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This study aimed to develop an artificial intelligence (AI) model for the screening of degenerative 
joint disease (DJD) using temporomandibular joint (TMJ) panoramic radiography and joint noise 
data. A total of 2631 TMJ panoramic images were collected, resulting in a final dataset of 3908 
images (2127 normal (N) and 1781 DJD (D)) after excluding indeterminate cases and errors. AI models 
using GoogleNet were evaluated with six different combinations of image data, clinician-detected 
crepitus, and patient-reported joint noise. The model that integrated all joint noise data with imaging 
demonstrated the highest performance, achieving an F1-score of 0.72. Another model, which 
incorporated both imaging and crepitus, also achieved the same F1-score but had lower D recall (0.55 
vs. 0.67) and N precision (0.71 vs. 0.74). The AI models outperformed orofacial pain specialists when 
provided with imaging alone or in combination with all joint noise data. These findings suggest that 
AI-enhanced DJD diagnosis using TMJ panoramic radiography and joint noise data offers a promising 
approach for early detection and improved patient care. The results underscore AI’s capability to 
integrate diverse diagnostic factors, providing a comprehensive and accurate assessment that 
surpasses traditional methods.
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Degenerative joint disease (DJD) of the temporomandibular joint (TMJ) is a degenerative condition characterized 
by cartilage breakdown and bone deformation in the mandibular condyle and articular fossa, significantly 
affecting patients’ quality of life by impairing function and aesthetics1. Interestingly, while DJD is typically 
considered female predominant and age-related, the linear correlation between bone change and age observed 
in other joints is not evident in the TMJ. Temporomandibular disorder (TMD) is most prevalent in young adults 
aged 20 to 40, and DJD may begin at an early age2. Notably, the severity of DJD does not always correspond with 
pain intensity; DJD changes in young Korean TMD patients are as common as in older individuals, showing no 
correlation with clinical pain or disc displacement3. This makes early detection both challenging and essential, 
especially since significant degeneration often occurs without overt symptoms.

Cone-beam computed tomography (CBCT) is the reference standard for diagnosing DJD due to its high 
diagnostic accuracy and detailed anatomical assessment4. However, CBCT is costly and exposes patients to 
higher radiation doses compared to other imaging modalities. While panoramic radiography is more accessible 
and cost-effective, it lacks comprehensive evaluation capabilities for the TMJ region. Conversely, TMJ panoramic 
radiography provides a more targeted evaluation, enabling assessment of the mandibular condyle’s range of 
motion without significant projection limitations.
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Recent a systematic review and meta-analysis of artificial intelligence (AI) studies using radiography for DJD 
diagnosis reported a pooled sensitivity of 0.76 and specificity of 0.79, based on a total of 10,077 TMJ images 
from seven studies. While three of these studies focused on panoramic radiography and various transfer learning 
models, others investigated the 3D shape of the condyle and disease classification using CBCT images5. Most 
existing AI research on DJD diagnosis has relied primarily on single imaging modalities with little incorporation 
of clinical data. Although the value of joint noise data in TMD diagnosis is not always definitive, some studies 
have underscored its importance. For instance, click sounds have been found to be more strongly associated 
with disk displacement without reduction6, and coarse crepitus has been identified as a useful clinical indicator 
for DJD7. The Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) also recommends utilizing all 
joint noise data in diagnosing DJD8.

This study aimed to develop and evaluate an AI model that integrates TMJ panoramic radiography and 
joint noise data to improve the screening and diagnosis of DJD. By aligning with current diagnostic criteria 
and addressing the limitations of previous AI studies that relied solely on imaging data, this approach offers the 
potential for a more comprehensive and accurate diagnostic tool for DJD. Our study uniquely integrates imaging 
data with clinical joint noise information, combining both clinician-detected crepitus and patient-reported joint 
noise with diagnostic labeling based on TMJ panoramic radiography and CBCT analysis. This multimodal 
approach aims to improve diagnostic accuracy and provide a more comprehensive tool for DJD diagnosis.

Results
Among the six AI models evaluated, GoogleNet consistently demonstrated superior performance, as evidenced 
by the highest F1-score across all conditions, regardless of the presence or type of joint noise data (Table 1). In 
the assessment of models incorporating various joint noise data inputs using GoogleNet, all experiments were 
conducted in triplicate to ensure reliability, with mean values utilized for analysis. The integration of crepitus 
data resulted in an overall performance enhancement (Model 1 vs. 2). Conversely, the inclusion of subjective 
joint noise data exhibited a stabilizing effect on label-specific predictions (Model 1 vs. 4). Model 2 and 4 achieved 
the highest F1-score (0.72) (Table 2, Fig. 1).

