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Objective: To evaluate the impact of deep learning-based image conversion on the accuracy of automated coronary artery 
calcium quantification using thin-slice, sharp-kernel, non-gated, low-dose chest computed tomography (LDCT) images collected 
from multiple institutions.
Materials and Methods: A total of 225 pairs of LDCT and calcium scoring CT (CSCT) images scanned at 120 kVp and acquired 
from the same patient within a 6-month interval were retrospectively collected from four institutions. Image conversion was 
performed for LDCT images using proprietary software programs to simulate conventional CSCT. This process included 1) deep 
learning-based kernel conversion of low-dose, high-frequency, sharp kernels to simulate standard-dose, low-frequency kernels, 
and 2) thickness conversion using the raysum method to convert 1-mm or 1.25-mm thickness images to 3-mm thickness. 
Automated Agaston scoring was conducted on the LDCT scans before (LDCT-Orgauto) and after the image conversion (LDCT-
CONVauto). Manual scoring was performed on the CSCT images (CSCTmanual) and used as a reference standard. The accuracy of 
automated Agaston scores and risk severity categorization based on the automated scoring on LDCT scans was analyzed 
compared to the reference standard, using the Bland–Altman analysis, concordance correlation coefficient (CCC), and weighted 
kappa (κ) statistic.
Results: LDCT-CONVauto demonstrated a reduced bias for Agaston score, compared with CSCTmanual, than LDCT-Orgauto did (-3.45 vs. 
206.7). LDCT-CONVauto showed a higher CCC than LDCT-Orgauto did (0.881 [95% confidence interval {CI}, 0.750–0.960] vs. 0.269 
[95% CI, 0.129–0.430]). In terms of risk category assignment, LDCT-Orgauto exhibited poor agreement with CSCTmanual 
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slice thickness [24] or modifying the reconstruction 
kernel [25,26], have been applied to chest CT to improve 
reproducibility in quantifying emphysema or radiomic 
features of thoracic lesions. Implementation of these 
image conversion techniques is expected to mitigate the 
effects of variability in LDCT scanning protocols. Therefore, 
we hypothesized that the application of DL-based image 
conversion techniques would enhance the performance of 
automated CAC quantification on LDCT images reconstructed 
with thin slicethickness and a sharp kernel.

This study aimed to evaluate the impact of image 
conversion on the accuracy of automated CAC quantification 
using 1-mm or 1.25-mm, sharp-kernel, non-gated LDCT 
images collected from multiple institutions.

MATERIALS AND METHODS

This study was approved by the Institutional Review 
Boards of the participating hospitals (IRB Nos. 
KC22RIDI0156, 2021-12-027, 2022GR0064, 2021AS0371, 
2022-01-001, 2021-0303, 2021-12-029, and 4-2021-1589). 
The requirement for informed consent was waived due to 
the retrospective design of the study. 

Participants
In this study, we conducted a post-hoc analysis using 

data from a large retrospective cohort to evaluate the 
reliability of CAC scoring on LDCT scans. The original cohort 
comprised participants who met the eligibility criteria 
and were retrospectively enrolled from eight participating 
academic hospitals (Fig. 1). The inclusion criteria were 
as follows: 1) being an adult (age ≥18 years) and having 
undergone both non-ECG-gated LDCT and ECG-gated CSCT 
within a 6-month interval between January 2010 and 
December 2020 and 2) acquisition of CT scans using a 
scanner with 64 or more detector rows. A total of 1569 
participants met these inclusion criteria. The exclusion 
criteria were as follows: 1) having previously undergone 
coronary stent insertion or coronary bypass graft surgery 
before the CT scan (n = 12), 2) inadequate LDCT image 

