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Deep Learning-Based Landmark Detection Model 
for Multiple Foot Deformity Classification: 
A Dual-Center Study 
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Purpose: To introduce heatmap-in-heatmap (HIH)-based model for automated diagnosis of foot deformities using weight-bear-
ing foot radiographs, aiming to address the labor-intensive and variable nature of manual diagnosis. 
Materials and Methods: From January 2004 to September 2022, a dual-center retrospective study was conducted. In the first cen-
ter, 1561 anterior-posterior (AP) and 1536 lateral images from 806 patients were used for model training, while 374 AP and 373 lat-
eral images from 196 patients were allocated to the validation set. For external validation at the second center, 527 AP and 529 later-
al images from 270 patients were allocated. Five deformities were diagnosed using four and three angles between the predicted 
landmarks in the AP and lateral images, respectively. The results were compared with those of the baseline model (FlatNet).
Results: The HIH model demonstrated robust performance in diagnosing multiple foot deformities. On the test set, it outper-
formed FlatNet with higher accuracy (FlatNet vs. HIH: 78.9% vs. 85.1%), sensitivity (78.9% vs. 84.1%), specificity (79.0% vs. 85.9%), 
positive predictive value (77.3% vs. 84.4%), and negative predictive value (80.5% vs. 85.7%). Additionally, HIH exhibited signifi-
cantly lower absolute pixel and angle errors, lower normalized mean errors, higher successful detection rate, faster training and 
inference speeds, and fewer parameters. 
Conclusion: The HIH model showed robust performance in diagnosing multiple foot deformities with high efficacy in internal and 
external validation. Our approach is expected to be effective for various tasks using landmarks in medical imaging.
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INTRODUCTION

Foot deformities include a wide spectrum of anatomical ab-
normalities. Although there is no gold standard for diagnosing 
foot deformities, utilizing weight-bearing foot radiographs is a 
commonly used method that measures certain angles from 
the given foot images and detects deformities based on pre-
defined diagnostic criteria. However, the measurement of 
these angles requires the annotation of anatomical landmark 
points by experienced doctors, which is a labor-intensive pro-
cess with high variability between clinicians.1 

With this background, recent studies have attempted to pre-
dict foot deformities from radiograph images by finding ana-
tomical landmarks using deep learning models.2-6 However, 
most of these studies have relied solely on lateral view images 
and have only been able to detect pes planus. Considering that 
multiple foot deformities may coexist in a single patient and 
that a certain deformity may lead to the development of other 
foot deformities, this limitation hinders the applicability of 
prediction models in actual clinical practice.7,8 Furthermore, 
most prior research has relied on computationally inefficient 
or outdated models,9,10 even in recently published works.3,5 For 
example, FlatNet, a recent model that has been used to re-
search foot deformities,3 is based on a relatively outdated mod-
el architecture, despite its recent release. Additionally, it re-
quires a separate prediction model for each landmark, leading 
to a high computational cost.

In this study, our primary goal was to develop a landmark 

detection model for the prediction of various foot deformities 
while utilizing both anterior-posterior (AP) and lateral view 
images, which sets our work apart from previous studies in the 
field. While acknowledging the potential inefficiency and sub-
optimal performance of the existing FlatNet model, we de-
signed landmark detection models for automated diagnosis 
using datasets from two distinct institutions. We adopt heat-
map-in-heatmap (HIH), a relatively efficient and lightweight 
model for facial landmark detection,11 to detect anatomical 
landmarks for multiple foot deformity diagnoses in AP and lat-
eral view foot radiographs. The HIH model demonstrates 
higher landmark detection and diagnosis performance with 
significantly faster training and inference speeds compared to 
the baseline FlatNet model. 

MATERIALS AND METHODS

Datasets
This study was approved by the Institutional Review Board of 
Severance Hospital, Yonsei University Health System, Seoul, 
Korea (IRB approval number: 4-2022-1124), which waived the 
need for informed consent due to its retrospective nature. 
This study was performed according to the approved protocol 
and the guidelines of the Declaration of Helsinki.

