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Abstract
Background and Objectives
Emerging evidence suggests that oral health conditions may exacerbate migraine, and saliva is
a potential source of biomarkers for migraine. The 3-way interaction of the oral-gut-brain axis
has been implicated in several neurologic disorders, but has rarely been studied in migraine.
This study examined the oral and gut microbiomes simultaneously and identified several key
oral microbes that may influence migraine.

Methods
In this cross-sectional case-control study, participants were divided into 3 groups: episodic
migraine (n = 55), chronic migraine (n = 55), and healthy control (HC) (n = 55). De-
mographic and clinical characteristics; lifestyle factors; and biological samples including saliva,
stool, and blood were collected. Composition, function, and community type of the oral and gut
microbiomes were compared among the 3 groups.

Results
Oral dysbiosis was more pronounced than gut dysbiosis in the migraine groups, with 13 oral
genera significantly enriched or depleted compared with HCs. The migraine groups showed
increased abundance of Gemella, Streptococcus, Granulicatella, and Rothia and decreased
abundance of Alloprevotella, Veillonella, Haemophilus, Selenomonas, Campylobacter, Car-
diobacterium, Megasphaera, and Kingella after adjustment for demographic and lifestyle factors
including diet. The enriched oral genera within the migraine groups were associated with
carbohydrate metabolic pathways, whereas the depleted oral genera were associated with
pathways related to nitrogen. A significant proportion of the oral microbial signatures of
migraine included genera capable of reducing nitrate and/or nitrite. Some of these oral mi-
crobial signatures of migraine had a relative abundance that was positively or negatively as-
sociated with the number of headache days per 30 days and formed distinct microbial clusters in
both the oral cavity and gut. Machine learning classifiers using the oral microbiome effectively
classified migraine status, with an area under the receiver-operating characteristic curve of
0.83–0.88.

Discussion
Our findings suggest that oral dysbiosis may be involved in the development of migraine and
highlight specific oral microbes as potential diagnostic biomarkers and therapeutic targets for
migraine.
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Introduction
Migraine is a prevalent and debilitating neurologic disorder
affecting over 1 billion people, significantly affecting individ-
uals’ quality of life and imposing a considerable burden on
health care systems.1,2 Some pivotal mediators, such as cal-
citonin gene-related peptide (CGRP), have been identified
for migraine; however, a complete mechanism of its patho-
physiology remains elusive.3,4 The lack of biomarkers for
migraine often results in suboptimal treatment, causing delays
in diagnosis and increasing the burden of migraine on
patients.

A growing body of research indicates that saliva contains
a number of potential biomarkers for migraine, which can
provide valuable insight into the physiologic changes ob-
served in individuals with migraine.5-11 Notably, recent
studies on salivary CGRP have highlighted the potential of
saliva as a medium for investigating biomarkers relevant to the
diagnosis and treatment of migraine.10,11

On the other hand, emerging evidence suggests that the gut-
brain axis, and by extension, the oral-gut-brain axis, may in-
fluence the pathogenesis of several neurologic diseases.12-15

The gut-brain axis is a bidirectional communication between
the gastrointestinal system and CNS,12 which is significantly
influenced by the gut microbiota and their metabolites, such
as neurotransmitters and short-chain fatty acids (SCFAs).16

This concept is extended in the oral-gut-brain axis to include
the oral microbiome, which is the second largest microbiome
after the gut and is mechanically and chemically linked to the
gut.17 Furthermore, the oral microbiota and their by-products
directly influence the brain through the trigeminal, olfactory,
and facial nerves and bloodstream.13,18 Alternatively, they
indirectly affect the brain by inducing systemic inflammation
or disrupting the gut microbial composition by translocation
of microorganisms from saliva to the gut.17,19