INTRODUCTION

The coronary artery calcium (CAC) score derived from 
electrocardiogram (ECG)-gated computed tomography (CT) 
is a well-established marker for risk stratification of future 
cardiovascular events, offering incremental value beyond 
conventional risk factors [1-3]. The increasing use of chest 
CT scans and the advent of CT lung cancer screening have 
heightened interest in the incidental findings of CAC on non-
ECG-gated chest CT scans [4]. The presence and severity of 
CAC detected on these scans can serve as prognostic markers 
for future cardiovascular outcomes across various populations 
[5-13]. Consequently, the assessment of CAC on non-ECG-
gated chest CT scans has gained recognition. Acknowledging 
this, the 2016 guidelines of the Society of Cardiovascular 
Computed Tomography/Society of Thoracic Radiology 
recommend evaluating and reporting CAC on all non-contrast 
chest CT scans in patients aged ≥40 years [14]. Furthermore, 
the importance of reporting CAC as a significant incidental 
finding on low-dose chest CT (LDCT) performed for lung 
cancer screening is emphasized [15].

However, incidental CAC findings on non-ECG-gated 
CT scans are often underreported despite their clinical 
significance, primarily because these scans are typically 
performed for purposes other than cardiac evaluation. 
Additionally, performing manual Agatston scoring on LDCT 
scans is a skill-intensive task that demands additional 
processing time and dedicated software [14,16]. The use of 
automatic scoring methods for performing CAC assessment 
on LDCT scans could enhance reporting rates and broaden 
the utilization of this information. Several deep learning 
(DL)-based automated CAC scoring techniques developed for 
ECG-gated calcium scoring CT (CSCT) [17-21] have also been 
validated for use on LDCT scans, demonstrating generally 
favorable performance, albeit with variability across 
institutions that are largely attributable to differences in 
the scanning protocols employed [22,23]. This variability 
can contribute to inconsistencies in the performance of 
automatic software on LDCT scans [23]. Recently, DL-
based image conversion techniques, such as adjusting 

(weighted κ = 0.115 [95% CI, 0.082–0.154]), whereas LDCT-CONVauto achieved good agreement (weighted κ = 0.792 [95% 
CI, 0.731–0.847]).
Conclusion: Deep learning-based conversion of LDCT images originally obtained with thin slices and a sharp kernel can enhance 
the accuracy of automated coronary artery calcium score measurement using the images.
Keywords: Calcium; Coronary vessels; Tomography, X-ray computed; Thorax; Artificial intelligence
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quality for CAC evaluation due to artifacts or the presence 
of devices (n = 9), and 3) acquisition of LDCT scans after 
contrast administration (n = 6). Ultimately, 1542 CSCT and 
1542 LDCT scans were used for CAC scoring. From these, 
we selected the CT scans of 241 participants whose LDCT 
images were reconstructed with a slice thickness of 1-mm or 
1.25-mm and a sharp kernel. Additionally, we excluded 16 
participants whose LDCT scans were acquired using a tube 
voltage other than 120 kV, considering that the standard 
protocol for CSCT scanning uses 120 kV and that various 
tube voltage settings in LDCT can affect CAC. Finally, 225 
participants were included in this study.

CT Datasets: Image Acquisition and Reconstruction
The detailed CT image acquisition and reconstruction 

protocols are summarized in Supplementary Table 1. All CSCT 
scans were reconstructed with a standard kernel and a slice 
thickness of 2.5-mm or 3-mm. Non-ECG-gated LDCT scans 
were reconstructed with a slice thickness of 1-mm or 1.25-mm 
and a sharp reconstruction filter (kernel). 

Image Conversion
For LDCT, image conversion was performed to simulate 

conventional CSCT using a proprietary software program 
(AVIEW CAC, version 1.1.43; Coreline Soft, Co., Ltd., Seoul, 
South Korea), which incorporated two algorithms: 1) DL-
based kernel conversion (KC) algorithm, which generates 
CT images simulating standard-dose, low-frequency kernels 
from low-dose, high-frequency kernels [27,28]. It enables 
direct transformations on reconstructed images without 
the need for sinogram data. KC was performed using a 
weighting of 0.5. 2) Thickness conversion (TC), which 
constructs volume data using the raysum method, employing 
an average value for each ray for the desired plane in 
volume rendering. TC was performed to convert images with 
a thickness of 1-mm or 1.25-mm to 3-mm. Four sets of 
LDCT images were used for analysis (Fig. 2): original images 
without conversion (LDCT-Org), images with KC only (LDCT-
KC), images with TC only (LDCT-TC), and images with both 
KC and TC (LDCT-CONV). Image noise was measured on four 
LDCT datasets and was defined as the standard deviation (SD) 