In selecting the best model, we focused on DJD (D) recall (sensitivity) and normal (N) precision (positive 
predictive value) as key metrics, given their importance in medical diagnostics, especially for screening tools. D 
recall represents the proportion of actual DJD cases correctly identified by the model. High D recall is crucial 
for a screening tool because it minimizes false negatives, ensuring that fewer cases of DJD are missed. This is 
particularly important in early detection and intervention of DJD. N precision, on the other hand, indicates the 
model’s accuracy in classifying normal cases. High N precision means that when the model classifies a case as 
normal, there’s a high probability that it is indeed normal. This is important for reducing unnecessary further 
testing or treatment for patients who don’t have DJD. By prioritizing these metrics, we aimed to develop a 
screening tool that effectively identifies potential DJD cases (high D recall) while also accurately ruling out 

Model Precision Recall F1-score Accuracy
Macro average
F1-score

1
True = D 0.78 0.53 0.63

0.72 0.70
True = N 0.69 0.88 0.77

2
True = D 0.81 0.55 0.66

0.74 0.72
True = N 0.71 0.89 0.79

3
True = D 0.69 0.63 0.66

0.70 0.70
True = N 0.71 0.76 0.74

4
True = D 0.71 0.67 0.69

0.72 0.72
True = N 0.74 0.77 0.75

5
True = D 0.69 0.61 0.65

0.69 0.69
True = N 0.70 0.77 0.73

6
True = D 0.74 0.58 0.65

0.72 0.71
True = N 0.71 0.83 0.76

Table 2.  Detailed performance metrics for different AI models in DJD diagnosis. AI, artificial intelligence; 
DJD, degenerative joint disease; D, degenerative joint disease; N, normal.

 

Model Res18 Res50 Res101 VGG16 VGG19 GoogleNet

1 0.67 0.69 0.68 0.69 0.69 0.70

2 0.71 0.71 0.70 0.71 0.71 0.72

5 0.69 0.68 0.64 0.67 0.69 0.71

6 0.70 0.70 0.66 0.71 0.69 0.72

Table 1.  Comparison of F1-scores among various pre-trained models for DJD diagnosis.  DJD, degenerative 
joint disease.
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normal cases (high N precision). This approach helps to balance the need for early detection with the goal 
of minimizing unnecessary interventions or further diagnostic procedures. The ranking of model suitability, 
calculated by summing the ranks of macro average F1, D recall, and N precision, yielded the following order: 4, 
2, 6, 1, 3, 5.

To identify the image areas that the AI model relied on for its judgment, we utilized a saliency map, as shown 
in Fig. 2.

Comparative analysis between the AI models and orofacial pain specialists was shown in Table 3 and Fig. 3. 
AI models outperformed specialists across all metrics (precision, recall, F1-score) for both Model 1 (image-only) 
and Model 4 (image and whole joint noise data). The AI’s diagnostic capability improved with the addition of 
joint noise data (Model 4), as evidenced by the increase in macro average F1-score from 0.70 (Model 1) to 0.72 
(Model 4). Conversely, specialists showed a decline in performance when presented with both image and joint 
noise data (Model 4) compared to image-only assessment (Model 1), with macro average F1-scores decreasing 
from 0.63 to 0.59.

Discussion
Our study reveals important findings regarding the diagnosis of DJD using AI models and the significance of 
various diagnostic factors, particularly joint noise.

The most notable finding is that combining both subjective and objective noise data (Model 4) yielded the 
highest performance, emphasizing the importance of using all available auditory information. This aligns with 
the DC/TMD for diagnosing DJD, which now includes both fine and coarse crepitus, as well as patient-reported 

Model Precision Recall F1-score Accuracy Macro average F1-score

1
True = D 0.69 0.50 0.58

0.64 0.63
True = N 0.61 0.77 0.68

4
True = D 0.65 0.44 0.52

0.60 0.59
True = N 0.57 0.76 0.66

Table 3.  Average diagnostic performance of eight orofacial pain specialists in DJD diagnosis.  DJD, 
degenerative joint disease; D, degenerative joint disease; N, normal.

 

Fig. 2.  Saliency map highlighting the region of interest in AI-based DJD diagnosis. AI, artificial intelligence; 
DJD, degenerative joint disease.

 

Fig. 1.  Performance comparison of six AI models in diagnosing DJD. AI, artificial intelligence; DJD, 
degenerative joint disease; D, degenerative joint disease; N, normal.
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joint noises8. However, for DJD diagnosis, imaging such as CBCT remains essential due to the low sensitivity 
(0.55) and specificity (0.61) when relying solely on clinical exams without imaging.