Disruptions in the balance of the oral and gut microbiome
may be associated with the pathogenesis of migraine. Some
previous studies have shown alterations in the oral or gut
microbiome in individuals with migraine.20-23 Nevertheless,
the findings were heterogeneous across the studies, which
made it challenging to ascertain the specific factors that are
responsible for migraine. Therefore, there is a need to in-
vestigate the oral and gut microbiomes simultaneously and
analyze their intricate inter-relationships. We concurrently

examined the oral and gut microbial dysbiosis in participants
with episodic migraine (EM) and chronic migraine (CM)
compared with healthy controls (HCs). Furthermore, we
identified potential taxonomic and functional signatures of
migraines using oral microbiome.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent was obtained from all participants,
and this study was approved by the institutional review board
of Severance Hospital (IRB No. 2021-3925-001).

Participants
We recruited participants with EM and CM from the neu-
rology outpatient clinic of a tertiary care university hospital
(Seoul, Republic of Korea) between September 2022 and
May 2023. The inclusion criteria for participants with EM and
CM were as follows: (1) age 19–65 years and (2) meeting the
clinical criteria of the third edition of the International Clas-
sification of Headache Disorders (ICHD-3) for EM (code 1.1
or 1.2) or CM (code 1.3).24 The exclusion criteria were as
follows: (1) medication overuse headache; (2) receipt of
preventive treatment of migraine; (3) a current or history of
treatment for oral, gastrointestinal, medical, or psychiatric
disorders, except for anxiety, depression, or fibromyalgia; (4)
significant dietary changes in the 3 months before the study;
(5) probiotic or antibiotic use in the 6 months before the
study; and (6) pregnancy or lactation. The clinical charac-
teristics and common comorbidities of migraine including
anxiety, depression, and fibromyalgia were assessed in par-
ticipants with EM and CM (eMethods).

Furthermore, we recruited controls through advertisement af-
ter matching for age, sex, and body mass index (BMI) distri-
bution in the EM and CM groups. The controls were eligible
for the study if they had not experienced any headaches in the
previous year and had not had a migraine or probable migraine
attack in their lifetime. In addition, exclusion criteria (3)–(6)
were applied to the control group. All study participants
completed a lifestyle survey, including questions regarding
cohabitation, smoking habit, sleep pattern, and dietary habit.

Sample Size Calculation
We calculated the sample size for this study using the original
data set from our previous study (eMethods, eFigure 1, and

Glossary
ASV = amplicon sequence variant; AUC = area under the receiver operating characteristic curve; BMI = body mass index;
CGRP = calcitonin gene-related peptide; CM = chronic migraine; DMM = Dirichlet Multinomial Mixtures; EM = episodic
migraine; HC = healthy control; HIT-6 = Headache Impact Test-6; KEGG = Kyoto Encyclopedia of Genes and Genomes;
LEfSe = linear discriminant analysis effect size;MIDAS = migraine disability assessment; PC = principal component; ROC =
receiver-operating characteristic; SCFA = short-chain fatty acid.
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eFigure 2).22 The total sample size required was calculated as
165; we included 55 samples per group in this study.

Sample Collection and 16S rRNA
Gene Sequencing
We collected unstimulated saliva using a 50-mL sterile
Eppendorf conical tube between 9 AM and noon on the day
of consent. Participants were asked to refrain from eating,
drinking, chewing, smoking, and brushing their teeth for
at least 1 hour before the saliva was collected. On the same
day, blood was drawn from the antecubital vein into
a Becton, Dickinson Vacutainer Serum Separator Tube
(Becton, Dickinson and Company, USA). The blood
sample was maintained at room temperature for
15 minutes to allow clotting and centrifuged at 1500 g for
15 minutes at 4°C to separate the clot from serum. The
saliva and serum were immediately stored at −70°C. A
stool collection kit (SPL Life Sciences, Korea) was used to
collect stool within 3 days of consent (preferably the
earliest day after consent). Stool samples collected at
home were sealed and immediately frozen at −20°C, fol-
lowed by delivery to the study site with the ice pack
provided within 14 days of collection. Then, the samples
were stored at −70°C until the analysis.