Institution A

Institution E

Institution A 
(n = 158)

Institution B 
(n = 15)

Institution C 
(n = 8)

Institution D 
(n = 44)

225 participants

    Exclusion criteria
       • ‌�Participants who had received coronary stent insertion or 

coronary bypass graft surgery before CT scan (n = 12)
       • ‌�Participants with inadequate LDCT image quality for evaluation 

of CAC due to artifact or devices (n = 9)
       • ‌�LDCT scan acquired after contrast administration (n = 6)

  Exclusion criteria
     • ‌�LDCT scan acquired with tube voltage other than 120 KVp (n = 16)

Institution B

Institution F

Institution C

Institution G

Institution D

Institution H

1569 participants from 8 institutions who underwent both CSCT and LDCT 
within 6-months interval from January 2010 to December 2020

1542 participants

241 participants who had LDCT images that were reconstructed with 
1-mm or 1.25-mm slice thickness and sharp reconstruction filter

Fig. 1. Participant flowchart. CSCT = calcium scoring computed tomography, LDCT = low-dose computed tomography, CAC = coronary 
artery calcium
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of the measured Hounsfield units (HU) within the circular 
region of interests in the ascending aorta on the slice image 
at the level of the left main coronary artery.

Automated CAC Scoring 
Automated CAC scoring was performed on four image 

datasets of LDCT scans for each participant using a 
commercial software (AVIEW CAC, Coreline Soft, Co. Ltd.). 
The software was developed using the concept of an atlas-
based automated CAC scoring system empowered by DL 
technology [21] and has been validated for automated 
CAC scoring in both CSCT and LDCT in previous studies 
[22,23,29,30]. For each CT scan, the Agatston score, CAC 
volume score (mm3), and peak CAC density were calculated 
at the per-artery level for the four main coronary arteries 

and at the per-subject level. 

Reference CAC Scoring 
Manual CAC scoring was performed on CSCT scans 

(CSCTmanual) and used as a reference standard. Manual scoring 
was performed independently by two board-certified expert 
radiologists, each with 10 and 11 years of experience in 
cardiothoracic imaging, using commercial software (AVIEW 
CAC, Coreline Soft, Co. Ltd.), without the assistance of an 
automatic algorithm. Following thresholding (>130 HU) 
with a colored overlay, the CACs were manually labeled by 
the readers according to their anatomical location (i.e., left 
main, left anterior descending [LAD], left circumflex, and 
right coronary arteries). The manual scoring results of the 
two radiologists were extracted, and the Agatston score, 

Fig. 2. Examples of image conversion. Original image without conversion (LDCT-Org), image with kernel conversion only (LDCT-KC), 
image with slice thickness conversion only (LDCT-TC), and image with both kernel and slice thickness conversion (LDCT-CONV). The 
Agaston scores of the reference standard (CSCTmanual), LDCT-Orgauto, LDCT-KCauto, LDCT-TCauto, and LDCT-CONVauto were 56, 106, 64, 67, and 
58, respectively. LDCT = low-dose chest computed tomography, LDCT-Org = original image without conversion, LDCT-KC = LDCT image 
with kernel conversion only, LDCT-TC = LDCT image with slice thickness conversion only, LDCT-CONV = LDCT image with both kernel and 
slice thickness conversion, CSCT = calcium scoring computed tomography, CSCTmanual = manual scoring on calcium scoring CT, LDCT-Orgauto 
= automatic scoring on original LDCT images without conversion, LDCT-KCauto = automatic scoring on LDCT images with kernel conversion, 
LDCT-TCauto = automatic scoring on original LDCT images with slice thickness conversion, LDCT-CONVauto = automatic scoring on LDCT 
images with both kernel and slice thickness conversion
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volume score, and number of CAC lesions were compared 
at the per-subject and per-artery levels. When the two 
radiologists’ results differed, a consensus reading session 
was conducted to resolve the disagreement in CAC scoring 
results. The results obtained through the consensus reading 
sessions were used to establish the reference standard.