This retrospective study was conducted using data from pa-
tients aged ≥7 years who visited the Department of Rehabilita-
tion Medicine of Severance Hospital and Gangnam Severance 

Split with about 
a 4:1 ratio

1527 feet 
w/ AP & lateral images

370 feet 
w/ AP & lateral images

Diagnosis of deformities

525 feet 
w/ AP & lateral images

A total of 5605 AP & lateral radiographs
                                  • 4407 from Severance Hospital
                                  • 1198 from Gangnam Severance Hospital

2462 AP & 2438 lateral images 
(from 1272 patients)

Severance Hospital Gangnam Severance Hospital

Exclusion of 705 images
           • Metal objects (n=8)
           • Foot orthosis (n=8)
           • Poor image quality (n=689)

Training set
             • 1561 AP images
             • 1536 lateral images

Validation set
                • 374 AP images
                • 373 lateral images

Test set
                • 527 AP images
                • 529 lateral images

Fig. 1. Flowchart of study design and dataset construction. AP, anterior-posterior.
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Hospital from January 2004 to September 2022 (Fig. 1). The pa-
tients included those who visited our center for musculoskele-
tal pain and foot deformities caused by neuromuscular diseas-
es such as cerebral palsy and stroke. Of the initially included 
5605 radiographs, 705 images were excluded due to metal ob-
jects, foot orthosis, and poor image quality. Finally, 2462 AP 
and 2438 lateral images were registered. 

The samples from Severance Hospital were allocated to the 
training and validation sets according to the date of imaging, 
with a ratio of approximately 4:1. Consequently, 1561 AP and 
1536 lateral images from 806 patients were used for model 
training, whereas 374 AP and 373 lateral images from 196 pa-
tients were allocated to the validation set. For external valida-
tion, 527 AP and 529 lateral images of 270 patients from Gang-
nam Severance Hospital were included in the test set. After 
training, deformities were diagnosed on the feet with both AP 
and lateral images available. 

The training of deep learning models is fundamentally per-
formed on a training set, and the trained model is then applied 
to a test set to evaluate its final performance. The training pro-
cess on the training set involves continuously minimizing the 
loss function between the predicted outcomes and ground truth 

through iterative updates. Although the loss on the training set 
decreases as training progresses, there is a risk that perfor-
mance on other evaluation samples may degrade, a phenome-
non known as overfitting. To prevent this, at every training ep-
och, we evaluated the validation set and selected the model 
checkpoint with the best performance in the validation set as 
the final model. Using this final model, we conducted the eval-
uation on the test set. By setting aside a validation set separate 
from the test set, the issue of overfitting can be mitigated to 
some extent compared to using only a train/test split.

Anatomical landmarks and diagnosis
For diagnosis, specific anatomical criteria were used to deter-
mine 16 and 11 landmarks on the AP and lateral images,12,13 
respectively (Fig. 2 and Supplementary Fig. 1, only online). 
For non-adults (ages 7–18), different criteria were applied for 
normal angle values compared to adults, as detailed in Supple-
mentary Table 1 (only online).14,15 With the acquired 27 land-
marks, four and three angles in the AP and lateral images were 
measured for diagnosis, respectively. Using these angles, five 
deformities were diagnosed: 1) pes planus, 2) pes cavus, 3) 
hindfoot valgus, 4) forefoot abduction, and 5) hallux valgus. 

A B

Fig. 2. Overview of radiographic landmarks and diagnostic angles. A total of 16 (A1–A16) and 11 (L1–L11) landmarks were annotated in the AP (A) and lat-
eral images (B), respectively. Thereafter, four angles in the AP images and three angles in the lateral images were measured. The anatomical description 
of the landmarks is described in the Supplementary Fig. 1 (only online). AP, anterior-posterior.
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Data preprocessing
All images from Severance Hospital and Gangnam Severance 
Hospital were taken using devices from DK (Seongnam, Ko-
rea) and Philips (Amsterdam, Netherlands) Medical Systems. 
The pixel spacing of the images was adjusted to 0.15×0.15 mm 
using the ImageIO 2.15.0 and Scipy 1.5.4 Python libraries. If a 
single image contained both feet, it was cropped and separated 
so that each image contains only one foot. De-identification 
was performed using Deid 0.3.22 and Pydicom 2.3.0 Python li-
braries. 

The landmark annotation processes were performed using 
Slicer 3D (https://www.slicer.org/) by three doctors: A (board-
certified physician of rehabilitation medicine with 7 years of 
experience), B (in-training doctor of rehabilitation medicine 
with 4 years of experience), and C (board-certified physician of 
radiation oncology with 5 years of clinical experience and deep 
learning research). Doctors A, B, and C independently anno-
tated 3228, 905, and 767 radiographs, respectively, without dis-
cussion. Subsequently, the three doctors gathered and collec-
tively reviewed the annotation results.

