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ABSTRACT
Fusobacterium nucleatum (Fn) is commonly enriched in colorectal cancer (CRC) and 
associated with poor outcomes, though its mechanisms remain unclear. Our study 
investigated how Fn affects the tumor microenvironment through single-cell transcrip
tomic analyses of 42 CRC patient tissues, comparing Fn-positive and Fn-negative tumors. 
We discovered that Fn impairs IgA plasma cell development and secretory IgA (sIgA) 
production by disrupting communication with tumor-associated macrophages. 
Additional experiments in germ-free mice, together with our re-analysis of a publicly 
available single-cell RNA-seq data set from a CRC mouse model with an intact gut 
microbiome–both models having been orally gavaged with Fn–jointly validated the 
causal role of Fn in impairing sIgA induction. We identified a dysregulated IgA matura
tion (IGAM) module in Fn-positive patients, indicating compromised mucosal immunity 
and increased bacterial infiltration. This IGAM signature effectively stratified Fn-positive 
patients, suggesting potential for targeted therapeutic approaches. Our findings reveal 
that Fn disrupts sIgA production, increasing tumor microbial burden and worsening 
prognosis through chronic inflammation in Fn-positive CRC.

ARTICLE HISTORY 
Received 28 April 2025  
Revised 17 June 2025  
Accepted 27 June 2025 

KEYWORDS 
Colorectal cancer; 
Fusobacterium nucleatum; 
secretory IgA; plasma cell 
development; tumor 
bacterial burden

Introduction

Colorectal cancer (CRC) is one of the most prevalent and deadly cancers worldwide.1 Recent studies have 
underscored the potential role of the gut microbiome in both the development and progression of CRC.2–4 

Specifically, Fusobacterium nucleatum (Fn) sensu lato, an anaerobic bacterium typically found in the oral 
cavity, has been identified as a key contributor to the pathogenesis of CRC.5–7 Previous research has 
demonstrated that Fn is highly enriched in colorectal cancer tissue and is associated with poor 
prognosis.8–10 These studies also suggest that Fn may promote tumorigenesis through various mechanisms, 
including evasion of the immune system, induction of a pro-inflammatory microenvironment, and activa
tion of oncogenic pathways.3,11,12
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Despite these significant discoveries, how Fn interacts with the tumor microenvironment to influence 
CRC outcomes remains unclear. Unraveling this complexity requires an in-depth single-cell-level analysis 
of these interactions. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for studying 
the heterogeneity of cell populations within tumors, providing high-resolution information on the gene 
expression profiles of individual cells.13,14 This method is particularly effective in identifying specific 
immune cell types associated with the presence of Fn in colorectal tumors, thereby illuminating the 
interactions between Fn and the systemic immune response.

In this study, we aimed to investigate the effects of Fn on the tumor microenvironment by analyzing 
scRNA-seq data from both Fn-positive and Fn-negative samples. Our single-cell transcriptome analysis, 
corroborated by spatial transcriptome analysis, revealed that the presence of Fn impedes the maturation of 
secretory IgA (sIgA) by disrupting the communication between IgA plasma cells and tumor-associated 
macrophages (TAMs) involved in IgA induction and dysregulating a co-regulatory gene module essential 
for sIgA maturation. The causal role of Fn in sIgA dysfunction was confirmed by disrupted IgA plasma cell 
and macrophage development in Fn-administered mice. Furthermore, we observed increased bacterial 
infiltration within tumors, suggesting that Fn infection compromises the protective function of sIgA, 
potentially impacting prognosis. Additionally, we found that the activity of co-regulatory genes for sIgA 
maturation can stratify Fn-positive CRC patients for survival. These findings may provide valuable clinical 
implications for the treatment of Fn-positive CRC patients.

Materials and methods

Sample preparation

Single-cell isolation was performed using a Human Tumor Dissociation Kit (Cat# 130–095–929, Miltenyi 
Biotec, USA) following the manufacturer’s instructions. Fresh surgical tissues were cut into small pieces ( <  
1 mm3) and placed into a gentleMACS C Tube (Cat# 130–093–237, Miltenyi Biotec, USA) containing 
a mixture of Enzyme H, Enzyme R, and Enzyme A in RPMI 1640 medium. The tube was then processed on 
a gentleMACS Dissociator (Cat# 130–093–235, Miltenyi Biotec, USA) using the GentleMACS programs 
h_tumor_01 and h_tumor_02, each followed by a 30-minute incubation at 37°C with rotation.

The dissociated tissues were filtered through a 70 μm MACS SmartStrainer (Cat# 130–098–462, Miltenyi 
Biotec, USA) to achieve a single-cell suspension. The filtrate was centrifuged at 300 × g for 10 minutes at 
4°C. The resultant cell pellet was resuspended in 4 mL of RPMI 1640 medium (Cat# 11875093, Thermo 
Fisher Scientific, USA), and dead cells were removed using Ficoll-Paque PLUS (Cat# 17–1440–03, GE 
Healthcare, USA). The cells were subsequently washed and resuspended in PBS supplemented with 0.1% 
bovine serum albumin (BSA, Cat# 15561020, Invitrogen, USA). Cell viability was assessed using the LIVE/ 
DEAD™ Viability/Cytotoxicity Kit (Cat# L3224, Invitrogen, USA), and the single-cell suspension was 
further enriched for viability with a Dead Cell Removal Kit (Cat# 130–090–101, Miltenyi Biotec, USA).

Single-cell RNA sequencing (scRNA-seq) data generation and analysis

We generated single-cell transcriptome profiles using the 10x Chromium Single Cell 5’ Gene Expression 
Dual Index library. Single-cell suspensions were processed on a Chromium system (10x Genomics, USA). 
For the discovery cohort consisting of 24 samples, we prepared 5’ scRNA-seq libraries using the Chromium 
Next GEM Single Cell 5′ Library and Gel Bead Kit v1.1 (PN-1000165). For the validation cohort of 18 
samples, 3’ scRNA-seq libraries were generated using the Chromium Next GEM Single Cell 3ʹ v3.1 Library 
and Gel Bead Kit v3.1 (PN-1000121). The libraries were sequenced on an Illumina NovaSeq 6000 for the 5’ 
scRNA-seq and an Illumina HiSeq 2000 for the 3’ scRNA-seq. Sequencing reads were aligned to the human 
reference genome (GRCh38) using Cell Ranger software (v6.0.0).

For data processing, we utilized the Seurat R package (v4.0.0).15 Initially, cells expressing fewer than 200 
features were removed. We then conducted cell quality control for each sample, evaluating mitochondrial 
read percentage, total read count, and feature count thresholds. Doublets, which represent two or more cells 
captured together in a single droplet, were identified and excluded using the DoubletFinder (v2.0.3) 
R package.16
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The count matrix underwent log-normalization for read depth normalization via the NormalizeData() 
function with default parameters. We identified 3,000 variable features using the FindVariableFeatures() 
function with the selection method set to ‘vst’. T-cell receptor and immunoglobulin variable genes, known 
for patient-specific variances, were classified as “bad genes” and removed from the list of 3,000 variable 
features and all subsequent analysis stages.

The cell cycle score, which quantifies the extent to which a cell’s transcriptional program aligns with cells 
in the G1 or S/G2/M phase, was calculated using the CellCycleScoring() function. We then regressed this 
score against mitochondrial percentage while scaling the data with the ScaleData() function.

Principal Component Analysis (PCA) was performed using the RunPCA() function, inputting the 
previously determined variable features. We corrected for batch effects among samples by removing 
patient-specific signals with the RunHarmony() function from the Harmony (v1.0)17 R package, using the 
top 50 principal components (PCs) as input. A knn graph was constructed using the FindNeighbors() 
function with the corrected 50 PCs. Non-linear dimensional reduction was achieved through the RunUMAP 
() function using the same 50 coordinates.