Statistical Analyses 
The results of the image noise analysis of the four LDCT 

datasets were compared using repeated-measures analysis of 
variance. 

The accuracies of the quantitative CAC parameters 
(Agatston score, volume score, and peak density) and risk 
categorization according to the automated Agatston score 
on the four LDCT datasets were assessed by comparing them 
to the CSCTmanual as the reference standard. To analyze the 
accuracy of the quantitative parameters, Bland–Altman 
analysis was employed to determine the bias, and 95% limits 
of agreement and Lin’s concordance correlation coefficient 
(CCC) were employed. CCC was interpreted as follows: 
values >0.90, 0.80–0.90, 0.65–0.80, and <0.65 indicate 
excellent, substantial, moderate, and poor agreement, 
respectively [31]. To analyze the accuracy of cardiovascular 

risk stratification using the automated Agatston score, CAC 
severity was categorized into the following groups based 
on the Mayo criteria [32]: 0, 1–10, 11–100, 101–400, and 
>400. The agreement of CAC severity categories between 
automated scoring on LDCT-Org (LDCT-Orgauto) and that on 
LDCT-CONV (LDCT-CONVauto) with CSCTmanual was assessed using 
the Cohen linearly weighted kappa (κ) statistic. In cases 
of disagreement in the risk category between CSCTmanual and 
LDCT-CONVauto, we determined the underlying reasons for 
this disagreement. In addition to the analysis including all 
participants, a subgroup analysis was performed including 
participants with CAC >0 on CSCTmanual. 

Bonferroni-adjusted post-hoc P-values <0.0083 were 
considered as indicative of a statistically significant 
difference for multiple comparisons of image noise between 
the four LDCT datasets. Otherwise, a P-value <0.05 was 
considered as indicative of a statistically significant 
difference.

RESULTS

Participants
The baseline clinical characteristics and CT imaging 

Table 1. Baseline characteristics of the participants in the study cohorts

All 
(n = 225)

Institution A 
(n = 158)

Institution B 
(n = 15)

Institution C 
(n = 8)

Institution D 
(n = 44)

Sex, male 163 (72.4) 110 (69.6) 12 (80.0) 5 (62.5) 36 (81.8)
Age, yrs 57.3 ± 9.2 58.0 ± 8.6 57.71 ± 6.8   57.4 ± 13.8   54.6 ± 10.7
Body mass index, kg/m2 24.3 ± 3.4 24.7 ± 3.7   24.5 ± 3.0 24.8 ± 2.1 25.0 ± 2.8
Heart rate, beats/min 58.3 ± 8.6 56.8 ± 7.5   66.2 ± 9.3     71 ± 10.1 N/A
Hypertension 75 (33.3) 61 (38.6) 3 (20.0) 2 (25.0) 9 (20.5)
Diabetes mellitus 31 (13.8) 22 (13.9) 1 (6.7) 3 (37.5) 5 (11.4)
Smoking

Current smoker 62 (27.6) 46 (29.1) 2 (13.3) 3 (37.5) 11 (25.0)
Ex-smoker 55 (24.4) 38 (24.1) 1 (6.7) 0 (0) 16 (36.4)

Dyslipidemia 48 (21.3) 37 (23.4) 5 (33.3) 2 (25.0) 4 (9.1)
Indication of LDCT 

Screening 180 (80.0) 115 (72.8) 14 (93.3) 7 (87.5) 44 (100)
Symptomatic or other clinical purpose 45 (20.0) 43 (27.2) 1 (6.7) 1 (12.5) 0 (0)