We performed targeted sequencing of the microbial 16S
rRNA gene extracted from saliva and stool samples. Detailed
procedures for DNA extraction, PCR amplification, and se-
quencing are provided in eMethods.

Determination of SCFAs
We determined serum acetate, butyrate, and propionate levels
using liquid chromatography-tandem mass spectrometry
(eMethods, eTable 1 and eTable 2).

Diversity and Taxonomic and Functional
Abundance Analysis
We performed amplicon sequence variant (ASV)-based tax-
onomic profiling using a pipeline based on internal plugins of
QIIME2 (version 2022.11). Taxonomic assignment was
performed using the feature classifier plugin with the EzBio-
Cloud database (CJ Bioscience Inc., Korea) as a reference.25

The number of taxa and Shannon Diversity Index were
calculated for alpha diversity, and Bray-Curtis dissimilarity
was calculated for beta diversity. The SIAMCAT R package
was used for differential abundance tests to identify oral and
gut microbial signatures of the EM and CM groups com-
pared with those of the HC group at the genus level.26 The
analysis included preprocessing options of prevalence fil-
tering with a cutoff of 0.1 and multiple testing correction
with the Benjamini-Hochberg procedure at a significance
cutoff of 0.05. Moreover, we constructed a logistic regression
model to determine whether the identified microbial sig-
natures remained significant after adjusting for potential
confounding covariates, including age, sex, BMI, and lifestyle
factors.

We used the PICRUSt algorithm to estimate the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) functional
pathway profiles based on taxonomic profiles.27 Spearman’s
correlation coefficient was used to examine the correlations
between the relative abundances of oral genera and metabolic
pathway signatures, which were visualized using a heatmap
generated with Seaborn Python library.

Association of Microbial Signatures With
Clinical Characteristics
Poisson regression analysis was used to assess the associations
between the relative abundance of oral microbial signatures
and the number of headache days per 30 days in participants
with migraine to further explore the clinical implications of
the oral microbial genera identified in the comparative anal-
ysis. Age, sex, BMI, lifestyle factors, anxiety, depression, and
fibromyalgia were adjusted for as covariates.

Correlation Network Analysis
and Envirotyping
We conducted correlation network analysis on the microbial
communities within each body site to identify bacterial
modules that represent important microbial associations
(eMethods). Orotypes and enterotypes—distinct clusters of
communities with a similar oral and gut microbial composi-
tion, respectively—were identified using Dirichlet Multino-
mial Mixtures (DMM) clustering.28 The fitting of the model
based on the Laplace approximation was used to determine
the optimal number of clusters. We used the linear discrimi-
nant analysis effect size (LEfSe) to discern signature genera
that stratify the microbiomes into distinct clusters, using LDA
3.0 as the cutoff.29

Oral-Gut Transmission Analysis
The ASVs shared between the oral cavity and gut were used to
determine the potential oral-to-enteric transmission. An ASV
was classified as shared if it was identified in both the oral and
gut microbiomes of each individual. Otherwise, it was desig-
nated as exclusive to either the oral or gut microbiome. Sub-
sequently, the average percentage abundance of the shared
microbiome in the oral cavity and gut was compared among the
CM, EM, and HC groups. Furthermore, the occurrence of oral
microbial signatures in the gut was examined across the groups.

Statistical Analysis
The moonbook R package with the default options was used
for statistical analysis. Continuous variables were compared
using independent t-test or analysis of variance for normally
distributed data and Wilcoxon rank-sum test or Kruskal-
Wallis test for nonparametric data. Categorical data were
compared using Pearson’s χ2 or Fisher’s exact test. We per-
formed principal component analysis for the lifestyle survey
data using the sklearn Python library. Eight principal com-
ponent (PC) axes were ultimately selected and used as
covariates in the modeling to adjust for potential confounding
factors in the relationship between the microbiome and mi-
graine (eMethods and eFigure 3).
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Machine Learning Modeling for the
Classification of Migraine
First, we constructed machine learning–based random forest
models for migraine classification (i.e., migraine [CM or EM] vs
HC, CM vs HC, and EM vs HC) using all oral microbiome
features after prevalence filtering with a cutoff of less than 10%. A
feature importance analysis identified genus-level oral microbial
markers as high-ranking features for classifying migraines that
showed significant enrichment or depletion in the CM or EM
groups compared with the HC group (eFigure 4).