Models
In this study, our proposed model (HIH) was compared to the 
baseline model (FlatNet), which is based on commonly used 
methods in several previous studies.9,16,17 For each architec-
ture, the models for the AP and lateral images were created 
and trained separately (Fig. 3A). The models with the lowest 
landmark prediction losses in validation set were selected as 
the final prediction models. 

The baseline, FlatNet, is a two-stage landmark detection 
model. The first stage uses a patch detection model, whereas 
the second stage predicts the location of each landmark with-
in the previously suggested region.5 A separate architecture is 

required for every landmark in the second stage (i.e., a total of 
27 models), which significantly increases the time and mem-
ory complexity. 

On the other hand, HIH predicts all landmarks with a single 
model (Fig. 3B). The model generates two types of heatmaps 
(integer and decimal) to predict landmark offsets through the 
application of the HourGlass architecture.11 The model incor-
porates decimal heatmaps to represent subpixel coordinates, 
which can mitigate quantization errors in pixel-level tasks. Un-
like the original study, we applied two 7×7 convolutional layers 
to the output integer heatmaps and added a residual connec-
tion from the original heatmaps. This modification was made 
because we wanted to make the final predictions by consider-
ing the correlation between landmarks by aggregating the in-
dependently predicted heatmap results for each landmark and 
refining them once again. The results of the ablation study on 
this matter are described in the Supplementary Table 2 (only 
online). All the inputs were padded to be square, and the input 
and output sizes were set as 512×512 and 128×128, respectively. 

All the codes were implemented using Python 3.6.9 and Py-
Torch 1.10.2, and the details for model implementation are 
described in the Supplementary Material (only online). The 
code for the proposed deep learning model is publicly avail-
able at: https://github.com/hangyulyoon/foot-deformity. 

Evaluation of model performance and statistical 
analysis
We measured the evaluation metrics for 1) diagnosis, 2) land-
mark detection, and 3) computational efficiency. To assess the 
diagnostic abilities, metrics including accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative pre-
dictive value (NPV) were used. 

The mean absolute errors of pixel distances and diagnostic 

Fig. 3. Overall frameworks of our proposed approach. (A) Two models are trained to predict AP and lateral landmarks, and diagnoses for the five-foot de-
formities are performed using the angles between the landmarks. Criteria for non-adults are described in the Supplementary Table 1 (only online). (B) Over-
all framework of our HIH model. The model outputs two types of heatmaps (integer and decimal heatmaps) for N landmarks. During training, two losses (re-
gression and classification loss terms) are used. AP, anterior-posterior; HIH, heatmap-in-heatmap.

A B
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angles were calculated to evaluate landmark detection perfor-
mance, and then they were compared using paired t-tests. In 
addition, normalized mean error (NME) and successful detec-
tion rate (SDR) were used. The NME is calculated by dividing 
the distance between the ground truth and predicted points 
into a normalization factor. SDR of χ (mm) is the proportion of 
the predicted points within χ (mm) of the ground truth points. 

For computational efficiency, three metrics were measured: 
1) number of parameters, 2) training time (per epoch), and 
3) inference time (per sample). All tests were performed in the 
same environment and with the same graphics processing 
unit (GPU).

All statistical analyses were conducted using the Scipy 1.5.4 
Python library. To compare the characteristics between all da-
tasets, chi-square and one-way analysis of variance tests were 
employed for categorical and continuous variables, respec-
tively. A paired t-test was used to examine whether the predic-
tion results from the two given models were significantly dif-
ferent.

RESULTS

Patient characteristics
The characteristics of the datasets are summarized in Table 1. 
The training set included a relatively higher proportion of non-
adults (54.8%) compared to the validation (29.6%) and test 
(14.8%) sets (p<0.001). In addition, there was a significant dif-
ference in the distribution of sex (p=0.003). The table also shows 
the number of deformities and the mean angles for diagnosis 
of each dataset with feet that have both the AP and lateral 
images. 

The ratios of deformities, including hindfoot valgus (p<0.001), 
forefoot abduction (p<0.001), and hallux valgus (p=0.007), dif-
fered significantly across the datasets. Additionally, significant 
differences were observed in the mean angles: talonavicular 
(p<0.001), 1st metatarsal-talar (p=0.015), Meary’s angle (p<0.001), 
calcaneal pitch (p<0.001), and lateral talocalcaneal angle (p< 
0.001).