Cell clustering was performed with the FindClusters() function at a resolution of 0.5. To identify different 
cell types, we annotated each cell cluster using marker genes. To ensure a clear immune cell profile, we 
removed clusters annotated as epithelial cells, endothelial cells, goblet cells, fibroblasts, and myofibroblasts, 
and those with high mitochondrial or cell-cycle scores or lacking marker gene expression. After filtering, we 
repeated the analysis with the remaining immune cells to refine the immune cell profile.

For detailed analysis at the cell subtype level, each cell type was processed individually. For B-cells and 
plasma cells, we employed 1,000 variable genes, ten PCs, and a resolution of 0.8, removing clusters lacking 
marker gene expression before repeating the processing steps. We identified a cluster of dendritic cells from 
macrophages and monocytes using ten PCs and a resolution of 0.8, annotating clusters expressing CD1C 
and CLEC10A as dendritic cells.

Fusobacterium nucleatum (Fn) tumor infection analysis via 16S rRNA sequencing

Total genomic DNA from surgical tumor tissues was extracted using QIAamp® DNA Mini Kit 
(Qiagen, USA) following the manufacturer’s protocol. DNA concentration was measured with the 
Qubit dsDNA HS Assay Kit and Qubit Fluorometer (Invitrogen, USA). Library preparation for 16S 
rRNA gene sequencing followed the Illumina protocol. Amplicon PCR targeting the bacterial 16S 
rRNA V3-V4 region (primers Bakt_341F-805 R) was performed under the following conditions: 95°C 
for 3 min; 25 cycles of 95°C for 30 sec, 55°C for 30 sec, 72°C for 30 sec; final extension at 72°C for 
5 min. PCR products were verified on an Agilent Bioanalyzer (DNA 1000 chip, USA) and quantified 
using a Qubit Fluorometer. Amplicons were purified using AMPure XP beads (Beckman Coulter, 
USA), followed by index PCR with Nextera® XT Index primers (Illumina, USA) under the same 
cycling conditions, except for 8 cycles. Indexed libraries were purified with AMPure XP beads, and 
library concentration was determined using the Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen, 
USA). Sequencing was performed on the Illumina MiSeq platform (Macrogen, South Korea), gen
erating 2 × 300 bp paired-end reads.

Raw paired-end reads were assembled using FLASH (v1.2.11)18 to merge overlapping sequences and 
improve quality. Assembled reads were length filtered with CD-HIT-OUT (v4.8.1),19 retaining sequences 
between 400–500 bp. Redundant sequences were clustered at 100% identity using CD-HIT-DUP, and 
chimeric sequences were removed. Secondary clusters were merged into primary clusters, and noise 
sequences were filtered out based on size thresholds. Non-chimeric representative reads were clustered 
into OTUs at 97% identity for species-level classification using a greedy algorithm. Taxonomic assignment 
of OTUs was performed with QIIME against the NCBI 16S rRNA database (version 20,211,127). 
Taxonomic abundance ratios were calculated, and samples were classified as Fn-positive if Fn exceeded 
1% relative abundance.
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Cellular composition analysis using Pearson residual

To investigate proportional changes between single-cell groups (e.g., Fn-positive and Fn-negative samples) 
across cell types, we evaluated deviations in the observed cell count for each cell type from the expected cell 
count using Pearson residual: 

Pearson residual ðrijÞ ¼
Oij � Eij

ffiffiffiffiffi
Eij

p ;

where i and j represent indices for each group and cell type, respectively, and O and E represent the observed 
and expected cell counts, respectively. An expected cell count (E) for a group i of a cell type j was calculated 
by the following equation: 

Eij ¼
Ti

Ttot
� Tj;

where Ttot, Ti, Tj represent total cell count for the entire data set, total cell count for a group i, and total cell 
count for a subset j, respectively. The sign of the residual indicates the direction of the difference of the 
observed count from the expected count (i.e., positive for increase and negative for decrease compared to 
expected count). Pearson residual (r) follows an approximately normal distribution; thus, scores larger than 
2.58 or smaller than −2.58 are significant by p < 0.01. For a highly conservative statistical test along with 
Bonferroni correction for multiple hypothesis test adjustment, we used a significance threshold of p-value =  
0.00045 (p-value of 0.01 was divided by the number of subsets). Thus, we counted only r > 3.5 (increase) and 
r < −3.5 (decrease) for cell types with significant changes in their abundance between groups. The goodness 
of fit for all subsets was also evaluated by the chi-square statistic (p-value).

Determination of Fn-infection status in TCGA samples

Unmapped reads from the TCGA-COAD RNA-seq bam files, which do not align to the human reference 
genome, are expected to potentially include tumor-infiltrating microbial reads. To minimize false positives, 
we used GATK PathSeq,20 an alignment-based algorithm, to filter out human reads by aligning them against 
the human reference genome. Subsequently, the remaining reads were aligned to the Human Reference Gut 
Microbiome (HRGM) database21 to obtain a microbial profile using the PathSeqPipelineSpark tool with 
default parameters (min-clipped-read-length = 31, min-score-identity = 0.9, identity-margin = 0.02). The 
TCGA samples exhibiting a normalized Fn score greater than 0.001—a threshold heuristically determined 
to maximize the effects of Fn on survival probability – were annotated as Fn-positive.

Survival analysis for TCGA-COAD samples

The count matrix and metadata were collected from TCGA-COAD datasets using TCGAbiolinks R package 
(v2.25.2).22 We obtained clinical data from TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR),23 and 
the samples without clinical data were filtered. To effectively elicit the mechanism of Fn affecting the tumor 
microenvironment, we only used TCGA data obtained from the right colon (ascending colon and cecum), 
where Fn infection affects survival probability most robustly. Samples with microsatellite instability-high 
(MSI-H) were excluded based on MSI status obtained from an external database,24 leaving 121 TCGA 
samples for analysis.

We used progress-free interval (PFI) information from TCGA-CDR as clinical data for survival analysis. 
Survival curves were estimated with the survfit() function in the survival (v3.2–7) R package using the 
Kaplan-Meier method.25 We used the ggsurvplot() function in the survminer (v0.4.9) R package to plot 
survival curves. The p-value was calculated through the log-rank test with default parameters of the 
ggsurvplot() function. In survival analysis with a combination of the Fn label with the group of each cell 
type, the pairwise p-value was calculated through the log-rank test with samples belonging to the groups.
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RNA velocity analysis and estimation of cell state transition probability

The spliced and unspliced counts in each cell from the scRNA-seq data were estimated using the run10x() 
function of the Velocyto package (v0.17.17).26 RNA velocity was analyzed separately for each cell type to 
compare differentiation patterns between the Fn groups, utilizing the Dynamo Python package (v1.0.0).27 

This recently released tool addresses the fundamental limitations of traditional RNA velocity analysis by 
enhancing the measurement of RNA velocity and enabling the determination of transition probabilities 
between cell types. We adhered to the standard workflow outlined in the Dynamo user guide to estimate 
RNA velocity. The transition probability matrix was derived by annotating observations within the data 
object. To determine the transition probability to a specific cell type, we summed the transition probabilities 
from a given cell to all cells of that type, providing a clearer understanding of cellular dynamics across 
different conditions.

Cell-cell interaction estimation

The CellChat (v1.6.1)28 R package was used to infer interactions between whole cell types. 
Subsequently, interactions between B-cells and myeloid cells were investigated. The default 
CellChat database was utilized, and only significant interactions in at least one Fn group were 
visualized; if the interactions were insignificant for a particular group, no dot was plotted on the 
dot plot. The biological roles of the ligand-receptor pairs involved in the IgA induction were 
annotated based on previous studies.29,30

Spatial transcriptomic data analysis

We obtained publicly available 10x Visium data from CRC tumors located in the right colon.31 We aligned 
the raw fastq files to the same reference genome as the scRNA-seq data using 10x Genomics Space Ranger 
(v3.0.0). To label Fn infection status, we followed the same method described in the section of tumor 
microbiome profiling of TCGA samples, selecting samples with the highest detection of Fn reads as Fn- 
positive and those with none as Fn-negative for further analysis. We used Scanpy (v1.9.8)32 to perform the 
basic processing of the Visium data. The raw count matrix was normalized using calculate_qc_metrics() 
function followed by log1p transformation. To reduce noise in the Visium data, we excluded mitochondrial 
genes, immunoglobulin variant genes, and T cell receptor variant genes, consistent with the scRNA-seq 
data.