Agatston score on CSCTmanual 0 (0–28.9) 0 (0–43.7) 110.2 (0–23.2) 0 (0–14.3) 0 (0–4.0)
Agatston score-based risk category in CSCTmanual

0 132 (58.7) 90 (57.0) 7 (46.7) 5 (62.5) 30 (68.2)
1–10 16 (7.1) 11 (7.0) 1 (6.7) 0 (0) 4 (9.1)
11–100 48 (21.3) 31 (19.6) 7 (46.7) 2 (25.0) 8 (18.2)
101–400 18 (8.0) 17 (10.8) 0 (0) 0 (0) 1 (2.3)
>400 11 (4.9) 9 (5.7) 0 (0) 1 (12.5) 1 (2.3)

Data are presented as the number of patients (%), mean ± standard deviation, or median (interquartile range).
N/A = not available, LDCT = low-dose computed tomography, CSCTmanual = manual scoring on calcium scoring computed tomography
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parameters are presented in Table 1 and Supplementary 
Table 1. Six types of CT machines from two companies 
were used for acquiring CSCT scans, and eight types of CT 
machines from three companies were used for obtaining LDCT 
scans. The CSCT and LDCT scans were acquired using machines 
from the same companies in 222 participants (98.7%) and 
using the same type of machine in 184 participants (81.8%). 
The median Agatston score was 0 (interquartile range [IQR], 
0 to 28.9) on CSCTmanual.

Comparison of Image Noise Among the Four LDCT Datasets
The median image noise was significantly different between 

the four LDCT datasets, showing the highest values in LDCT-
Org (104.9 HU, IQR 90.1 to 125.1 HU) and decreasing in the 
order of LDCT-TC (67.0 HU, IQR 57.8 to 83.1 HU), LDCT-KC 
(59.6 HU, IQR 51.3 to 73.4 HU), and LDCT-CONV (38.2 HU, 
IQR 33.3 to 48.0 HU) (uncorrected P < 0.0083, indicating 
statistical significance for multiple comparisons). 

Accuracy of Automatic Quantitative CAC Parameters on 
LDCT Before and After Image Conversion

The Bland–Altman analysis and CCCs for automatic CAC 
parameters on the four LDCT image datasets compared 
with CSCTmanual are shown in Table 2 and Figure 3. The mean 
biases with the SD of the Agatston scores on LDCT-Orgauto, 
LDCT-KCauto, LDCT-TCauto, and LDCT-CONVauto, compared with 
CSCTmanual, were 206.7, 36.22, 37.63, and -3.45, respectively. 
The CCCs for the Agatston score, volume score, and peak 
density were highest between CSCTmanual and LDCT-CONVauto 
(0.881 [95% CI 0.750–0.960], 0.883 [95% CI 0.748–0.964], 
and 0.891 [95% CI 0.854–0.919], respectively), whereas 

they were lowest between CSCTmanual and LDCT-Orgauto (0.269 
[95% CI 0.129–0.430], 0.212 [95% CI 0.100–0.350], and 
0.388 [95% CI 0.341–0.436], respectively). The accuracies 
of the volume score and peak density were highest for LDCT-
CONVauto and lowest for LDCT-Orgauto. The per-artery analysis 
showed a tendency similar to that of the per-subject 
analysis in terms of the Agatston score, volume score, and 
peak density. However, in all images processed using DL-
based image conversion, the CCC values for the Agatston 
score, volume score, and peak density were higher in the 
LAD than in the other vessels. Notably, in the case of LDCT-
CONVauto, the CCC values for the Agatston score, volume 
score, and peak density demonstrated excellent reliability 
only in the LAD, whereas the other vessels showed moderate 
to substantial reliability. 