Table 1. Patient Demographics and Dataset Characteristics

Training set Validation set Test set p value*
Number of subjects (n=806) (n=196) (n=270) -
Age (yr) <0.001

≥18 364 (45.2) 138 (70.4)   230 (85.2)
<18 442 (54.8)   58 (29.6)     40 (14.8)

Sex 0.003
Male 381 (47.3) 103 (52.6) 1010 (37.4)
Female 425 (52.7)   93 (47.4)   169 (62.6)

Number of images -
AP view 1561 374 527
Lateral view 1536 373 529

Number of feet -
Total 1583 376 531
w/ both the AP & lateral images 1527 370 525

Deformity (n=1527) (n=370) (n=525)
Pes planus 1079 (70.7) 247 (66.8) 344 (65.5) 0.055
Pes cavus   198 (13.0)   45 (12.2)   56 (10.7) 0.382
Hindfoot valgus   554 (36.3)  197 (53.2) 310 (59.0) <0.001
Forefoot abduction   976 (63.9) 270 (73.0) 382 (72.8) <0.001
Hallux valgus   365 (23.9) 109 (29.5) 157 (29.9) 0.007

Angles in AP image (°)
AP talocalcaneal 27.25±11.29 28.24±10.70 26.49±10.78 0.066
Talonavicular 22.03±17.77 19.08±15.26 15.41±9.77 <0.001
1st metatarsal-talar -11.57±14.91 -9.70±13.50 -9.99±11.06 0.015
Hallux abductus 13.08±10.21 13.79±8.79 13.80±8.47 0.211

Angles in lateral image (°)
Meary’s angle 8.54±13.24 5.56±10.11 4.92±7.86 <0.001
Calcaneal pitch 13.96±7.41 16.12±6.93 17.90±5.40 <0.001
Lateral talocalcaneal 33.28±11.93 36.74±10.53 39.71±8.16 <0.001

AP, anterior-posterior.
The deformities and diagnostic angles were evaluated in feet with both the AP and lateral view images.
*Distributions of the three datasets were compared using the chi-square and one-way ANOVA tests.
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Deformity diagnosis 
Table 2 shows the diagnostic ability for multiple deformities 
and the overall statistics using the micro-average. In the vali-
dation set, our HIH model outperformed the FlatNet model in 
terms of overall accuracy (FlatNet vs. HIH: 85.2% vs. 88.1%), 
sensitivity (82.8% vs. 89.2%), PPV (85.2% vs. 85.9%), and NPV 
(85.2% vs. 90.1%). In terms of each individual deformity, our 
model showed higher accuracy in diagnosing pes planus (85.7% 
vs. 89.7%), hindfoot valgus (77.6% vs. 83.5%), and forefoot ab-
duction (83.2% vs. 90.0%) compared to the baseline. In addi-
tion, although the accuracies of the other deformities were 
similar between the two models, our model showed a higher 
sensitivity for hallux valgus (66.1% vs. 81.7%).

In the test set, our model demonstrated higher performance 
in all overall evaluation metrics. Our model showed better ac-
curacy (78.9% vs. 85.1%), sensitivity (78.9% vs. 84.1%), specific-
ity (79.0% vs. 85.9%), PPV (77.3% vs. 84.4%), and NPV (80.5% 
vs. 85.7%) compared to the baseline. The diagnostic accuracy 
of our model was also high for pes planus (82.7% vs. 85.5%), 
hindfoot valgus (68.2% vs. 78.9%), forefoot abduction (74.9% 
vs. 85.1%), and hallux valgus (78.9% vs. 85.9%). Furthermore, 

for a relatively minor deformity such as pes cavus (n=56), our 
model showed relatively good sensitivity (67.9% vs. 80.4%), 
while the baseline model did not. 

Landmark prediction performance 
The average absolute differences in pixel distance and angles 
for diagnosis between the ground truth and predicted results 
are shown in Table 3. Our model demonstrated low pixel error 
in both the validation (AP 7.02±5.84 vs. 4.61±4.46 pixels, p< 
0.001; lateral 10.60±16.26 vs. 7.38±6.13 pixels, p<0.001) and test 
(AP 4.70±4.07 vs. 2.73±1.93 pixels, p<0.001; lateral 5.50±8.05 
vs. 3.81±4.16 pixels, p<0.001) sets compared to the baseline. 
Prediction examples of the baseline and our models are shown 
in Fig. 4.