To infer cell type composition of each spot, we used Cell2location (v0.1.3)33 to build a reference model 
based on our scRNA-seq data. To accurately reflect the histological characteristics within the tumor, the 
reference model included both immune and stromal cells from the scRNA-seq data. The spatial mapping 
model training followed the tutorial with recommended parameters (N_cells_per_location = 5, detectio
n_alpha = 20, max_epochs = 30000). We used q05_cell_abundance as a conservative estimate of cell abun
dance in each spot. For further analysis, we labeled each spot as containing a particular cell type if the 
Cell2location estimate for that cell type was higher than 0.1. To measure the distance between cell types, we 
collected the spots containing each cell type and calculated the distance between coordinates on a spot-by- 
spot basis. For measuring ligand-receptor interactions in the 10x Visium data, we used COMMOT 
(v0.0.3)34 with the optimal transport algorithm. For the ligand-receptor database, we utilized the 
CellChat DB.28 When scoring CCI between cell types, we only used the CCI scores assigned to spots 
where the Cell2location estimate was higher than 0.1 for each cell type.

Trajectory-based gene clustering and differential expression analysis of B-cell

For trajectory-based analysis, B-cells and plasma cells were analyzed separately using the Slingshot 
R package (v2.2.0).35 This tool was utilized to construct a lineage trajectory from naïve B-cell to IgA- 
secreting plasma cell, reflecting the IgA maturation pathway. Following lineage construction, the tradeSeq 
R package (v1.8.0)36 was employed to identify differentially expressed genes between Fn groups associated 
with this IgA maturation lineage. We applied a negative binomial generalized additive model using the
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fitGAM() function from tradeSeq, incorporating the count matrix, pseudotime, and cell weight information 
(nknots = 6). The Fn labels of the cells were integrated into the model using the condition parameter of 
fitGAM() to fit a condition-specific smoother for each lineage. The conditionTest() function was then used 
to identify genes with distinct expression dynamics across Fn labels. Genes meeting the criteria of a p-value 
less than 0.05 and a waldStat value greater than 20 were selected, ensuring the exclusion of ribosomal and 
mitochondrial genes, often considered as ‘bad genes.’ For gene clustering, we used the 
clusterExpressionPatterns() function (nPoints = 20), and labeling was performed with the primaryCluster() 
function of the clusterExperiment R package (v2.14.0). A gene cluster containing marker genes of IgA- 
secreting plasma cells, including PRDM1—a known marker of plasma cell maturation – was selected.

We employed the singscore R package (v1.10.0)37 for robust rank-based expression scoring of the IGAM 
gene set in TCGA data. TCGA samples with gene set expression scores higher than their median were 
classified into IGAM-high activity groups. Samples with scores below the median were classified into 
IGAM-low activity groups for detailed analysis.

Co-expression network analysis for prioritizing core genes of the IGAM module

Initially, we utilized the metacell38 R package to reduce the sparsity of scRNA-seq data and construct 
a robust co-expression network. We divided the scRNA-seq matrix of IgA plasma cells into two separate 
matrices for Fn-negative and Fn-positive cells to compare the co-expression networks between the two Fn 
groups. We refined the raw matrix by removing mitochondrial genes, ribosomal genes, and previously 
identified ‘bad genes’ such as NEAT1, TMSB4X, and TMSB10.38 Cells with fewer than 500 read counts were 
also excluded. Following a guided tutorial, we processed the data using recommended parameters to obtain 
the metacell expression matrix. We employed mcell_gset_filter_varmean() and mcell_gset_filter_cov() func
tions to select informative genes (T_vm = 0.08, T_tot = 100, T_top3 = 2), mcell_add_cgraph_from_
mat_bknn() function to construct a balanced cell graph (K = 100), mcell_coclust_from_graph_resamp() 
(min_mc_size = 20, p_resamp = 0.75, n_resamp = 500) and mcell_mc_from_coclust_balanced() (K = 30, 
min_mc_size = 30, alpha = 2) functions to resample and generate the co-clustering graph, and mcell_mc_s
plit_filt() (T_lfc = 3) function to remove outlier cells within the metacell. After obtaining the refined 
metacell expression matrix, we constructed a co-expression network by calculating the Pearson correlation 
coefficient (PCC) using the cor() function from the R stats package.

To prioritize genes in the IGAM module, we analyzed the PCC difference between Fn-negative and Fn- 
positive gene pairs. Gene pairs were sorted by PCC difference, and a two-sided Wilcoxon test was used to 
prioritize genes with significant differences. Genes with a p-value lower than 0.05 were selected as the core 
components of the IGAM module.

Tumor microbiota analysis

To quantify the bacterial burden within tumor tissues, we analyzed read counts for tumor-infiltrating 
bacteria using GATK PathSeq. We obtained the number of unambiguous reads aligned to bacteria at the 
domain level. To adjust for sequencing depth bias, we normalized the bacterial read counts by dividing by 
the total number of reads in the original bam file, then multiplied by a scale factor of 1 million, and 
converted the results to a logarithmic scale.

For species-specific analyses, we employed a similar normalization method but increased the scale factor 
to 10 million to account for the typically smaller number of reads aligned to each species. This adjustment 
allows for a more precise comparison of tumor bacterial abundance between Fn groups.

To compare the IgA binding probabilities of tumor bacterial species between samples, we applied 
previously established binding probabilities to each species. We averaged probabilities obtained from 
multiple samples within each group. For consistent comparison, we adjusted the distribution of values by 
replacing infinite values with 20 and zero values with 0.0001, following the approach used in a previous 
study.
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Analysis of validation cohort tumor samples

For estimating cell-cell interactions, we employed CellPhoneDB (v2.0.0),39 and enhanced the analysis by 
integrating ligand-receptor information from SingleCellSignalR (v0.99.24)40 and CellTalkDB (v1.0)41 to 
expand our custom database.

RNA velocity measurements were conducted using Dynamo, following the procedures outlined pre
viously. Additionally, we generated bulk RNA-seq data for the same samples. The Fn infection profile was 
determined from annotations based on 16S rRNA-seq data.

To align our RNA-seq data with the TCGA standards, the FASTQ files were processed using the STAR 
aligner, adhering to the RNA-seq alignment workflow provided by the NCI Genomic Data Commons 
(GDC).42 Tumor-infiltrating bacterial profiling was then carried out using PathSeq, following the same 
methods previously described. This also included a comparison of read abundance using the same normal
ization and analytical approaches.

Cultivation of Fusobacterium nucleatum (Fn)

Fusobacterium nucleatum (ATCC 25586) was obtained from the American Type Culture Collection (ATCC, 
USA). Fn was cultured in Gifu Anaerobic Medium (GAM, Kisanbio, South Korea) broth under anaerobic 
conditions (20% CO2, 5% H2, 75% N2) at 37°C in a Coy chamber (Coy Laboratory Products, USA). For solid 
cultures, Fn was grown anaerobically on Brucella agar plates with 5% sheep blood at 37°C in the Coy 
chamber.