Accuracy of Risk Category Assignment Using Automatic 
Agaston Scoring on LDCT Before and After Image Conversion 

Table 3 presents the kappa coefficients comparing both 
LDCT-Orgauto and LDCT-CONVauto with CSCTmanual. Figure 4 
and Supplementary Figure 1 present confusion matrices 
comparing the automatic scoring on the four LDCT image 
datasets with CSCTmanual. LDCT-Orgauto demonstrated poor 
agreement with CSCTmanual, with a weighted κ value of 0.115 
(95% CI 0.082–0.154). In contrast, LDCT-CONVauto achieved 
good agreement with CSCTmanual, showing a weighted κ value 
of 0.792 (95% CI 0.731–0.847). 

LDCT-CONVauto correctly assigned 77.3% (174/225) to 
the same risk category as CSCTmanual, 19.1% (43/225) were 
placed in a neighboring category, and 3.6% (8/225) differed 
by two categories from CSCTmanual. Among the 51 (22.7%) 

Fig. 3. Bland–Altman plots for the (A) Agatston score, (B) volume score, and (C) peak density on LDCT-CONVauto compared with CSCTmanual 
in all participants (n = 225). LDCT = low-dose computed tomography, LDCT-CONVauto = automatic scoring on LDCT images with both kernel 
and slice thickness conversion, CSCTmanual = manual scoring on calcium scoring computed tomography, SD = standard deviation
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participants showing one or more category differences, 
the risk categories of 37 (16.4%) were overestimated and 
14 (6.2%) were underestimated. Overestimations primarily 
occurred because of noise near the coronary artery areas 
being misinterpreted as CAC (23/37, 62.2%), pulmonary 
veins adjacent to the heart being mistaken for left circumflex 
artery calcification (8/37, 21.6%), and motion artifacts 
(4/37, 10.8%) (Supplementary Figs. 2, 3). In two cases of 
overestimation (5.4%), calcifications that were not visible 
on CSCT scans were detected on LDCT scans (Supplementary 
Fig. 3). All 14 cases of underestimation occurred entirely 
due to detection failure, which resulted from the reduction 

of calcification to <130 HU during the image reconstruction 
process (Supplementary Fig. 4).

Subgroup Analysis
In the subgroup of participants with CAC > 0 (n = 93) 

according to CSCTmanual, the mean biases for the Agatston 
score on LDCT-Orgauto, LDCT-KCauto, LDCT-TCauto, and LDCT-
CONVauto, compared with CSCTmanual, were 261.96, 65.98, 
56.23, and -10.65, respectively (Supplementary Table 2). 
LDCT-Orgauto exhibited the lowest CCC, indicating poor 
reliability (0.281 [95% CI, 0.084–0.496]) of the Agatston 
score in the per-subject analysis. In contrast, LDCT-KCauto 
and LDCT-TCauto showed moderate to substantial reliability 
(CCC 0.823 [95% CI, 0.712–0.891] and 0.664 [95% CI, 
0.441–0.831], respectively). LDCT-CONVauto demonstrated 
the highest CCC (0.855 [95% CI, 0.700–0.951]) among the 
datasets, indicating excellent reliability. For risk category 
assignment, LDCT-Orgauto demonstrated poor agreement 
with CSCTmanual, with a weighted κ value of 0.194 (95% CI, 
0.103–0.292, Supplementary Table 3). In contrast, LDCT-
CONVauto achieved good agreement with CSCTmanual, showing a 
weighted κ value of 0.740 (95% CI, 0.624–0.836). 

DISCUSSION

The present study demonstrated the effect of combined 
KC and TC techniques on fully automated CAC scoring in 
non-gated LDCT scans with thin slices and sharp kernel 
reconstruction. The image conversion performed for LDCT 
images significantly decreased image noise and improved 
the agreement and reliability of automatic CAC scoring, 
compared with CSCTmanual, at both per-subject and per-artery 
levels. 