Our model also exhibited lower absolute angle prediction 
errors in most cases. In the validation set, our absolute angle 
differences were lower in AP talocalcaneal (12.35°±10.07° vs. 
8.66°±7.88°, p<0.001), talonavicular (7.80°±8.28° vs. 4.72°±4.09°, 
p<0.001), and 1st metatarsal-talar (10.33°±9.01° vs. 6.26°±6.91°, 
p<0.001) angles than those of the baseline. In the test set, our 
model also demonstrated lower absolute angle errors com-

Table 2. Diagnostic Abilities for Multiple Foot Deformities

Models Accuracy Sensitivity Specificity PPV NPV
Validation set (n=370)

Pes planus (n=247) FlatNet 317/370 (85.7) 219/247 (88.7) 98/123 (79.7) 219/244 (89.8) 98/126 (77.8)
HIH 332/370 (89.7)* 227/247 (91.9)* 105/123 (85.4)* 227/245 (92.7)* 105/125 (84.0)*

Pes cavus (n=45) FlatNet 343/370 (92.7)* 34/45 (75.6)* 309/325 (95.1)* 34/50 (68.0)* 309/320 (96.6)*
HIH 337/370 (91.1) 33/45 (73.3) 304/325 (93.5) 33/54 (61.1) 304/316 (96.2)

Hindfoot valgus (n=197) FlatNet 287/370 (77.6) 155/197 (78.7) 132/173 (76.3) 155/196 (79.1) 132/174 (75.9)
HIH 309/370 (83.5)* 173/197 (87.8)* 136/173 (78.6)* 173/210 (82.4)* 136/160 (85.0)*

Forefoot abduction (n=270) FlatNet 308/370 (83.2) 239/270 (88.5) 69/100 (69.0) 239/270 (88.5) 69/100 (69.0)
HIH 333/370 (90.0)* 252/270 (93.3)* 81/100 (81.0)* 252/271 (93.0)* 81/99 (81.8)*

Hallux valgus (n=109) FlatNet 321/370 (86.8)* 72/109 (66.1) 249/261 (95.4)* 72/84 (85.7)* 249/286 (87.1)
HIH 318/370 (85.9) 89/109 (81.7)* 229/261 (87.7) 89/121 (73.6) 229/249 (92.0)*

Overall  FlatNet 1576/1850 (85.2) 719/868 (82.8) 857/982 (87.3)* 719/844 (85.2) 857/1006 (85.2)
HIH 1629/1850 (88.1)* 774/868 (89.2)* 855/982 (87.1) 774/901 (85.9)* 855/949 (90.1)*

Test set (n=525)
Pes planus (n=344) FlatNet 434/525 (82.7) 299/344 (86.9) 135/181 (74.6) 299/345 (86.7) 135/180 (75.0)

HIH 449/525 (85.5)* 305/344 (88.7)* 144/181 (79.6)* 305/342 (89.2)* 144/183 (78.7)*
Pes cavus (n=56) FlatNet 473/525 (90.1)* 38/56 (67.9) 435/469 (92.8)* 38/72 (52.8)* 435/453 (96.0)

HIH 472/525 (89.9) 45/56 (80.4)* 427/469 (91.0) 45/87 (51.7) 427/438 (97.5)*
Hindfoot valgus (n=310) FlatNet 358/525 (68.2) 212/310 (68.4) 146/215 (67.9) 212/281 (75.4) 146/244 (59.8)

HIH 414/525 (78.9)* 242/310 (78.1)* 172/215 (80.0)* 242/285 (84.9)* 172/240 (71.7)*
Forefoot abduction (n=382) FlatNet 393/525 (74.9) 310/382 (81.2) 83/143 (58.0) 310/370 (83.8) 83/155 (53.5)

HIH 447/525 (85.1)* 335/382 (87.7)* 112/143 (78.3)* 335/366 (91.5)* 112/159 (70.4)*
Hallux valgus (n=157) FlatNet 414/525 (78.9) 126/157 (80.3)* 288/368 (78.3) 126/206 (61.2) 288/319 (90.3)

HIH 451/525 (85.9)* 124/157 (79.0) 327/368 (88.9)* 124/165 (75.2)* 327/360 (90.8)*
Overall  FlatNet 2072/2625 (78.9) 985/1249 (78.9) 1087/1376 (79.0) 985/1274 (77.3) 1087/1351 (80.5)

