictive value, 
and f1-score) of the models in the three experiments. This 
stands in contrast to the conventional practice of relying 
solely on scales or HRV. By doing so, our study not only 
advances the objective assessment of PD severity but also 
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Fig. 1. Machine learning pipeline 
overview.
For comparison, three separate ex-
periments were conducted, each 
utilizing one of the three datasets: 
scales with HRV, scales only, and 
HRV only. SMOTE was applied to 
address class imbalance. There are 
ten models in total, including nine 
machine learning models and one 
dummy model. Each experiment 
was repeated five times.
HRV, heart rate variability; SMOTE, 
Synthetic Minority Over-sampling 
Technique.

lays the groundwork for a broader understanding of the 
implications of HRV in the evaluation of psychiatric dis-
orders.

METHODS

Participant Recruitment
Subjects aged 20 years or older who were diagnosed 

with PD by the Korean version of Diagnostic and Statisti-
cal Manual of Mental Disorder, fifth edition (DSM-5) were 
retrospectively recruited from the Psychiatry department 
inpatient and outpatient clinics of Gangnam Severance 
Hospital. The recruitment period included from January 
2015 to June 2021. Results were analyzed for a total of 
507 subjects who satisfied the above criteria and com-
pleted all data collection. The authors assert that all pro-
cedures contributing to this work comply with the ethical 
standards of the relevant national and institutional com-
mittees on human experimentation and with the Helsinki 
Declaration of 1975, as revised in 2008. All procedures 
involving human subjects/patients were approved by the 
Institutional Review Board of Gangnam Severance Hos-
pital, No. 3-2021-0440. Informed consent was waived by 
the approving ethics committee due to the retrospective 
nature of the study.

Acquisition of Heart Rate Variability Data
For the measurement of HRV, either SA-6000 (Medicore 

Co., Ltd.) or QECG-3 (LAXTHA Inc.) devices were used. 
The participants were seated and rested for 5 minutes be-
fore the start of the test. Then, the electrodes were at-

tached, and 3 channels of electrocardiography timeseries 
signals were collected for five minutes. It is known that 
short-term measurements of HRV, even as brief as five mi-
nutes, are sufficient to yield reliable data [30]. Processing 
of the raw electrocardiogram timeseries was performed 
with Python 3 using libraries ‘numpy’, ‘biosppy’ and 
‘hrvanalysis’ on a local Linux workstation. The NNI was 
obtained by applying a set of preprocessing steps to the 
raw timeseries, which included R-peak extraction, R-R in-
terval calculation, ectopic beat removal, and R-peak inter-
polation.

Input Feature Selection from Heart Rate Variability 
Components and Psychometric Scales

We created three sets of input features for machine 
learning to compare their performance: psychometric 
scales and HRV (16 features), psychometric scales only (6 
features), and HRV only (10 features) (Fig. 1). 

Ten components were selected for the HRV input fea-
tures: MeanNNI, SDNN, pNNI50 (the proportion of 
NNI50, representing the number of interval differences 
between successive NNIs greater than 50 ms, to the total 
number of NNIs), RMSSD, mean heart rate, TriangularIndex, 
LF, HF, LF/HF, SampEn (Table 1). 

We selected these 10 HRV components based on the 
following anxiety disorders-related studies [24,26-28,31- 
34]. Among them, the TriangularIndex was chosen due to 
its robustness to outliers and artifacts [31,32]. Because of 
the complexity of the physiological systems, it is import-
ant to include the nonlinear dynamics of HRV in the con-
siderations [33]. Within the nonlinear domain of HRV 
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Table 1. Full list of input features for the classification models

Index Feature Abbreviation Type

1 Hamilton Rating Scale for Anxiety HAM-A Psychometric Scales
2 State-Trait Anxiety Inventory-State anxiety STAI-S
3 State-Trait Anxiety Inventory-Trait anxiety STAI-T
4 Perceived Stress Scale (10-item inventory) PSS
5 Hamilton Depression Rating Scale HAM-D
6 Korean version of Inventory for Depressive Symptomatology KIDS-SR
7 Mean normal-to-normal interval (NNI) MeanNNI Heart rate variability 

components8 Standard deviation of the NNI SDNN
9 The proportion of NNI50, representing the number of interval differences 

between successive NNIs greater than 50 ms, to the total number of NNIs
pNNI50

10 Square root of the mean squared differences of successive NNI RMSSD
11 Mean heart rate MeanHr
12 Low frequency LF
13 High frequency HF
14 Low frequency/high frequency ratio LF/HF
15 Triangular index TriangularIndex
16 Sample entropy SampEn

analysis, SampEn was preferred over ApEn for its greater 
theoretical accuracy, consistent measurements, reduced 
bias in short datasets, more reliable assessment of syn-
chrony in clinical time series, and improved calculation 
methods [34].