Fn oral administration in germ-free (GF) mice

Six-week-old female GF C57BL/6 mice were used for all experiments. Ten mice were randomly divided 
into two groups (5 mice per group): a control group and an Fn group. All animal procedures were 
approved by the Institutional Animal Care and Use Committee (IACUC, #2022–0286) of Yonsei 
University College of Medicine and conducted in accordance with the Public Health Service Policy 
on Humane Care and Use of Laboratory Animals. Yonsei University is accredited by AAALAC 
International (#001071). GF mice were housed in individually ventilated cages (IVC) under controlled 
conditions (temperature: 22–23°C; light cycle: 12 h light/12 h dark). Sterile food and water were 
provided ad libitum.

Prior to oral gavage, GF mice were fasted for 2 hours. The Fn group received 1 × 109 colony-forming 
units (CFU) of Fn in 200 µL of PBS, administered orally three times per week for 5 weeks. The control group 
received 200 µL of PBS alone on the same schedule. Mouse body weight was measured three times weekly 
until sacrifice. At the end of the experiment, the mice were sacrificed, and colon tissues were collected from 
both the control (n = 5) and Fn (n = 5) groups.

Mouse colon and cecum tissue processing

Colon tissues, from proximal to distal sections, were cut open longitudinally and washed twice with ice-cold 
PBS. The tissues were then immersed in ice-cold RPMI-1640 medium for further processing and dissocia
tion. The cecum was isolated from the gastrointestinal tract by horizontal dissection at the junctions 
between the cecum and the ileum, and between the cecum and the proximal colon. The cecum weight 
was measured for each group.

Preparation of single-cell suspensions from mouse colon tissue for scRNA-seq library

Dissected colon tissues from PBS control (n = 5) and Fn-treated (n = 5) GF mice were pooled for each 
group. The tissues were cut into ~5 mm fragments and washed three times with ice-cold PBS. Pre- 
digestion was performed twice for 20 min at 37°C in Hanks’ Balanced Salt Solution (HBSS, Gibco, 
USA) without Ca2 + and Mg2 +, supplemented with 5 mM EDTA, 5% fetal bovine serum (FBS), and 1  
mM DTT, using a rotator mixer (Miltenyi Biotec, USA). The tissue fragments were then transferred
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to C-tubes (Cat# 130–096–334, Miltenyi Biotec, USA) containing HBSS with Ca2 + and Mg2 + (Gibco, 
USA) and an enzyme mix (enzymes D, R, and A) from the Mouse Lamina Propria Dissociation Kit 
(Cat# 130–097–410, Miltenyi Biotec, USA). Dissociation was performed at 37°C for 30 min using 
a gentleMACS Octo Dissociator with heaters (Cat# 130–134–029, Miltenyi Biotec, USA). Following 
incubation, ice-cold PB buffer (PBS with 0.5% bovine serum albumin) was added, and the samples 
were passed through a 100 μm cell strainer. The cell suspensions were centrifuged at 300 × g for 
10 min at 4°C, and the pellet was resuspended in ice-cold PB buffer. The samples were filtered 
through a 70 μm cell strainer and rinsed once with PB buffer. Viable cells were purified using the 
Dead Cell Removal Kit (Cat# 130–090–101, Miltenyi Biotec, USA). Single-cell suspensions were 
prepared for scRNA-seq library construction using the 10X Chromium Next GEM Single Cell 5’ 
RNA Library v2 kits.

Analysis of mouse-derived scRNA-seq data

The libraries were sequenced on an Illumina NovaSeq 6000, and sequencing reads were aligned to the 
mouse reference genome (GRCm39) using Cell Ranger (v9.0.0). The same processing steps–quality control, 
doublet removal, normalization, batch-effect correction, cell typing, and immune-cell filtering–were applied 
to both the germ-free mouse dataset and the publicly available CRC mouse dataset with a normal gut 
microbiome. B cells and IgA plasma cells were isolated and ordered along pseudotime using Monocle 
(v2.30.1),43 with DDRTree (v0.1.5) used for visualization. Spliced and unspliced read counts were generated 
with Velocyto, and RNA velocity was calculated with Dynamo.

In the colon tissue of the germ-free model, 2,593 B cells and IgA plasma cells were analyzed. Among 
these, 288 IgA plasma cells were assigned to state 6, while the remaining cells were divided evenly across five 
pseudotime states (approximately 461 cells per state) for RNA velocity analysis. In the tumor tissue of the 
CRC mouse model with a normal gut microbiome, 119 GC B cells, 1,158 B cells, and 603 IgA plasma cells 
were divided evenly into six pseudotime states (approximately 313 cells per state).

Results

Fn infection modifies the tumor immune landscape and is associated with reduced survival in CRC

We conducted single-cell transcriptomic analysis to thoroughly examine the cellular and molecular 
elements of the tumor microenvironment in CRC. We compared 12 Fn-positive and 12 Fn-negative 
patients, with Fn-infection status determined through 16S rRNA analysis. Our discovery cohort of 24 
tumor samples was then subjected to scRNA-seq to assess cellular composition and gene expression profiles 
(Figure 1(a), Supplementary Table S1, S2a). Given the role of immune system in bacterial infections, we 
focused on changes in the immune microenvironment following Fn infection. After identifying 22 immune 
cell types from 109,204 cells (Figure 1(b), Supplementary Figure S1a, Supplementary Table S2b), we 
observed an unbiased distribution across patients, ensuring data integrity through proper pre-processing 
and batch corrections (Supplementary Figure S1b).

We investigated the impact of Fn infection on immune cell composition. Our analysis revealed sig
nificant changes in the composition of intratumor immune cells between Fn-positive and Fn-negative 
groups. The majority of immune cell types showed a marked decrease in abundance (r < −4) in the Fn- 
positive group (Figure 1(c), Supplementary Table S2c). Conversely, immune cell types involved in immu
noglobulin (Ig)-mediated immunity, such as naive B cells, germinal center (GC) B cells, and IgG plasma 
cells, showed a significant increase in abundance (r > 4) in the Fn-positive group. These findings suggest 
that Fn infection may lead to substantial shifts in the intratumor immune microenvironment in CRC.

Previous research has linked Fn infection with poorer prognosis in CRC, especially in tumors located in 
the right colon.5,9 To verify the prognostic impact of Fn, we analyzed bulk RNA sequencing data from right- 
sided CRC tumors in The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD). We determined 
Fn status, identifying 116 Fn-positive and 63 Fn-negative patients (Figure 1(d)). To minimize bias, we 
excluded microsatellite instability-high (MSI-H) samples, leaving 75 Fn-positive and 46 Fn-negative 
patients for survival analysis (Supplementary Table S3). Consistent with prior reports, Fn-positive tumors
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showed worse progression-free survival, though it narrowly missed statistical significance (log-rank test, p  
= 0.052, Figure 1(e)). These findings suggest that changes in intratumor immunity may influence the 
prognostic effects of Fn infection in CRC.