While integrating all types of noise data proved most effective, using only crepitus also enhanced model 
performance. Crepitus, a well-established marker in DJD diagnostics, has shown high specificity in previous 
studies9. Our findings corroborate this, as models incorporating crepitus (Models 2, 4, and 6) outperformed 
those relying solely on image data (Model 1).

Interestingly, while our AI models, particularly those integrating both imaging and noise data, outperformed 
orofacial pain specialists, it is important to consider the context of this comparison. Specialists typically rely on 
a broader range of diagnostic information during clinical evaluations, including patient history, mandibular 
movements, muscle and joint palpation, joint sounds, and occlusion, which were not available in this study. 
The AI models, on the other hand, were limited to analyzing only the panoramic images and noise data. This 
limitation may explain why the AI models performed better under these conditions.

In diagnosing DJD, research findings are mixed regarding the effectiveness of TMJ panoramic radiography 
compared to panoramic radiography. TMJ panoramic radiography has been shown to have limited but improved 
diagnostic accuracy over conventional panoramic radiography, particularly in detecting bony lesions like 
flattening, erosion, and osteophytes on the mandibular condyle10. The combination of lateral and frontal TMJ 
projections often shows the highest sensitivity for detecting these lesions, though with varying levels of specificity 
and overall accuracy. In contrast, other studies have reported that general panoramic radiography tends to 
have better diagnostic accuracy than TMJ panoramic projections, especially when evaluating condylar cortical 
erosion11. The broader context provided by general panoramic radiography may aid in more precise assessments. 
Despite the promising results from our AI models, their performance was lower than expected compared to 
studies using general panoramic radiography for DJD diagnosis. However, our study focused on detecting 
deformation due to subcortical cysts, surface erosion, osteophytes, and generalized sclerosis, which may account 
for some differences in findings. Also, the challenges associated with TMJ panoramic radiography—such as 
movement artifacts due to open-mouth positioning and the potential for obscuring key joint structures—likely 
contributed to the reduced effectiveness observed in our results.

Despite the promising results, this study has several limitations that should be considered for future research. 
Although our dataset was labeled based on CBCT interpretations by multiple dental radiology specialists, relying 
on the CBCT images themselves for labeling might improve the precision and consistency of the AI models. 
Additionally, the incomplete collection of subjective noise data, as not all cases included this information, may 
have limited the accuracy and generalizability of our findings. Finally, the study’s limited sample size and single-
center design suggests the need for further research that includes more comprehensive datasets and multi-center 
data to validate and refine the AI models for broader clinical application.

In conclusion, our study demonstrates that AI-enhanced DJD diagnosis, particularly through the integration 
of panoramic radiography and joint noise data, offers a promising approach for early detection and improved 
patient care. The development of this AI-driven diagnostic tool has significant implications for public health 
and general practice. By combining these modalities, the model provides a practical solution for non-specialist 
clinicians, enabling more accurate screening and timely referrals of TMD patients. This tool has the potential 
to reduce diagnostic delays, improve patient outcomes, and ease the burden on specialized healthcare services. 
However, further research is needed to optimize this approach, particularly with respect to evolving diagnostic 
criteria and the specific challenges of TMJ imaging.

Fig. 3.  Diagnostic performance comparison: specialists versus AI models. AI, artificial intelligence.
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Methods
Study design and data collection
This study was approved by the Institutional Review Board (IRB) of Yonsei University College of Dentistry (IRB 
2-2024-0011), and all methods were performed in accordance with relevant guidelines and regulations. The IRB 
waived the requirement for informed consent documentation.

Radiographic images were reviewed from patients who visited the Orofacial Pain Clinic at Yonsei University 
Dental Hospital between January 2019 and February 2021, reported TMD-related symptoms, and had both TMJ 
panoramic radiography (Rayscan Alpha Plus, Ray Co. Ltd., Hwaseong-si, Korea) and TMJ CBCT (Alphard 3030 
device, Asahi Roentgen Ind., Co. Ltd, Kyoto, Japan) evaluated by oral and maxillofacial radiology specialists. 
Exclusion criteria included patients under 18 years of age, those with a history of orthognathic surgery, macro 
trauma, systemic diseases causing joint deformity, or a time gap of more than three months between the TMJ 
panorama and CBCT imaging.