Six psychometric scales were selected for the scale in-
put features: HAM-A, State-Trait Anxiety Inventory-State 
anxiety (STAI-S), State-Trait Anxiety Inventory-Trait anxi-
ety (STAI-T), HAM-D, Korean version of Inventory for De-
pressive Symptomatology (KIDS-SR), and Perceived Stress 
Scale (PSS) (Table 1). The reasons for this selection are as 
follows. Patients with PD often experience one or more 
comorbid lifetime psychiatric disorders [35]. The same 
study found that Major depressive disorder and other 
anxiety disorders were the most common comorbidities 
with PD. In a comprehensive study of 9,282 individuals, 
patients with only PD had an odds ratio of 2.0 to 5.4 for 
other anxiety disorders and major depression, while pa-
tients with both PD and agoraphobia had odds ratios of 
2.5 to 25.8 [36]. Considering this characteristic of co-
morbidity with depression and anxiety disorders, we in-
cluded the HAM-A and HAM-D, which can be part of the 
PD severity evaluation criteria, and the KIDS-SR, a reli-
able and valid self-report measure for assessing depres-
sion in Korea, considering that this study targets Koreans 
[37]. Furthermore, we included the STAI-S and STAI-T, 
which measure state and trait anxiety [38]. We also in-
cluded the PSS, which measures perceived self-regulation 

regarding stress. PSS may be valuable within a clinical set-
ting by facilitating treatment planning and assessing treat-
ment response [39]. We used the PSS 10-item version 
[40].

To determine if there were any significant differences in 
input features between the two groups (PDSS scores of 
five or less, and scores greater than five), we used the 
t test.

Machine Learning
Three experiments were defined based on the three sets 

of input features (Fig. 1). Experiment with Scales and HRV 
(ExSH), Experiment with Scales (ExS), and Experiment 
with HRV (ExH) utilize both scale and HRV features, scale 
features, and HRV features as their input features, re-
spectively. In all three experiments (ExSH, ExS, ExH), nine 
machine learning models are trained for solving the same 
classification problem: classifying between the two 
groups (PDSS scores of five or less, and scores greater than 
five, which is the cutoff value of PDSS) [29].

The machine learning models utilized in this study 
comprised of Logistic Regression (LoR), Support Vector 
Machine (SVM), Decision Tree (DT), Bagging Decision 
Tree (BDT), Adaptive Boosting Decision Tree (ABDT), 
Random Forest Classifier (RF), Multi-layer Perceptron 
Classifier (MLP), Extreme Gradient Boosting Classifier 
(XGB), and Cat Boosting Classifier (CB). A baseline model 
is the DummyClassifier (Dummy). The Dummy, set with 
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the ‘stratified’ strategy, provides a baseline by reflecting 
the class distribution of the training dataset in its pre-
dictions.

The dataset was divided into training and testing splits 
with an 8:2 ratio, deriving 407 and 100 samples within 
each split, respectively. The distribution of the PDSS 
scores in our dataset has an imbalance between target 
classes, which included 156 cases with PDSS scores of 
five or less, and 351 cases with scores above five. To miti-
gate the potential issue related to the classifier being 
biased towards the majority class in the imbalanced data-
set [41], we implemented the Synthetic Minority Over- 
sampling Technique for adjusting the imbalanced class 
distribution [42]. The machine learning pipeline is sche-
matically represented in Figure 1.

To optimize the hyperparameters for each model, a 
15-fold cross-validation Grid search was employed. The 
full hyperparameter search space is provided in the Sup-
plementary Table 1 (available online). The selected hy-
perparameters were those that yielded the best average 
validation f1-score across the folds. The importance of 
each input feature was assessed by SHapley Additive ex-
Planation (SHAP) [43]. SHAP, derived from ideas in game 
theory, can be a robust technique for generating indivi-
dual explanations by guaranteeing a fair distribution of 
the effect among the features [44].

The predictive performance was evaluated by the fol-
lowing quantitative metrics for each machine learning 
model, including accuracy (ACC), sensitivity (SEN), pos-
itive predictive value (PPV), and f1-score (F1). To mitigate 
the unwanted stochasticity affecting our results, we con-
ducted the same experiment five times with varying seeds 
and averaged from these five iterations. All imple-
mentations of machine learning experiments were done 
using Python 3 with the ‘pandas’, ‘sklearn’, ‘imblearn’, 
and ‘shap’ packages [43,45-47].