Development of IgA-secreting plasma cells is impeded in Fn-positive CRC

Our single-cell composition analysis revealed that IgA plasma cells occupy the highest proportion in CRC 
tumor samples. Furthermore, we noted a significant increase in naive B and GC B cells in Fn-positive CRC 
samples compared to those without Fn infection (Figure 1(c)). These B cells are typically found in the 
Peyer’s patches of the gut-associated lymphoid tissue (GALT), where they may be activated to differentiate 
into IgA plasma cells.44 IgA plasma cells are crucial for mucosal immunity against gut commensal bacteria, 
producing sIgA that binds polyreactively with the gut microbiota.45 This binding helps prevent pathogen 
colonization and invasion and facilitates bacterial neutralization. Given the importance of IgA plasma cells 
in gut mucosal immunity, our investigation focused on these cell types. B cells within the GALT differentiate 
into IgA plasma cells through interactions with other immune cells, including T cells and macrophages.46,47

Figure 1. Single-cell RNA sequencing analysis shows Fn-associated changes in immune composition of CRC tumor. 
(a) Tumor tissues from 24 patients with CRC (12 Fn-positives and 12 Fn-negatives) were subjected to the single-cell RNA 
sequencing analysis. (b) UMAP visualization of immune cells from 24 patients after pre-processing and batch correction. 
A total of 22 immune cell types were obtained. (c) Mosaic plot of immune cell clusters, each of which is composed of Fn- 
positive and Fn-negative groups. Red indicates significant decrease in abundance, whereas blue indicates significant 
increase in abundance (|Pearson residual| > 2 for p-value < 0.05, |Pearson residual| > 4 for p-value < 0.0001, one-sided chi- 
square test). (d) Bulk RNA sequencing data were collected from TCGA-COAD cohort and their Fn-infection was determined 
by detection of Fn sequence reads. (e) Progression-free survival curves by Kaplan-Meier estimation using tumors located in 
the right colon of the TCGA-COAD patients for different Fn-infection status.
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Figure 2. Impairment of IgA plasma cell development by Fn infection in CRC. (a) UMAP plot of subsets of B cells and plasma 
cells labeled based on cell types annotated (left), and 11 clusters obtained using the Louvain algorithm (right). Trajectory 
illustrating differentiation from B cells to plasma cells based on clusters. (b) Contour plot visualizing PRDM1 expression on 
UMAP. (c) Boxplot comparing PRDM1 expression in IgA plasma cells, grouped by clusters and according to the direction of 
differentiation, between Fn groups. The significance of differences in expression levels was estimated using a two-sided 
Wilcoxon rank sum test. (d) RNA velocity of B cells and plasma cells in Fn-negative (left) and Fn-positive (right) tumors. 
(e) Density plot of the transition probability during differentiation along the trajectory within IgA plasma cells. The statistical 
significance of the probability distribution was measured using the Kolmogorov-Smirnov test. (f) Volcano plot depicting the 
gene expression levels of differentiated IgA plasma cells (cluster 2) in Fn-negative and Fn-positive tumors. (g) Violin plots 
depicting differences in expression levels of genes of interest. Significance was tested using a two-sided Wilcoxon rank sum 
test. P-values were adjusted using the Family-wise Type 1 Error Rate (FWER). ns, P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001.
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We employed dimension reduction techniques to reveal distinct separations of plasma cells from B cells 
(Figure 2(a) left). We constructed trajectories from naive B cells to IgA plasma cells, capturing transcrip
tional changes during differentiation (Figure 2(a) right). Expression levels of PRDM1 (encoding Blimp-1), 
a well-known marker of plasma cell maturation,48,49 confirmed the identity of cell subsets at different stages 
of differentiation (Figure 2(b)). Notably, PRDM1 expression was significantly lower in Fn-positive CRC 
compared to Fn-negative CRC across all differentiation stages (Wilcoxon rank sum test, p < 0.001; 
Figure 2(c)), suggesting that Fn infection hinders IgA plasma cell development. To validate the observed 
retardation, we conducted RNA velocity analysis, which revealed a reduced likelihood of progression along 
the IgA plasma cell differentiation pathway in Fn-positive CRC (Kolmogorov-Smirnov test, p < 0.001; 
Figure 2(d–e)).

To determine whether the observed impairment in IgA plasma cell differentiation is influenced by tumor 
anatomical location, we stratified the discovery cohort into left- and right-sided tumors and reevaluated 
PRDM1 expression and RNA velocity dynamics. In both left- and right-sided tumors, PRDM1 expression 
was consistently lower in Fn-positive samples compared to Fn-negative samples (Supplementary Figure 
S2a–b). Similarly, the transition probability along the IgA plasma cell differentiation trajectory was 
significantly reduced in the Fn-positive group regardless of tumor location (Supplementary Figure S2c– 
d). These findings indicate that the Fn-associated impairment of IgA plasma cell development is not 
restricted to a particular tumor site, but rather occurs consistently across different anatomical locations 
in the colon.

To investigate the functional impact of Fn infection on differentiated IgA plasma cells (cluster 2), we 
identified differentially expressed genes (DEGs) between Fn-positive and Fn-negative groups (Figure 2 
(f–g)). We confirmed the hampered development of IgA plasma cells by observing reduced IGHA1 
expression in Fn-positive group. Notably, TGFB1 expression in IgA plasma cells also decreased in Fn- 
positive group. Previous studies have shown that TGF-β signaling induces differentiation from B cells to IgA 
plasma cells and promotes IgA secretion.50,51 AHNAK and BCL3 were identified as regulators that enhance 
TGF-β signaling through interaction with the Smad-dependent canonical TGF-β signaling pathway.52,53 

MAP3K8 has been demonstrated to be another positive regulator of TGF-β signaling pathway.54 TGF-β, an 
immunosuppressive cytokine, has been shown to recruit TAMs and promote their immunosuppressive 
phenotypes, inducing M2 polarization.55,56 Additionally, CCL3, which encodes a chemokine involved in the 
recruitment and polarization of M2 macrophages,57,58 showed reduced expression in IgA plasma cells of Fn- 
positive group. These results collectively suggest that Fn infection reduces TGF-β production by IgA plasma 
cells, impeding the recruitment of M2 macrophages necessary for IgA plasma cell maturation.

IgA induction through macrophage interaction is disrupted in Fn-positive CRC

Since the DEG analysis suggested a reduced capability of IgA plasma cells to recruit macrophages in Fn- 
positive CRC, we next examined whether Fn infection also alters macrophage functions related to their 
interaction with IgA plasma cells. To further specify the myeloid cell subsets, we sub-clustered populations 
including monocytes, macrophages, and dendritic cells (Figure 3(a)). Notably, we identified subclusters of 
TAMs,59 such as lipid-associated TAMs (LA-TAMs) and regulatory TAMs (Reg-TAMs), which are 
enriched in antigen processing and presentation pathways and canonical immunosuppressive M2-like 
pathways (Figure 3(b)). Observing cell transition patterns through RNA velocity, we noted a polarization 
toward these TAM clusters from surrounding cell clusters in Fn-negative tumors (Figure 3(c) left). 
However, in Fn-positive tumors, we observed a reduced probability of cell transitions, indicating 
a reduced M2 polarization of macrophages (Figure 3(c) right, 3(d)).

Next, we investigated whether cell-cell interactions between B cells and myeloid cells are altered by Fn 
infection. Among myeloid cell subsets, M2 macrophages showed most noticeable reduction in interactions 
with B cell subsets, including IgA plasma cells, in Fn-positive tumors (Figure 3(e)). DEG analysis of M2 
macrophages revealed the reduced expression of CCR1, which encodes a receptor for the CCL3 chemokine 
involved in the recruitment of M2 macrophages57,58 in the Fn-positive tumors (Figure 3(f)). Previously, we 
observed reduced expression of CCL3 in IgA plasma cells of Fn-positive group (Figure 2(g)). Therefore, the 
reduced expression of CCL3 in IgA plasma cells and that of CCR1 in M2 macrophages aligns with the 
reduced interactions between these cell types.
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Figure 3. Disruption of cell-cell interactions for IgA induction in Fn-positive CRC. (a) UMAP plot of myeloid cell subsets labeled 
based on cell types. (b) UMAP plot of clusters of myeloid cells annotated to subtypes of Tumor-Associated Macrophages 
(TAMs). (c) RNA velocity of myeloid cells in Fn-negative (left) and Fn-positive (right) tumors. (d) Density plot showing the 
probability of transition toward cell subtypes involved in antigen processing and presentation (LA-TAMs, Reg-TAMs), from 
adjacent cell clusters (Angio-TAMs, Prolif-TAMs). The statistical significance of the probability distribution was determined 
using the Kolmogorov-Smirnov test. (e) Circle plot displaying the number of ligand-receptor interactions detected between 
each cell type. (f) Violin plots depicting differences in expression levels of CCR1 in M2 macrophage. (g) Schematic illustrating 
ligand-receptor interactions involved in IgA plasma cell maturation. (h) Bubble plot representing cell-cell interactions (CCI) 
between myeloid cells, B cells, and IgA plasma cells. The color of the bubbles indicates the communication probability, with 
only significant interactions (permutation test, P < 0.001) being displayed. The known functions of each ligand-receptor pair 
are listed on the left side. (i) Boxplot comparing the distances between M2 macrophages and IgA plasma cells measured 
based on spatial transcriptome data. The statistical significance was determined using t-test. (j) Bubble plot representing 
CCI between myeloid cells, B cells, and IgA plasma cells based on spatial transcriptome data. The color of the bubbles 
represents the log2 fold change of the mean CCI scores estimated for Fn-negative over Fn-positive tumors. Positive values 
indicate higher scores in Fn-negative tumors. The size of the bubbles represents the statistical significance determined 
using a t-test. ****P < 0.0001.
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Subsequently, we evaluated changes in ligand-receptor interactions between APRIL and BAFF, ligand 
molecules expressed on myeloid cells, and TACI, BCMA, and BAFFR, receptors expressed on B cells 
(Figure 3(g)). The BAFF-BAFFR interaction mediates B cell maturation.60 BCMA activation by either 
APRIL or BAFF is essential for plasma cell survival,61 while TACI, which interacts with either APRIL or 
BAFF, is critical for sIgA induction.29 We found that the interaction between the B-cell receptor TACI and 
ligands from antigen-presenting cells (APRIL, BAFF) was either absent or inhibited in the Fn-positive group 
(Figure 3(h)). Similarly, interactions involving BCMA, crucial for plasma cell survival, and BAFFR, involved 
in the maturation of B cells other than plasma cells, were also inhibited.62,63