LDCT is usually reconstructed with thin slice thickness and 
a sharp kernel to achieve a higher spatial resolution, which 
is beneficial for imaging high-contrast structures, such as 
bones or lungs [33,34]. However, this setting increases 
image noise and compromises the evaluation of low-contrast 
structures, such as the mediastinum or soft tissue, hindering 
accurate CAC measurement on LDCT scans [23]. Previous 
studies indicated that reconstruction of LDCT scans with a 
smooth kernel, as opposed to a sharp kernel, is more reliable 
method for evaluating CAC [35]. Additionally, thinner slices 
significantly increase the CAC scores [22,36]. Moreover, 
the performance of the automatic CAC scoring software, 
in addition to the CAC score itself, could potentially be 
influenced by the LDCT scanning protocol. Although several 

Table 3. Agreement in risk category assignment using Agaston 
scoring between LDCT and CSCTmanual in all participants (n = 225)

Index Weighted kappa (95% CI)
LDCT-Orgauto 0.115 (0.082, 0.154)
LDCT-KCauto 0.424 (0.360, 0.492)
LDCT-TCauto 0.442 (0.375, 0.510)
LDCT-CONVauto 0.792 (0.731, 0.847)

LDCT = low-dose computed tomography, CSCTmanual = manual scoring 
on calcium scoring computed tomography, CI = confidence interval, 
LDCT-Orgauto = automatic scoring on original LDCT images without 
conversion, LDCT-KCauto = automatic scoring on LDCT images with 
kernel conversion, LDCT-TCauto = automatic scoring on original LDCT 
images with slice thickness conversion, LDCT-CONVauto = automatic 
scoring on LDCT images with both kernel and slice thickness 
conversion
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images with both kernel and slice thickness conversion, CSCTmanual = 
manual scoring on calcium scoring computed tomography
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studies have shown the clinical utility of DL-based automatic 
CAC measurement in LDCT, such as the correlation between 
DL-based CAC on CSCT and LDCT scans [22,37-39], or its 
prognostic value [40], the LDCT scans in these studies were 
typically reconstructed with smooth/soft tissue kernels 
or thicker slices. Indeed, a recent multi-center study 
found that the imaging protocols of LDCT datasets varied 
across participating institutions, leading to performance 
differences in automatic software for CAC measurement 
based on the reconstruction kernel or slice thickness used 
[23]. We hypothesized that image conversion, including the 
conversion of kernel and slice thickness in LDCT scans, could 
facilitate a more accurate evaluation of CAC. 

 Our image conversion technique may offer a potential 
solution for minimizing the influence of variations among 
LDCT protocols. Using DL-based image conversion, we 
effectively reduced image noise, which likely contributed 
to the improved accuracy of automated CAC scoring. 
Consequently, the Agatston score, volume score, and peak 
density demonstrated excellent agreement with the reference 
standard for the multi-center datasets acquired using 
CT scanners from various manufacturers. These findings 
demonstrate the potential clinical utility of automated 
CAC scoring on converted LDCT images. This approach is a 
potential practical solution for achieving faster and more 
efficient CAC evaluation in clinical practice.

In addition to image conversion, performing additional 
image reconstruction of LDCT scans using the same 
parameters as CSCT (e.g., 2.5-mm or 3-mm slice thickness 
and soft kernel) could also be considered a solution. 
However, this approach has limitations, as previous studies 
have indicated that the CAC evaluation accuracy may 
decrease when LDCT images are acquired at slice thicknesses 
≥2.5 mm. One study demonstrated higher agreement 
with CSCT for CAC severity classification with automated 
measurement at a slice thickness of 1-mm (κ > 0.8) compared 
with 2.5-mm slice thickness (κ = 0.776) [22]. Similarly, 
another study reported that CAC measurement on LDCT scans 
with 2.5-mm slice thickness tended to be underestimated, 
with 12.8% of high-risk CAC scores underestimated, 
compared with ECG-gated CT with 2.5-mm slice thickness 
[41]. Although these studies did not thoroughly examine 
variations in other CT parameters or among CT vendors, 
the findings suggest that LDCT with thinner slice thickness 
may offer a more accurate CAC assessment than does LDCT 
with 2.5-mm or 3-mm slice thickness. In fact, two cases 
of CAC overestimation on LDCT-CONVauto in our study were 

due to the identification of small calcifications that were 
undetected on CSCT. Practical considerations, such as data 
storage capacity, radiologist workload and preferences, 
when reviewing multiple image series, and institutional 
differences in clinical practice should also be considered 
before performing additional image reconstructions. 
Therefore, further well-designed research is necessary to 
compare the accuracy between automated CAC measurement 
on converted LDCT images that were originally reconstructed 
with thin slices and sharp kernel and those reconstructed 
with 2.5-mm or 3-mm slices and soft kernel.