Statistical Analysis
To compare the performance of the three experiments 

(ExSH, ExS, and ExH), we conducted Friedman tests, each 
followed by post-hoc analyses using the Wilcoxon test. 
Each of the three experiments, including nine machine 
learning models, was compared based on four perform-
ance metrics (ACC, SEN, PPV, and F1) derived from the 
machine learning models. For example, when comparing 
ACC, each of the three groups (ExSH, ExS, and ExH) has 

ACC values for each of the nine machine learning models. 
We confirmed differences among the three groups in ACC 
using the Friedman test and conducted post-hoc analysis 
using the Wilcoxon test to determine the superiority 
among the three groups. The same process was carried 
out for the remaining four metrics. To address the issue of 
multiple comparisons and control the false discovery rate, 
we applied the Benjamini-Hochberg method.

RESULTS

Demographic Characteristics
A total of 507 participants participated in this study. 

The mean age ± standard deviation (SD) of the partic-
ipants was 36.78 ± 16.07 years. Among the 507 subjects, 
293 (57.79%) were women. Regarding the input features 
for psychiatric symptoms, the HAM-D, KIDS-SR, STAI-S, 
STAI-T, PSS, and HAM-A had mean ± SD values of 
16.60 ± 6.92, 16.82 ± 7.83, 56.39 ± 12.61, 54.72 ± 
12.11, 21.06 ± 6.41, and 23.87 ± 10.22, respectively.

Predictive Performance of Machine Learning Models
All performance metric results are compiled in Supple-

mentary Table 2 (available online). Among all the experi-
ments, the RF model in ExSH, which incorporated both 
psychometric scales and HRV, achieved the highest F1 
(76.50%). This model also showed the best performance 
in SEN (75.35%). The CB model in ExSH achieved the 
second-highest F1 (76.45%) by a slight margin and ach-
ieved the highest performance in ACC (67.84%). The LoR 
model in ExS achieved the highest performance in PPV 
(81.68%).

For all models in ExSH and ExS, each performance met-
ric (ACC, SEN, PPV, and F1) exceeded those of the base-
line dummy model. However, in ExH, which only in-
corporated HRV components, the performance improve-
ment compared to Dummy was less pronounced than in 
ExSH and ExS. Notably, some models in ExH (MLP and 
DT) underperformed relative to Dummy in certain metrics 
(SEN and F1).

Inter-experimental Comparisons
Among the nine machine learning models, the median 

values of all metrics in ExSH showed an increase com-
pared to ExS: ACC (from 60.98 to 63.73%), SEN (from 
62.92 to 67.75%), PPV (from 77.56 to 78.49%), and F1 
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Fig. 2. Box plot of the distribution of performance metrics for each 
model across the three experiments, excluding the dummy model.
Statistical analysis was performed using Wilcoxon test with Benjamini-
Hochberg method. 
SH, Experiment SH; S, Experiment S; H, Experiment H; ACC, accuracy;
SEN, sensitivity; PPV, positive predictive value; F1, f1-score; ns, not 
significant.
*p ＜ 0.05.

Fig. 3. Mean absolute SHAP values of Random Forest Classifier for 
Experiment with Scales and heart rate variability.
The final mean absolute SHAP values were calculated by averaging 
the mean absolute SHAP values across the five repetitions of the 
experiment.
SHAP, SHapley Additive exPlanation; HAM-A, Hamilton Rating 
Scale for Anxiety; HAM-D, Hamilton Depression Rating Scale; LF, 
low frequency; KIDS-SR, Korean version of Inventory for Depressive 
Symptomatology; STAI-S, State-Trait Anxiety Inventory-State anxiety; 
RMSSD, square root of the mean squared differences of successive 
NNI; pNNI50, the proportion of NNI50; PSS, Perceived Stress Scale 
(10-item inventory); LF/HF, low frequency/high frequency ratio; 
MeanNNI, mean NNI; MeanHr, mean heart rate; STAI-T, State-Trait 
Anxiety Inventory-Trait anxiety; HF, high frequency; SampEn, sample 
entropy; SDNN, standard deviation of the NNI; TriangularIndex, 
triangular index; NNI, normal-to-normal intervals.

(from 69.58 to 72.51%), as depicted in the box plots (Fig. 
2).