To validate whether the disruption of cell-cell communications between M2 macrophages and IgA 
plasma cells indeed occurs in the spatial context of tumor tissue, we analyzed 10x Visium spatial tran
scriptomic data for CRC tumors available from public sources (Supplementary Figure S3–4). Through 
deconvolution analysis using the scRNA-seq data from our study, we assigned cell types to each spot of the 
array. We observed that the distance between IgA plasma cell spots and M2 macrophage spots was greater in 
an Fn-positive sample compared to an Fn-negative sample, supporting the impairment in recruiting M2 
macrophages to IgA plasma cells (Figure 3(i)). Furthermore, when examining the ligand-receptor interac
tions measured based on their spatial coordinates, we found a significant decrease in these interactions in 
Fn-positive tumors compared to Fn-negative tumors (Figure 3(j)), which is consistent with the results based 
solely on single-cell expression information. These results collectively suggest that Fn infection disrupts cell- 
cell communications between IgA plasma cells and M2 macrophages, which is required for IgA induction.

A gene network for IgA maturation is dysregulated in Fn-positive CRC

Disrupted IgA induction signaling due to Fn infection may lead to dysregulation of downstream molecular 
programs essential for secretory IgA (sIgA) production. Using single-cell transcriptome data, we analyzed 
the developmental process from naïve B cells to mature IgA-secreting plasma cells, focusing on cells from 
clusters 1, 8, 7, 5, 9, and 2 (Figure 2(a) right) for pseudotime analysis (Figure 4(a)). Then, we performed 
differential expression analysis along the pseudotime between Fn-positive and Fn-negative groups. We 
clustered genes displaying similar differential expression patterns between two Fn infection status. Among 
major clusters of differentially expressed genes, we chose a cluster of 55 genes including PRDM1, a marker 
for maturation of IgA plasma cell, which we termed the IgA maturation (IGAM) module (Figure 4(b), 
Supplementary Table S4), for the downstream analysis.

GO term enrichment analysis of the IGAM module revealed “protein N-linked glycosylation” as a critical 
pathway, significantly affecting sIgA-mediated mucosal immunity64,65 (Figure 4(c)). This glycosylation 
process is crucial for the interaction between IgA and the polymeric immunoglobulin receptor (plgR), 
which facilitates the transcytosis of dimeric IgA across mucosal epithelial cells, crucial for IgA secretion into 
the lumen. The glycosylated structures on IgA also directly interact with both commensal and pathogenic 
bacteria, suggesting that Fn infection disrupts IgA glycosylation through disturbance of the IGAM module 
regulation, leading to reduced IgA secretion and compromised bacterial defense in the gut lumen.

Further analysis using a network biology approach showed that coregulation within the IGAM module 
significantly diminished in Fn-positive groups compared to Fn-negative ones (Figure 4(d)). We prioritized 
genes within the module based on the decrease in expression correlation in the Fn-positive group (Figure 4 
(e–f), Supplementary Figure S5), revealing significant dysregulation in 16 of the 55 genes (p < 0.05, one- 
sided Wilcoxon rank sum test). These include JCHAIN, a protein component of sIgA responsible for the 
monomeric IgA joining,66 and MEF2B, a positive regulator of JCHAIN expression.67 Significant dysregula
tion was also observed in TNFRSF17 (also known as BCMA), the receptor involved in the T cell independent 
IgA induction pathway, and MZB1, a cochaperone crucial for proper Ig heavy chain synthesis.68 XBP1, 
another dysregulated gene, regulates plasma cell differentiation by activating secretory machinery via 
unfolded protein response in endoplasmic reticulum (ER).69–72 Especially, XBP1 mitigates ER stress 
through the upregulation of ER molecular chaperones and ER-associated protein degradation 
components.73 ERLEC plays a pivotal role in ER-associated protein degradation and ER homeostasis.74 

TXNDC5 is also a member of the protein disulfide isomerase family in ER, facilitating the cell proliferation 
and survival.75
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Figure 4. Dysregulation of a gene network for IgA maturation by Fn infection. (a) UMAP visualization depicting the 
developmental trajectory from naive B cells to mature IgA plasma cells (identified as cluster 1, 8, 7, 5, 9, and 2). Pseudotime 
progression is indicated by a color gradient from dark purple (early) to bright yellow (late). (b) Graph showing changes in 
normalized expression over pseudotime for a cluster of 55 genes that exhibit differential expression patterns along the 
trajectory and between Fn infection statuses. (c) Bar graph showing significantly enriched GO biological process terms (P <  
0.05 by Fisher’s exact test) for a cluster of 55 genes. (d) Boxplot comparing the Pearson correlation coefficient (PCC) of 
expressions within the IGAM gene set across Fn groups. Statistical significance was assessed using a two-sided Wilcoxon 
rank sum test. (e) Dot plot representing genes prioritized by a decrease in expression correlation with other network 
member genes upon Fn infection. Genes were sorted by the mean difference in PCC for each Fn group, adjusted using - 
log10(p) from a one-sided Wilcoxon rank sum test. A p-value cutoff of 0.05 was applied. (f) Boxplots illustrating correlation 
changes in significantly dysregulated genes involved in sIgA maturation and function, with statistical significance
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Stratification of Fn-positive CRC patients by IGAM activity predicts prognosis

The impact of Fn infection on clinical outcomes may vary due to differences in host genomes and 
intratumor immune environments. Therefore, we hypothesized that variations in the activity of the 
IGAM module could further stratify patients with Fn infection, potentially leading to more precise medical 
interventions for CRC. To explore this hypothesis, we utilized the TCGA-COAD cohort and conducted 
survival analysis based on IGAM activity levels, as determined by the mean expression of module genes 
(Methods). Our analysis revealed a significant separation between the survival curves of patients with high 
and low IGAM activity, irrespective of their Fn infection status. Patients with higher IGAM activity 
consistently showed better prognosis (Figure 4(g)). Furthermore, reduced IGAM activity was significantly 
associated with poorer survival in both univariate and multivariate Cox regression models, independent of 
Fn status, tumor stage, lymph node involvement, and microsatellite instability (Supplementary Table S5). 
This finding aligns with our earlier observation that the IGAM module is dysregulated in Fn-positive 
patients, who generally exhibit worse prognoses. Moreover, these results suggest that IGAM activity could 
serve as an independent prognostic biomarker in CRC.