Then, we developed machine learning–based random forest
models formigraine classification using 3 different sets of features
(host, microbial, and host andmicrobial features). Age, sex, BMI,
and lifestyle factors (i.e., PC 1–8)were used as host features. Oral
microbial signatures were incorporated as microbial features. We
performed 10 random repeats of five-fold cross-validation for
each dataset and assessed the performance of the classification
models using the area under the receiver-operating characteristic
(ROC) curve (AUC).We further conducted feature importance
analyses for models from microbial features.

Data Availability
Data that support the findings of this study are available from
the corresponding author upon reasonable request.

Results
Characteristics of ParticipantsWith EMand CM
and Healthy Controls
In total, 165 participants were enrolled, with 55 participants
each in the EM, CM, and HC groups. The demographic and
clinical characteristics are presented in Table 1. Sex, age, and
BMI did not significantly differ among the 3 groups. However,
the number of headache days per 30 days; total Headache
Impact Test-6 (HIT-6) score; total Migraine Disability As-
sessment (MIDAS) score; and prevalence of anxiety, de-
pression, and fibromyalgia significantly differed between the
EM and CM groups.

Overall Composition and Microbial Diversity
The overall composition of the oral and gut microbiomes of
the 3 groups was examined at the phylum and genus levels,
respectively (eFigure 5). Alpha diversity did not significantly
differ at the genus level of the oral microbiome (Figure 1A).
However, for the gut microbiome, the CM group had a higher
Shannon diversity than the EM group (p = 0.027) and
a greater number of observed features than the EM (p =
0.034) and HC (p = 0.040) groups (Figure 1B). Genus-level
beta diversity analysis of the oral and gut microbiomes
revealed significant differences among the 3 groups (p = 0.001

Table 1 Demographic and Clinical Characteristics of Participants

CM (n = 55) EM (n = 55) HC (n = 55) p Value

Sex, female, n (%) 51 (92.7) 49 (89.1) 51 (92.7) 0.732

Age, y 45.9 ± 10.8 42.2 ± 9.9 44.5 ± 11.3 0.181

BMI, kg/m2 22.8 ± 3.5 22.8 ± 3.3 23.1 ± 3.6 0.892

Number of headache days per 30 d 21.1 ± 6.2 5.0 ± 2.8 <0.001a

Severe pain intensity, n (%) 46 (83.6) 45 (81.8) >0.999

Unilateral location, n (%) 30 (54.5) 38 (69.1) 0.170

Pulsating quality, n (%) 54 (98.2) 49 (89.1) 0.118

Aggravation by routine physical activity, n (%) 46 (83.6) 49 (89.1) 0.578

Nausea, n (%) 49 (89.1) 50 (90.9) >0.999

Vomiting, n (%) 26 (47.3) 33 (60.0) 0.251

Photophobia, n (%) 36 (65.5) 30 (54.5) 0.330

Phonophobia, n (%) 41 (74.5) 35 (63.6) 0.302

Total HIT-6 score 63.6 ± 7.7 58.0 ± 9.3 0.001a

Total MIDAS score 40.4 ± 46.7 15.6 ± 17.0 <0.001a

Anxiety, n (%) 33 (60.0) 15 (27.3) 0.001a

Depression, n (%) 33 (60.0) 15 (27.3) 0.001a

Fibromyalgia, n (%) 25 (45.5) 5 (9.1) <0.001a

Abbreviations: BMI = bodymass index; CM = chronicmigraine; EM = episodicmigraine; HC = healthy control; HIT-6 =Headache Impact Test; MIDAS =Migraine
Disability Assessment.
For age, sex, and BMI, CM, EM, and HC groups are compared. For other clinical variables, CM and EM groups are compared.
a p < 0.05.
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and 0.039 for the oral and gut microbiomes, respectively),
with a more pronounced difference observed in the oral
microbiome (Figure 1, C and D).