For the collection of joint noise data, both objective (clinician-detected crepitus) and subjective noise reported 
by patients were reviewed retrospectively through electronic medical records (EMR). Crepitus was defined as 
a continuous or multiple coarse friction sound/sensation felt by the examiner’s finger placed anterior to the 
external auditory meatus during three repetitions of opening and closing movements, as well as during lateral 
and protrusive movements of the mandible. This objective assessment was performed by trained clinicians as 
part of the standard TMJ examination protocol. Patient-reported joint noise were categorized into four types:

P: clicking or popping joint noise
R: crepitus or grating joint noise like gravel or sand moving
PR: both joint noises present
I: unspecified joint noise (patient reports a joint noise but cannot accurately describe its nature)

Data processing
A total of 2631 TMJ panoramic images were collected for this study. While there was only a slight difference in 
AI model performance between open and closed TMJ panoramic images, with the open images showing a 2–3% 
higher performance, this study utilized only open ones (Supplemental Table). Each image was re-labeled by an 
orofacial pain specialist as either "normal (N)" or "DJD (D)" based on corresponding CBCT analysis criteria for 
temporomandibular disorder diagnosis8,12. These criteria included deformation due to subcortical cyst, surface 
erosion, osteophyte, or generalized sclerosis. CBCT was chosen due to its high-resolution capability in detecting 
bony changes, which were used as the reference standard for labeling TMJ panoramic images. Following the 
exclusion of 1354 indeterminate DJD images and errors13, the final dataset included 2127 images labeled as "N" 
and 1781 images labeled as "D".

Crepitus data was collected for the entire dataset, while subjective noise data was collected for a subset of 
samples (48.13% of the total).

AI model development
The AI model employed pre-trained CNN architectures to extract feature vectors, which were then combined 
with joint noise information for final diagnosis. We compared the performance of several pre-trained models 
commonly used for image classification tasks, including ResNet, VGGNet, and GoogleNet.

Data preprocessing involved a comprehensive approach to optimize image quality and enhance the 
robustness of the prediction model. Initially, images were resized while maintaining the original aspect ratio, 
using three different scales: 1/4, 1/2, and the full original size. To further improve the model’s performance, 
a two-stage preprocessing pipeline was implemented, consisting of auto-cropping and data augmentation. In 
the first stage, auto-cropping was applied to eliminate unnecessary background, segmenting each image into 
four distinct sub-images: right-close, right-open, left-open, and left-close views. Only the open images were 
selected, ensuring that the analysis focused solely on the relevant regions of interest. Subsequently, various data 
augmentation techniques were utilized to increase the diversity of the training set. These included random 
rotation (± 15 degrees) to account for positional variability, color jittering to simulate changes in contrast and 
brightness, random sharpness adjustments (with a probability of 0.5) to handle differences in image clarity, 
and horizontal flipping (with a probability of 0.5) to increase the model’s robustness to left–right orientation 
changes. By introducing controlled variability, these augmentations aimed to enhance the model’s generalization 
capabilities, reducing the risk of overfitting. The effects of each preprocessing technique are illustrated in Fig. 4.

To evaluate the effectiveness of sound information in the AI model, we incorporated joint noise information 
into the feature vector. We recorded objective noise (clinician-detected crepitus) and subjective noise reported 
by patients for each image. While crepitus data was collected for the entire dataset, subjective noise data was 
collected for 48.13% of the samples. Both crepitus and three types of patient-reported subjective sounds were 
binarized and encoded as four-dimensional vectors, with 1 indicating the presence of a sound and 0 indicating 
its absence. The integration of feature vectors and sound information was achieved by merging binarized sound 
information with the feature vectors derived from the TMJ panoramic images through the pre-trained models. A 
single-layer neural network used the merged vectors to perform the final diagnosis. To improve the performance 
of the AI model, experiments were conducted on six models by varying their inputs. The six models were:

Model 1: image only
Model 2: image and crepitus
Model 3: image and patient-reported joint noise (P, R, PR, I)
Model 4: image, crepitus andpatient-reported joint noise (P, R, PR, I)
Model 5: image and certain patient-reported joint noise (R, PR)
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Model 6: image, crepitus and certain patient-reported joint noise (R, PR)

The structure of integrated AI model architecture was shown in Fig. 4

Evaluation of AI models’ performance and clinical usability
The diagnostic performance of the AI model was evaluated by splitting the dataset into 60% training data and 
40% test data. We conducted three repetitions of experiments with different training/test samplings. Due to class 
imbalance in the dataset, we used the F1-score instead of accuracy for performance evaluation. To train the AI 
model, we used the stochastic gradient descent (SGD) optimizer with a learning rate of 1.0 × 10–3. We trained AI 
models for a total of 300 epochs. The design, training, and evaluation of the diagnostic model were implemented 
using Python, with the PyTorch library utilized for designing and training the deep learning models. The saliency 
map was used to interpret and visualize the regions of the image considered by the AI while making predictions.

For the clinical usability evaluation, 100 images labeled as "D" and 100 images labeled as "N" were randomly 
selected and mixed. These images were then reviewed by eight orofacial pain specialists. Each specialist evaluated 
the images twice, with and without noise joint information, at one-week intervals.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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