Considering the potential association between the two prognostic biomarkers–Fn infection and IGAM 
activity–we developed a stratification strategy by combining these biomarkers. We divided the patients into 
four groups based on their Fn infection status and IGAM activity levels and compared their survival 
probabilities. Remarkably, we observed significantly different survival rates between two groups of Fn- 
positive patients differentiated by their IGAM activity levels (Figure 4(h)). Notably, Fn-positive patients 
with high IGAM activity exhibited survival rates comparable to those of Fn-negative patients with low 
IGAM activity. This suggests that enhancing IGAM activity in Fn-positive patients could potentially elevate 
their survival probabilities to levels observed in Fn-negative CRC patients, offering a promising avenue for 
tailored therapeutic strategies.

Bacterial burden within tumor increases in Fn-positive CRC

Our single-cell analysis indicated that Fn infection was associated with diminished production of secretory 
IgA (sIgA), a molecule which normally binds to commensal microorganisms, preventing their adhesion and 
infiltration into the mucosal layer and colon tissue. Consequently, we hypothesized that the reduced 
production of functional sIgA in Fn-positive CRC leads to increased colonization and infiltration of gut 
commensals into tumor tissue, thereby inducing chronic inflammation and resulting in poor prognosis. 
This hypothesis aligns with a growing body of research highlighting the clinical impact of the intratumoral 
microbiome.76,77 Specifically, Fn is known to coaggregate with other bacterial species, forming biofilms that 
promote host invasion.78,79

To investigate this, we analyzed tumor bulk RNA sequencing data, using read counts aligned to human 
gut prokaryotic genomes as a proxy for the abundance of intratumor gut microbiota in the TCGA-COAD 
cohort. Our findings confirmed that intratumor bacterial abundance was significantly higher in Fn-positive 
compared to Fn-negative CRC cases (Figure 5(a)). Further analysis identified several bacterial species 
significantly increased (i.e., infiltrated) in Fn-infected tumors, including numerous pathogens or patho
bionts (Figure 5(b), Supplementary Table S6).

This increased bacterial burden within tumors may induce chronic inflammation, contributing to the 
poorer prognosis observed in Fn-positive CRC. A recent study assessing IgA coating levels for thousands of 
gut bacterial strains in healthy humans provided a metric for the IgA binding probability of each species.80 

Our analysis found that bacterial species with increased infiltration in Fn-positive tumors also have a higher 
probability of binding to IgA (Figure 5(c)). These findings collectively suggest that the impairment of IgA-

determined using a two-sided Wilcoxon rank sum test. (g) Kaplan-Meier plots estimating survival based on the IgA 
maturation (IGAM) gene set activity score in TCGA-COAD tumors located in the right colon. (h) Paired survival analysis 
conducted based on groups defined by Fn infection and IGAM gene set activity score. Statistical significance for each paired 
group determined using Kaplan-Meier estimation; significant pairs (p < 0.05) are highlighted in red. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001.
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mediated mucosal immunity permits species typically kept in check by IgA to infiltrate the tumor, thereby 
exacerbating the intratumor bacterial burden in Fn-positive CRC. This mechanism likely contributes 
significantly to the adverse outcomes associated with Fn infection in CRC.

Validation of Fn-associated impairment of IgA induction in an independent CRC cohort

To determine if our findings are reproducible in other CRC patients, we performed single-cell transcrip
tomic analysis on tumors from an independent validation cohort of 18 CRC patients (7 Fn-positives and 11 
Fn-negatives) (Supplementary Table 7). This analysis identified 13 distinct immune cell types encompassing 
a total of 34,965 cells (Supplementary Figure S6a, Supplementary Table 8). We also examined the disruption 
of macrophage-mediated IgA induction by analyzing cell-cell interactions between B cells and myeloid cells 
(Supplementary Figure S6b). We observed notably diminished TACI-mediated interactions between B cell 
subsets and macrophages. Furthermore, APRIL-mediated interactions between IgA plasma cells and 
macrophages were reduced. These findings indicate a disruption of the interaction with macrophages 
necessary for IgA induction in Fn-positive tumors.

To investigate the development of IgA plasma cells further, we processed plasma cells and B cells 
separately (Supplementary Figure S6c). By assessing PRDM1 expression, we distinguished mature IgA 
plasma cells (Supplementary Figure S6d). Using RNA velocity to measure cell transitions, we noted 
a significant delay in the transition to mature IgA plasma cells in the Fn-positive group, replicating our 
results from the discovery cohort (Supplementary Figure S6e-f). Lastly, we estimated the intratumor 
bacterial read count using bulk RNA-seq data from the tumor samples of the validation cohort. The analysis 
revealed a consistent increase in intratumor bacterial read count in the Fn-positive group compared to the 
Fn-negative group, although the sample size was too small for statistical significance (Supplementary 
Figure S6g).

Figure 5. Intratumor bacteria burden increases in Fn-positive CRC. (a) Boxplot illustrating the distribution of bulk RNA 
sequencing read counts aligned to human gut bacterial genomes in TCGA-COAD tumors, grouped by Fn infection status. 
Read counts have been normalized to the total read depth of RNA sequencing for each sample. Statistical significance was 
assessed using a two-sided Wilcoxon rank sum test. (b) Volcano plot depicting species enriched in each Fn infection status 
group. Species reported as pathogens or opportunistic pathogens are specifically labeled. Normalized read counts from 
each TCGA-COAD sample were sorted, and a two-sided Wilcoxon rank sum test was used to determine enrichment for each 
group. P-values were adjusted using the Family-wise Type 1 Error Rate (FWER). The plot represents species based on the 
difference in mean normalized read counts between Fn groups, with an adjusted p-value cutoff of 0.001 and a mean 
difference cutoff of 0.25. (c) Boxplot illustrating the distribution of IgA binding probabilities of species in TCGA-COAD 
tumors, grouped by the side with the higher bacterial read abundance. Statistical significance was determined using a two- 
sided Wilcoxon rank sum test. ***p < 0.001, ****p < 0.0001.
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In summary, single-cell and tumor microbiome analyses in an independent validation cohort reinforced 
our observations from the discovery cohort, confirming that the poor prognosis of Fn-positive CRC patients 
is linked to the impairment of IgA-mediated mucosal immunity.

Validation of Fn-associated impairment of IgA induction across mouse models

Although we identified an association between Fn infection and impaired IgA plasma cell development in 
an independent CRC cohort, causality was not established. To address this, we tested the causal role of Fn by 
infecting germ-free (GF) mice with Fn via oral gavage (Figure 6(a)). Experimental groups were established 
by administering Fn to GF mice (Fn group), while control groups received phosphate-buffered saline (PBS) 
(control group). Five weeks after oral gavage, the Fn group showed significantly lower normalized body 
weight (102.11 ± 0.89%, n = 5) compared to controls (111.11 ± 2.14%, n = 5) (Supplementary Figure S7a). 
Although GF mice typically exhibit an enlarged cecum due to mucus and undigested fibers,81 the Fn group 
showed reduced cecum size (Supplementary Figure S7b) and weight (Supplementary Figure S7c) compared 
to controls, though not statistically significant. These results indicate successful intestinal colonization 
by Fn.

scRNA-seq analysis generated single-cell transcriptome profiles for 7,470 mouse immune cells 
(Figure 6(b)). To examine IgA plasma cell differentiation, we constructed a trajectory from B cells to IgA 
plasma cells (Figure 6(c)), grouping cells along pseudotime into distinct developmental states (Figure 6(d)). 
The trajectory was validated by the expression dynamics of marker genes: early-state B cells (Bach2, Ebf1, 
Foxp1, Pax5)82–84 (Supplementary Figure S7d), mature B cells (Cd37, Ce52, Cd74, Cd79a)82 (Supplementary 
Figure S7e), and IgA plasma cells (Supplementary Figure S7f). Notably, cell density distributions shifted 
toward earlier pseudotime in the Fn group, indicating delayed IgA plasma cell differentiation (Figure 6(e)). 
RNA velocity analysis showed inhibited transition from early-state B cells to mature B cells (Figure 6f) and 
from monocytes to macrophages, essential for IgA induction (Figure 6(g–h)) in the Fn group. These 
findings suggest that Fn disrupts the development of both IgA plasma cells and macrophages, ultimately 
impairing IgA-mediated mucosal immunity.