Taxonomic and Functional Signatures of
Oral Microbiome
We identified 17 and 15 oral microbial signatures at the genus
level for the CM and EM groups, respectively, which exhibited
either significant enrichment or depletion compared with that
in the HC group (Figure 2, A and B). We observed a signifi-
cant increase in the abundance of Gemella, Streptococcus,
Granulicatella, and Mogibacterium and a significant reduction
in the abundance of Alloprevotella, Veillonella, Haemophilus,
Selenomonas, Catonella, Campylobacter, Cardiobacterium,
Megasphaera, and Kingella in both the CM and EM groups
(Figure 2C). Furthermore, the CM group exhibited enrich-
ment of Schaalia and Rothia. However, the relative abundance
of the gut microbiota did not significantly differ between the
CM and EM groups compared with that in the HC group.

Statistical significance was generally retained for the oral
microbiome after logistic regression modeling was applied
with age, sex, BMI, and lifestyle factors as adjustment variables
(eTable 3). Furthermore, compared with the HC group, the
EM group was significantly enriched with Rothia after the
adjustment.

A total of 62 and 52 KEGG metabolic pathways were iden-
tified as significant functional markers of the oral microbiome
for the CM and EM groups, respectively. Of these, 48 were
identified as overlapping markers (Figure 3, A and B). Car-
bohydrate metabolism, including fructose/mannose, galac-
tose, starch/sucrose, and glycolysis/gluconeogenesis, in
addition to glycan biosynthesis and metabolism, was en-
hanced in both the CM and EM groups. By contrast, the
metabolic pathways of butanoate, propanoate, and nitrogen
metabolism were depleted in the migraine groups. Notably,
the abundance of oral microbial and metabolic signatures
exhibited a significant correlation and clustering (Figure 3C).

Figure 1 Oral and Gut Microbiome Diversity in the CM, EM, and HC Groups

Alpha diversity (left) and number of taxa observed at the genus level (right) of (A) oral and (B) gut microbiomes. Beta diversity of PCoA based on Bray-Curtis
dissimilarity at the genus level of (C) oral and (D) gut microbiomes. ****p < 0.0001; *p < 0.05. CM = chronic migraine; EM = episodic migraine; HC = healthy
control; ns = not significant; PCoA = principal coordinate analysis.
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Figure 2Differential Abundance of the OralMicrobiome at the Genus Level Between (A) CM andHC, (B) EM andHC, and (C)
Venn Diagram of Overlapping Altered Taxa

(C) Venn diagram of oral microbial
signatures increased or decreased in
the CM and/or EM groups compared
with those in the HC group. Magenta
represents taxa enriched in partic-
ipants with migraine, and green rep-
resents taxa enriched in controls.
AUC = area under the receiver-
operating characteristic curve; CM =
chronic migraine; EM = episodic mi-
graine; HC = healthy control.
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Figure 3Differential Abundance of Functional Metabolic Pathway Profiles of the Oral Microbiome Between (A) CM and HC
or (B) EM and HC Groups

In the volcano plot, the x-axis represents the fold change (FC) between 2 comparison groups, while the y-axis represents the p value. The features with an
adjusted p < 0.05 are colored according to their pathway class, and the significant features with FC ≥ 0.1 are additionally labeled with text. (C) A heatmap of
Spearman correlation results of percentage abundances of pathways and taxa to represent the association between taxonomic oral signatures and
estimated functional KEGG metabolic pathway signatures. Spearman’s rho values, are represented by heatmap colors, and p < 0.05 are highlighted with an
asterisk. CM = chronic migraine; EM = episodic migraine; HC = healthy control; KEGG = Kyoto Encyclopedia of Genes and Genomes.
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The genera Streptococcus,Granulicatella,Gemella, and Schaalia
were positively associated with pathways associated with sugar
metabolism. By contrast, the genera Veillonella, Selenomonas,
and Campylobacter were positively associated with metabolic
pathways related to SCFAs and nitrogen.