Despite the implementation of image conversion in our 
study, several unresolved issues concerning automated 
CAC measurement on LDCT remain, necessitating further 
investigation. First, in addition to the impact of high 
image noise, motion artifacts caused by the absence of 
ECG-gating contribute to inaccurate CAC scoring and 
the misclassification of risk categories. In our study, 
10.8% (4/37) of the overestimations of CAC severity 
categories on LDCT-CONVauto were due to motion artifacts. 
These are challenging to overcome due to the inherent 
characteristics of non-ECG-gated chest CT. Second, 72.0% 
of cases in our study used iterative reconstruction (IR) on 
LDCT scans. Previous studies have reported that IR tends 
to yield lower CAC scores, compared with filtered back 
projection [42-44]; however, IR does not significantly affect 
CAC severity classification. Given that LDCT scans without IR 
have high image noise and reduced image quality, omitting 
IR or performing additional filtered back projection for CAC 
measurement on LDCT scans may not be practical from the 
standpoint of resources and reader workload. Nonetheless, 
as this study was not specifically designed to evaluate the 
influence of IR on CAC scoring, further research is needed 
to explicitly address this issue. Finally, the most common 
cause of CAC score underestimation on LDCT scans was the 
attenuation values of calcifications being <130 HU as a 
result of image conversion. The 130-HU threshold currently 
remains critical for CAC measurement in clinical practice; 
thus, future studies should either consider adjusting this 
threshold or develop an optimized method for weighting KC.

Our study has some limitations. First, our datasets consisted 
of a high percentage of participants with CAC = 0 in the 
reference standard and CT scans acquired using scanners from 
a specific manufacturer, which could have overestimated 
the impact of image conversion or limited the capacity to 
generalize the findings to a broader spectrum of scanner 
models. Although LDCT-CONVauto demonstrated good 
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performance in our subgroup analysis of participants with 
CAC >0, further studies using a large number of participants 
with positive CAC or CT scans with varying protocols and 
equipment are required to establish the broader applicability 
of DL-based image conversion. Second, we included 
participants who underwent CSCT and LDCT within a 6-month 
interval. Although performing two CT scans on the same day 
would be optimal to minimize the impact of potential CAC 
progression, we set the scan interval based on the results 
of previous studies. A previous study utilizing data from 
the Multi-Ethnic Study of Atherosclerosis found that the 
annual incidence rate of CAC in Asian individuals (Chinese) 
free of CAC at baseline was 4.7% among women and 4.4% 
among men [45]. Furthermore, among Chinese patients with 
detectable CAC at baseline, the median annual progression 
rate of CAC was observed to be 12.7 Agatston units per year. 
Additionally, previous studies comparing the CAC scores 
between CSCT and LDCT demonstrated a high correlation and 
accuracy for intervals up to a median of 7–10 months [46,47]. 
Therefore, a 6-month interval was deemed acceptable for 
maintaining consistency between the CAC scores obtained 
from CSCT and LDCT. Third, we did not correlate the 
cardiovascular outcomes of the participants with our results 
owing to the relatively small sample size. Additional multi-
center studies are needed to validate the image conversion 
and correlate the findings with clinical prognosis. 

In conclusion, automated CAC measurement using image 
conversion on LDCT scans originally obtained with thin slices 
and sharp kernel demonstrated excellent accuracy, compared 
with manual scoring, in multi-institutional datasets. 
However, further improvements in image conversion 
techniques are required to achieve more accurate results. 
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