HIH 2233/2625 (85.1)* 1051/1249 (84.1)* 1182/1376 (85.9)* 1051/1245 (84.4)* 1182/1380 (85.7)*
HIH, heatmap-in-heatmap; PPV, positive predictive value; NPV, negative predictive value.
All statistics are presented as predicted number/total number (%). The overall statistics were calculated by micro-averaging the values for each deformity.
*Higher values.
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pared to the baseline: AP talocalcaneal (16.17°±15.93° vs. 
7.94°±6.12°, p<0.001), talonavicular (8.63°±7.44° vs. 5.03°±4.20°, 
p<0.001), 1st metatarsal-talar (13.19°±13.30° vs. 6.26°±4.79°, p< 
0.001), hallux abductus (4.41°±4.70° vs. 3.53°±2.58°, p<0.001), 
calcaneal pitch (2.05°±2.61° vs. 1.53°±1.33°, p<0.001), and lat-
eral talocalcaneal (3.51°±4.63° vs. 2.56°±1.98°, p<0.001) angles. 

Table 4 lists the NME and SDR values obtained from the 
prediction results. In all datasets and image views, our model 

showed lower NME and higher SDR at 1, 2, 3, and 4 mm com-
pared to the baseline. The gap in SDR between the two mod-
els increased as the cut-off value decreased in both datasets 
(e.g., SDR 4 mm 99.4% vs. 99.5%, 3 mm 98.2% vs. 99.2%, 2 mm 
89.1% vs. 97.2%, 1 mm 59.4% vs. 82.6% in AP images of the 
validation set). The NMEs of the individual landmarks are 
shown in Fig. 5. Using our model, landmarks A16 and A15 
(proximal and distal lateral border of the calcaneus) of AP im-
ages showed the highest and second highest NME in the vali-
dation set, and landmarks A5 and A7 (medial and lateral in-
flections between the head and neck of 1st metatarsal bone) 
of AP images showed the highest and second highest NME in 
both test sets, respectively. For lateral images, landmarks L8 
(cephalad margin of the talar body) and L6 (inferior border of 
the talar head) in the validation set and landmarks L8 and L9 
(cephalad and caudal margins of the talar body) in the test set 
showed the highest and second highest NME, respectively. 
Our model demonstrated a lower NME compared to the base-

Table 3. Absolute Errors of Pixels and Diagnostic Angles from the Predicted Landmarks

Validation set (n=370) Test set (n=525)
FlatNet HIH p value FlatNet HIH p value

Pixel errors (pixels)
AP images 7.02±5.84 4.61±4.46 <0.001* 4.70±4.07 2.73±1.93 <0.001*
Lateral images 10.60±16.26 7.38±6.13 <0.001* 5.50±8.05 3.81±4.16 <0.001*

Angle errors (°)
AP talocalcaneal 12.35±10.07 8.66±7.88 <0.001* 16.17±15.93 7.94±6.12 <0.001*
Talonavicular 7.80±8.28 4.72±4.09 <0.001* 8.63±7.44 5.03±4.20 <0.001*
Metatarsal-talar 10.33±9.01 6.26±6.91 <0.001* 13.19±13.30 6.26±4.79 <0.001*
Hallux abductus 3.67±3.12 3.67±2.78 0.997 4.41±4.70 3.53±2.58 <0.001*
Meary’s angle 3.75±4.36 3.53±3.16 0.398 3.49±3.43 3.48±2.60 0.927
Calcaneal pitch 1.31±1.19 1.40±1.12 0.215 2.05±2.61 1.53±1.33 <0.001*
Lateral talocalcaneal 2.63±2.65 2.42±1.99 0.206 3.51±4.63 2.56±1.98 <0.001*

AP, anterior-posterior; HIH, heatmap-in-heatmap.
*p<0.05.

A

B

FlatNet

FlatNet Ours

Ours

Fig. 4. Prediction results between the two models in AP and lateral imag-
es from the same patient. The ground truth and predicted points are col-
ored blue and red, respectively. (A) In the AP image, our model predicts all 
landmarks better overall. (B) In the lateral image, the predictions of the two 
models are similar in most cases. However, the outputs of FlatNet have an 
outlier with a large pixel error (yellow arrow). AP, anterior-posterior.