All the performance metrics used (p : ACC, PPV ＜ 

0.001; SEN, F1 ＜ 0.01) showed significant differences 
among the three experiments according to the Friedman 
test (Supplementary Table 3; available online). SEN (p  = 
0.020) and F1 (p  = 0.049) were significantly different be-
tween ExSH and ExS. All four metrics (p = 0.020) were sig-
nificantly different between ExSH and ExH. Between ExS 
and ExH, all metrics (p  = 0.020) except SEN were sig-
nificantly different. Statistical significances of the differ-
ences between all three pairs of experiments are shown 
together with the box plots in Figure 2.

Interpretation of Input Features
We demonstrate the importance of input features using 

mean absolute SHAP values of RF for ExSH, which 
showed the best performance (i.e. f1-score) in this study 
(Fig. 3). Other results on mean absolute SHAP values are 
referred to Supplementary Figure 1 (available online). In 
ExSH’s RF, the order of mean absolute SHAP values was 
HAM-A, HAM-D, LF, and KIDS-SR.

In the t test, all psychometric scales showed significant 
differences (p : HAM-A, HAM-D, KIDS-SR, STAI-S ＜ 

0.0001; STAI-T ＜ 0.001; PSS ＜ 0.01) between the two 
groups. None of the HRV components showed significant 
differences in the t test.

DISCUSSION

In this study, we demonstrated that the integration of 
HRV components with psychometric scales as input fea-
tures for a machine learning classifier predicting PD se-
verity shows higher sensitivity and f1-score compared to 
using psychometric scales only. For sensitivity, a max-
imum increase of 11.57% was seen in SVM, with an aver-
age (± SD) increase of 4.53% (± 3.64). For f1-score, a 
maximum increase of 6.96% was seen in SVM, with an 
average (± SD) increase of 2.75% (± 2.35). This implies 
that integrating HRV components with psychometric 
scales could be beneficial in improving the predictive ca-
pability of PD severity. However, relying solely on HRV 
components showed less effective performance com-
pared to psychometric scales in predicting PD severity, 
thereby also highlighting the limitations of HRV in this 
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context. On the other hand, a machine learning classifier 
predicting PD severity showed the following maximal 
predictive capabilities: accuracy (67.84%), sensitivity 
(75.35%), PPV (81.68%), and f1-score (76.50%). Among 
these metrics, accuracy, sensitivity, and f1-score achieved 
their maximal performance in ExSH (when both HRV and 
psychometric scales were considered as input features).

Assessing PD severity holds significant clinical im-
plications, as it can be related to decisions concerning 
type or duration of the treatment [48]. Therefore, in our 
study, to increase objectivity and accuracy in this evalua-
tion, we utilized HRV, which has been studied as a 
‘biomarker’ in the field of psychiatry, and indeed ob-
served performance improvement [4,49-51]. Further-
more, our study employs a multimodal prediction, con-
sidering both HRV and psychometric scales, which are 
distinct data types representing the biological and psy-
chological aspects of the patient. This approach is in line 
with the recent trend of analyzing multimodal data, such 
as HRV, psychometric scales, natural language, or neuro-
imaging, to understand psychiatric disorders, including 
anxiety disorders [27,52-54]. Our study specifically holds 
its significance as it is the first to explore the integration of 
HRV with psychometric scales and show that HRV can be 
a significant feature for improving the performance of the 
severity prediction of PD. We expect that our results sug-
gest the potential of integrating other features for machine 
learning-based prediction of anxiety disorders [55].

In the t test, all six scales showed significant differences 
between the two groups, which are PDSS scores of five or 
less, and scores greater than five. The higher scores on 
anxiety disorder-related scales (e.g. HAM-A) and depres-
sive disorder-related scales (e.g. HAM-D) in the higher PD 
severity group may be explained by the high comorbidity 
of PD with other anxiety disorders and depressive dis-
order [35].

Although some HRV components (e.g., LF, LF/HF) have 
been controversial, various components (e.g., RMSSD, 
SDNN, HF, LF, and LF/HF) have been suggested to be as-
sociated with PD in previous studies [4,19,20,26,27,30, 
56-58]. However, no significant differences between the 
two groups were found for any HRV components in our 
study. While previous studies mainly compared the HRV 
components of PD patients with healthy controls, our 
study focuses on distinguishing the severity of PD and 
may not present a significant difference between the two 

groups from the statistical test. However, it is clear from 
our study that there was an improvement in machine 
learning performance when integrating HRV components. 
This suggests that variables that were not significant in 
conventional statistical analysis may have the potential to 
significantly improve performance when integrated into 
machine learning-based predictions. For a similar reason, 
Yoo et al. [54] leveraged HRV components that were in-
significant in their t test by using deep neural networks to 
predict the severity of anxiety disorders. 