Association BetweenOralMicrobial Signatures
and Headache Days per 30 Days
The relative abundance of Rothia, Granulicatella, Schaalia,
Megasphaera, Catonella, and Mogibacterium had significant
positive associations with the number of headache days per
30 days, whereas Cardiobacterium, Selenomonas, Alloprevotella,
and Haemophilus had negative associations (Table 2 and
eFigure 6).

Serum SCFA Levels
The level of serum propionic acid was significantly reduced in
the CM group in comparison with both the EM (p < 0.001)
and HC (p < 0.001) groups. However, no significant differ-
ences were observed in serum acetic acid and butyric acid
levels across the 3 groups (eFigure 7).

Microbial Network and Community-Level
Orotype and Enterotype
The correlation network analysis identified a number of dis-
tinct microbial clusters within each of the sampled body sites
(eFigure 8). Among the genera enriched in migraine, Rothia,
Gemella, Streptococcus, and Granulicatella clustered together.
Moreover, distinct subnetwork clusters were identified in the
gut taxa, with 1 notable gut bacterial cluster comprising oral
microbial signatures of migraine, including Rothia, Gemella,
Streptococcus, Granulicatella, and Veillonella.

On the other hand, the community-wide ecological structures
in the oral cavity and gut were evaluated using the DMM
clustering method. The 3 oral clusters showed different mi-
crobial profiles: Cluster E1, with a higher abundance of
Rothia, Gemella, Streptococcus, and Granulicatella; Cluster E2,
with a higher abundance of Neisseria, Haemophilus, Porphyr-
omonas, and Fusobacterium; and Cluster E3, with a higher
abundance of Prevotella, Veillonella, Schaalia, and Mega-
sphaera. A significant difference in the prevalence of oral
clusters was observed between the CM, EM, and HC groups,

Table 2 Poisson Regression Analysis of the Association Between Headache Days per 30 Days and Oral Microbial
Signatures Significantly Enriched or Depleted in the Migraine Groups Compared With the Control Group

Oral microbial signatures at genus level Estimate Standard error z value p Value Significance

Rothia 0.017 0.004 4.445 <0.001 ***

Catonella 0.707 0.154 4.587 <0.001 ***

Haemophilus −0.022 0.005 −4.487 <0.001 ***

Megasphaera 0.196 0.06 3.252 0.001 **

Mogibacterium 3.921 1.207 3.249 0.001 **

Schaalia 0.037 0.014 2.599 0.009 **

Granulicatella 0.033 0.014 2.465 0.014 *

Alloprevotella −0.057 0.026 −2.155 0.031 *

Selenomonas −0.202 0.094 −2.15 0.032 *

Cardiobacterium −0.439 0.21 −2.086 0.037 *

AY093465_g −2.879 1.487 −1.936 0.053 ns

Fusobacterium −0.02 0.011 −1.862 0.063 ns

Kingella 0.401 0.323 1.241 0.215 ns

Porphyromonas −0.004 0.005 −0.689 0.491 ns

JQ467121_g 0.705 1.059 0.665 0.506 ns

Gemella −0.008 0.017 −0.501 0.616 ns

Campylobacter −0.028 0.065 −0.423 0.673 ns

Veillonella 0.001 0.005 0.25 0.803 ns

Streptococcus <0 · 001 0.003 0.015 0.988 ns

Abbreviations: BMI = body mass index; ns = not significant.
Age, sex, BMI, lifestyle factors (i.e., principal components 1–8), anxiety, depression, and fibromyalgia were adjusted as covariates.
***p < 0.001; **p < 0.01; *p < 0.05.
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with the HC group having a significantly lower proportion
of E1 than both the CM and EM groups (p < 0.001)
(Figure 4A). For the gut microbiome, 2 distinct clusters were

identified. Cluster E1 was characterized by a higher abun-
dance of Prevotella, Bacteroides, Alistipes, and Phocaeicola,
whereas Cluster E2 was distinguished by a higher abundance