Table 4. Normalized Mean Errors and Successful Detection Rates of the 
Baseline and Our Models

Model
NME ↓
(×10-3)

SDR ↑ (%)
<1 mm <2 mm <3 mm <4 mm

Validation set (n=370)
AP images FlatNet 8.341 59.4 89.1   98.2   99.4

HIH 5.467 82.6 97.2   99.2   99.5
Lateral images FlatNet 7.976 46.4 81.8   92.4   95.4

HIH 5.506 58.4 87.9   95.5   98.1
Test set (n=525)

AP images FlatNet 8.522 82.6 98.1   99.3   99.8
HIH 4.974 95.7 99.8 100.0 100.0

Lateral images FlatNet 7.833 79.6 96.8   98.4   98.9
HIH 5.408 89.2 99.2   99.8   99.9

↓, the lower, the better; ↑, the higher, the better; AP, anterior-posterior; HIH, heat-
map-in-heatmap; NME, normalized mean error; SDR, successful detection rate.
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line in all datasets and image views except L6 and L11 (posteri-
or tuberosity of the calcaneus) of the validation set and L8 of 
the test set, suggesting that our model predicted the outcomes 
with lower pixel errors in most landmark positions. 

 

Computational efficiency 
The computational efficiencies of the baseline and our mod-

els for lateral images are summarized in Fig. 6. Compared to 
our model, the baseline has approximately 11 times more pa-
rameters (287.2 M vs. 28.2 M) and approximately 25 and 15 
times longer training time per epoch (118.10 min vs. 4.67 min) 
and inference time per sample (1.31 sec vs. 0.09 sec) with the 
given single GPU. In other words, the whole training time of 
the baseline model goes up to approximately 98.42 hours for 
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Fig. 5. (A) Normalized mean error for the landmarks in AP and lateral view images of the validation set. (B) Normalized mean error for the landmarks in AP 
and lateral view images of the test set. A lower NME value indicates a lesser pixel distance error between the ground truth and predicted coordinates. 
NME, normalized mean error; AP, anterior-posterior.

Fig. 6. Comparison of the computational efficiency between the two models. All the measurements were conducted using a single NVIDIA TITAN Xp 
12GB GPU, in lateral images. 

Total parameters 
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287.2 M 118.10 min
1.31 sec

28.2 M 4.67 min 0.09 sec
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×25.29 times ×14.56 times

Training time per epoch 
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Inference time per sample 
(second)



499

Su Ji Lee, et al.

https://doi.org/10.3349/ymj.2024.0246

50 epochs, while the whole training time of our model is ap-
proximately 3.89 hours for 50 epochs. In addition, the total in-
ference times to predict the outcomes of 500 samples are ap-
proximately 10.92 and 0.75 minutes if we use the baseline and 
our models, respectively. 

DISCUSSION

This study discovered that multiple foot deformities can be di-
agnosed by finding landmarks in foot radiographs based on 
deep learning models, particularly the HIH model. HIH detects 
not only the presence of pes planus but also other frequently 
observed foot deformities associated with its pathophysiology, 
including hindfoot valgus and forefoot abduction. Compared 
with the baseline FlatNet model, our model showed better de-
formity diagnosis and landmark detection abilities, with signifi-
cantly faster training and inference speeds. 

To the best of our knowledge, this is the first study to use a 
deep learning model to detect various foot deformities other 
than pes planus while utilizing both AP and lateral view foot 
radiographs. Previous studies have primarily focused on diag-
nosing pes planus using lateral foot radiographs. For instance, 
Ryu, et al.5 used FlatNet to predict pes planus in 100 and 17 lat-
eral foot radiographs for internal and external validation, re-
spectively. In external validation, the absolute average errors 
were 0.61°±0.45° for calcaneal pitch, 2.59°±2.40° for Meary’s 
angle, and 2.26°±2.18° for talocalcaneal angle. However, this 
study did not report diagnostic metrics such as accuracy, sen-
sitivity, and specificity. Similarly, Koo, et al.4 designed a single-
center study using a segmentation model to predict pes planus 
with 300 and 95 training and validation samples, respectively. 
In the validation set, the average accuracy, sensitivity, and 
specificity for Meary’s angle were 90.18%, 90.48%, and 89.94%, 
respectively, while for the calcaneal pitch, they were 96.84%, 
96.88%, and 96.77%, respectively. However, Koo’s study was a 
single-center study and had the limitation of not performing 
external validation.