To test the role of Fn under a more physiologically relevant setting-one that preserves both the tumor- 
immune microenvironment and the normal gut microbiome – we re-analyzed a publicly available single- 
cell RNA-seq data set from a CRC mouse model with an intact microbiota (GEO accession GSE172334). 
From 36,697 tumor-infiltrating cells collected from three mice gavaged orally with Fn and three gavaged 
with PBS, we identified 15 immune cell types (Supplementary Figure S8a). We then subclustered the 
B-lineage compartment, resolved a distinct germinal-center (GC) B-cell cluster, and reconstructed 
a differentiation trajectory from naïve/GC B cells to IgA plasma cells (Supplementary Figure 8b). In the 
Fn group, expression of key plasma-cell – differentiation genes – including Tnfrsf13b and Tnfrsf13c—was 
significantly reduced in B cells (Supplementary Figure S8c). When the PBS and Fn samples were visualized 
separately, the GC-to-IgA trajectory appeared less continuous in Fn-exposed mice (Supplementary Figure 
S8d). RNA-velocity analysis confirmed this impression: the transition probability from B cells to IgA plasma 
cells at the branch point was markedly lower in the Fn cohort (Supplementary Figure S8e–f). Thus, Fn 
impairs IgA-plasma-cell differentiation not only in germ-free mice but also in conventionally colonized 
animals.

Discussion

Our analysis revealed significant alterations in the immune cell composition within tumors due to Fn 
infection, including the dysregulation of pathways essential for generating IgA-secreting plasma cells. While 
existing studies have shown that Fn infection inhibits T-cell-driven antitumor responses,85 our research 
highlights the crucial role of specific B-cell subsets in the poor prognosis of Fn-associated CRC. Notably, Fn 
infection hindered the development of IgA plasma cells in the colon tissue of germ-free mice and in the 
tumor tissue of a CRC mouse model with a conventional microbiota. Single-cell and spatial transcriptome 
data analysis showed disrupted ligand-receptor interactions between IgA plasma cells and M2 macrophages, 
resulting in impaired maturation and mucosal immunity functions of sIgA in Fn-positive CRC. 
Consequently, the weakened sIgA function may not properly prevent gut bacteria infiltration, leading to
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an elevated intratumor bacterial burden, which may adversely affect patient clinical outcomes by inducing 
chronic inflammation. Remarkably, we identified signature genes for IgA maturation and found that their 
activity can stratify Fn-positive CRC patients. Those with higher gene activity exhibit survival rates 
comparable to Fn-negative patients. These findings illuminate the potential for developing personalized 
therapies for Fn-positive CRC patients by targeting the IgA development pathway.

Figure 6. Disruption of IgA plasma cell and macrophage development in Fn-administered germ-free (GF) mice. 
(a) Experimental scheme: GF mice were administered phosphate-buffered saline (PBS) (n = 5) or Fusobacterium nucleatum 
(Fn) (n = 5) via oral gavage three times per week for five weeks, followed by sacrifice. Colon tissues were dissociated for 
single-cell RNA sequencing (scRNA-seq) analysis (b) UMAP visualization of immune cells, identifying 12 distinct immune cell 
types after preprocessing and batch correction. (c) Differentiation trajectories of B cells and plasma cells visualized using the 
DDRTree algorithm. (d) Six cell states along the pseudotime trajectory of B cell-to-IgA plasma cell differentiation. (e) Cell 
density distribution along pseudotime for IgA plasma cell differentiation in Fn (Fuso) and control (PBS) groups. (f) Density 
plot of transition probabilities between cell states along the IgA plasma cell trajectory (Kolmogorov-Smirnov test). (g) RNA 
velocity analysis of monocytes and macrophages from colon tissues in control (PBS) and Fn (Fuso) group. (h) Density plot of 
transition probability from monocytes to macrophages (Kolmogorov-Smirnov test).
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Patients with IgA deficiency exhibit an increased risk of several types of cancer, including 
gastrointestinal cancer.86 sIgA normally acts as the primary antigen-specific defense mechanism 
within the intestinal lumen, playing a crucial role in defending against enteric pathogens.45,46 

Additionally, sIgA naturally binds to and encapsulates commensal bacteria in the gut, thereby 
playing an essential role in maintaining the balance between the host and its gut microbiota. Our 
results suggest that individuals with intact IgA function in colon tumors may have improved 
prognoses in Fn-positive cases. This implies that the role of sIgA in counteracting Fn infection 
could serve not only as a potential biomarker for early detection of colon cancer87 but also as 
a promising leverage for therapeutic strategies aimed at inhibiting Fn-induced tumor progression. 
These findings underscore the need for further studies to identify the specific antigens recognized 
by sIgA and to elucidate how sIgA neutralizes the pro-tumoral effects of Fn infection in colon 
cancer.

This study has some limitations. First, while we identified the causal role of Fn infection in dysfunctional 
sIgA production in CRC tumors, the precise molecular mechanism remains unclear. Our spatial transcrip
tome analysis revealed that IgA plasma cell spots were located closest to the spots containing Fn sequence 
reads in situ, suggesting that Fn might impair IgA plasma cells through close contact. However, further 
studies are needed to identify Fn-derived molecules that negatively regulate TGF-β signaling in IgA plasma 
cells. Second, clinical factors such as antibiotic usage and the effects of chemotherapy were not available for 
the TCGA-COAD cohort and therefore not included in the multivariate survival analysis. In our indepen
dent patient cohort, however, all individuals were treatment naïve and had not received antibiotics at the 
time of curative-intent surgery and sample collection. Additionally, the IGAM module for stratifying Fn- 
positive patients was not validated using prospective cohorts in this study, which should be addressed in 
future follow-up studies.

In summary, our findings support the notion that Fn infection hinders macrophage-mediated sIgA 
induction and increases tumor bacterial burden via disruption of both IgA plasma cells and macrophage. 
Stratifying patients based on IGAM module activity and developing strategies to restore IgA maturation 
hold promises for refining treatment strategies for Fn-positive CRC. This approach offers a more tailored 
strategy for patient care, potentially improving therapeutic outcomes.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

● Single-cell RNA sequencing data have been deposited at GEO under accession number GSE273567 and 
will be publicly available as of the date of publication. Currently, the data can be accessed using a secure 
token (szaresysfxehncj).

● The corresponding raw 16S rRNA sequencing tumor microbiome data have been deposited in the 
Sequence Read Archive (SRA): PRJNA1142424 and will be publicly available as of the date of 
publication.

● Single-cell RNA sequencing data from germ-free (GF) mice have been deposited at GEO under 
accession number GSE288951 and will be publicly available as of the date of publication, with 
temporary access available via a secure token (arefyeqwllajtgn).

● Single-cell RNA sequencing data from CRC mouse with a normal gut microbiome is publicly available 
at GEO under accession number GSE172334.
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● This paper analyzes existing, publicly available data, accessible from Broad Genome Data Analysis 
Center Firehose (https://gdac.broadinstitute.org) for the TCGA cohort dataset and the DDBJ Sequence 
Read Archive (DRA015288) for the spatial transcriptome dataset for CRC tumors.

● Any additional information required to reanalyze the data reported in this paper is available from the 
lead contact upon request.
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