To identify which variables played crucial roles in ma-
chine learning-based predictions, we employed the SHAP 
method, which is known to be a robust method for model 
explanation [43,44]. The mean absolute SHAP value, 
serving as a measure of feature importance, corresponds 
to the relative importance ranking of features [59]. In our 
study, LF exhibited the highest mean absolute SHAP value 
among HRV components in the model with the highest 
f1-score (RF in ExSH). While many studies have explored 
the relationship between PD and LF, shedding light on 
parasympathetic and sympathetic activities [26,27,56-58], 
our research further supports this association. HAM-A and 
HAM-D had higher mean absolute SHAP values than LF 
in the same model. This, together with the fact that ExS 
performed significantly better than ExH, may indicate that 
HRV alone is less predictive of PD severity than psycho-
metric scales.

RF showed the best f1-score for ExSH, and CB for ExS 
and ExH. Ensemble-based classifiers (i.e. BDT, ABDT, RF, 
XGB, and CB), which are a set of classifiers whose in-
dividual decisions are combined in some way [60], have 
the potential to outperform their individual base classifier 
(i.e. DT) [61,62]. This may explain why RF, CB, and some 
other ensemble models outperformed DT in our study. 
However, this does not mean that ensemble-based classi-
fiers, including RF and CB, are the best models for predict-
ing PD severity. Determining which model is best at mak-
ing disease-related predictions is complex [61]. For exam-
ple, MLP and LoR outperformed ensemble models in ma-
chine-learning-based studies related to PD, although 
comparisons are difficult due to the heterogeneity of the 
input features and the dependent variable being predicted 
[27,28].

This study, while providing valuable insights, does 
have certain limitations that should be considered. First, 
we selected the HRV components as input features based 
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on our literature review. This feature selection process has 
the limitation of introducing some bias. However, we 
tried to overcome the curse of dimensionality by selecting 
features that utilize domain knowledge, given the lack of 
machine learning-based research on predicting PD sever-
ity. Secondly, our study has a low maximum accuracy. 
Although hyperparameter tuning based on accuracy 
could have yielded better accuracy, we chose f1-score 
because it reflects both sensitivity and positive predictive 
value, which are in a trade-off relationship, and is more 
suitable for imbalanced datasets [63]. Based on previous 
literature, we selected the HRV components to use in our 
study, but there may still be some bias in this approach. 
We expect that in the future, filter methods of feature se-
lection like minimum Redundancy Maximum Relevance 
selection algorithm [64] or feature extraction techniques 
like Principal Component Analysis [65] may improve the 
accuracy [66]. Additionally, our study involved 507 sub-
jects, which may pose technical constraints for applying 
machine learning, and the 5-minute HRV measurement 
time may not have fully reflected the patients’ actual 
states. These aspects also leave room for future improve-
ments. Predicting PD severity directly is a first attempt and 
is a more difficult task than predicting the presence of PD. 
However, in studies targeting only patients with PD, pan-
ic-related distress and the duration of PD were related to 
HF [67]. These findings suggest that HRV has potential for 
classification within PD and warrant further research. 
Thirdly, due to the retrospective design, we were unable 
to account for coexisting diseases and the use of medi-
cation in PD patients. Considering the non-specific nature 
of HRV in mental illnesses, these two factors could influ-
ence the results. Conducting a prospective study that in-
corporates these variables would allow for more precise 
outcomes. Fourthly, we performed a binary classification, 
but in a real clinical situation, a more fine-grained classi-
fication or regression may be more appropriate. Making 
such predictions is usually a more difficult task than bina-
ry classification.

In conclusion, our study holds significance in exploring 
the potential of HRV and machine learning in predicting 
PD severity. With over 500 samples, we extensively in-
vestigated the effect of HRV integration across nine differ-
ent machine learning models. Our findings demonstrate 
that integrating HRV with psychometric scales yields 
higher predictive capability compared to considering psy-

chometric scales alone. This suggests the potential of mul-
timodal approaches in machine learning research within 
the field of psychiatry. Furthermore, our study explored 
the extent to which predictive performance can be ach-
ieved in predicting PD severity using machine learning 
and, through the reliable methodology of SHAP, high-
lighted LF as a promising variable among HRV com-
ponents. To further enhance prediction performance and 
achieve accurate and objective evaluations in clinical set-
tings, future research in psychiatry should continue to ex-
plore multimodal machine learning studies, including 
HRV and other modalities.
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