The foot’s three-dimensional structure makes it challenging 
to diagnose using only lateral views, necessitating the inclusion 
of AP views for a comprehensive assessment. Unlike previous 
studies that focused solely on lateral views, this study incorpo-
rated both AP and lateral views in the diagnostic process. As a 
result, our model demonstrated superior performance across 
various diagnostic metrics, including accuracy, compared to 
the baseline model. Furthermore, the HIH model showed sta-
tistically significant lower errors in pixel distances and diag-
nostic angles from the predicted landmarks than FlatNet, con-
firming its enhanced performance. Additionally, in the analysis 
of NME and SDR, which are metrics for evaluating model per-
formance, HIH was found to be superior to the baseline. We 
also observed improved computational efficiency in the same 
GPU environment.

Early screening and intervention are crucial factors that posi-
tively impact the prognosis of pes planus.18,19 Untreated pediat-
ric pes planus that is not appropriately managed can progress 
and worsen until adulthood.20 Additionally, even asymptomatic 
pes planus should be observed carefully, as it can potentially 
develop into conditions such as metatarsal stress fractures.21 
Therefore, it is important to regularly monitor patients and es-
tablish a proper therapeutic plan at an appropriate time. Dur-
ing the decision process, it is essential to assess the status of pes 
planus and the presence of associated deformities, including 
hindfoot valgus and forefoot abduction.7,8 However, diagnos-
ing multiple types of foot deformities using plain radiographs 
is labor-intensive, time-consuming, and often subject to inter-
rater variability.1,22 Considering these aspects, our proposed ap-
proach can improve the efficiency and accuracy of physicians’ 
clinical decisions, which can also lead to a better patient prog-
nosis of foot deformities, including pes planus. 

Our baseline model, FlatNet, uses a two-stage approach to 
detect landmarks. This method has been used in several stud-
ies to find anatomical landmarks in medical images.9,16,17 How-
ever, this method requires two-stage training, and a U-Net is 
required for landmark detection in the second stage. As a result, 
the computational complexity and training time of the model 
increase as the number of landmarks increases. These disad-
vantages were evident in the comparison of the training and in-
ference speeds with our model. Furthermore, our model con-
siders the coordinates of other landmarks when predicting the 
offset of a single landmark. These strengths indicate the poten-
tial of the HIH model for anatomical landmark detection in 
the medical domain.

This study had several limitations. First, the datasets were 
constructed using retrospectively collected data. Second, the 
datasets used in this study consisted of images from people 
who visited hospitals, resulting in a relatively high proportion 
of abnormal cases. Therefore, it is necessary to validate wheth-
er our model performs well on class-imbalanced datasets with 
a higher proportion of normal subjects. Third, there were differ-
ences in the demographic and imaging characteristics among 
the datasets in this study. However, this may indicate that our 
model can show robust performance, even when the data distri-
bution differs from the training set. Fourth, inter-observer vari-
ability was not measured as the ground truth landmark offsets 
were defined as the coordinates where all three doctors com-
pletely agreed. In addition, we did not examine the degree to 
which the diagnostic abilities of each clinician could improve 
when using the model. Therefore, additional research is need-
ed to determine whether the use of the deep learning model 
we have proposed can reduce diagnosis time or improve clini-
cal diagnostic accuracy when used by actual healthcare pro-
fessionals. Fifth, in the case of landmark-based prediction, the 
variability of diagnostic ability may vary depending on the ro-
bustness of landmark prediction. Sixth, since diagnostic crite-
ria can change over time, there is a possibility of differences in 



500

Heatmap-in-Heatmap in Radiologic Diagnosis

https://doi.org/10.3349/ymj.2024.0246

outcomes as a result. Seventh, since HIH can only diagnose 
the five deformities mentioned, including pes planus, it is nec-
essary to develop a model capable of more diverse diagnoses 
in future studies. Additionally, this study analyzed images ob-
tained from multiple X-ray machines, which may have caused 
differences in landmark settings due to issues such as resolu-
tion. Further studies are needed to investigate these aspects 
and enhance landmark detection models in future research.

In conclusion, our HIH model based on deep learning was 
able to diagnose various foot deformities simultaneously and 
outperformed the baseline model. Furthermore, our model 
demonstrated robust performance, even on datasets collected 
from another institution that were not included during the 
training set construction. Our results indicate the potential of 
the HIH model for radiological diagnosis using anatomical 
landmarks. Further studies are required to determine whether 
our proposed approach can be effectively applied to various 
tasks and datasets in medical imaging that utilize landmarks.
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