Figure 4 Ecological Structures of the (A) Oral and (B) Gut Microbiome at the Genus Level

Relative proportions of ecological
structure types across groups for the
(A, upper left) oral and (B, upper left)
gut microbiomes. PCoA plot based on
Bray-Curtis dissimilarity by ecological
structures of the (A, lower left) oral and
(B, lower left) gut microbiomes. LEfSe
analysis comparing the genus profiles
of the (A, right) oral and (B, right) gut
microbiomes by ecological structure.
LEfSe = linear discriminant analysis ef-
fect size; PCoA = principal coordinate
analysis.
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of Blautia, Bifidobacterium, and Escherichia. Nevertheless,
there were no significant differences in the proportion of the 2
clusters across the 3 groups (p = 0.379) (Figure 4B).

Oral-Gut Transmission Analysis
The mean percentage abundance of shared ASVs was not
significantly different across the 3 groups (p = 0.147 and p =
0.133 for oral and gut, respectively). The 8 most commonly
co-occurring taxa were Streptococcus, Rothia, Veillonella, Hae-
mophilus, Granulicatella, Schaalia, Gemella, and Megasphaera
(eFigure 9 and eTable 4).

Machine Learning–Based Classification of
Migraine Using Oral Microbiome
Machine learning–based random forest models for the clas-
sification of migraine (CM or EM) yielded an AUC of 0.84 ±
0.06 using microbial features (i.e., oral microbial signatures of
migraine) and 0.85 ± 0.05 using combinations of host and
microbial features (Figure 5A). For the classification of CM,
the best performance was achieved with an AUC of 0.89 ±
0.07 using both host and microbial features, followed by

0.88 ± 0.07 using microbial features (Figure 5B). For the
classification of EM, the models showed an AUC of 0.85 ±
0.08 using both host and microbial features and 0.83 ± 0.09
using microbial features (Figure 5C). The feature importance
values for Veillonella and Alloprevotella were high for all 3
migraine classifications (eFigure 10).

Discussion
In this study, we conducted a simultaneous investigation of
the oral and gut microbiomes in participants with EM, CM,
and controls. The main findings of the study were as follows:
(1) Significant alterations were identified in the oral micro-
biome of the migraine groups compared with the HC group;
however, the gut microbiome did not significantly differ. (2)
The increased relative abundance of Gemella, Streptococcus,
Granulicatella, and Rothia and the decreased relative abun-
dance of Alloprevotella, Veillonella, Haemophilus, Selenomonas,
Campylobacter, Cardiobacterium,Megasphaera, and Kingella in
both the EM and CM groups remained statistically significant

Figure 5 Machine Learning–Based Classification of Migraine—(A) Migraine, (B) CM, and (C) EM—Using Host-Derived
Features, Oral Microbial Signatures, and Combinations of Host-Derived Features and Oral Microbial Signatures

CM = chronic migraine; EM = episodic migraine.
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after adjustment for demographic and lifestyle factors. (3)
The relative abundance of some of these oral genera was
significantly associated with the number of headache days per
30 days after adjustment for demographic and lifestyle factors
and psychiatric comorbidities. (4) The enriched oral genera
within the migraine groups were associated with carbohydrate
metabolic pathways, whereas the depleted oral genera were
associated with pathways related to SCFAs and nitrogen. (5)
The oral microbial signatures of migraine were observed si-
multaneously in the oral cavity and gut, forming several dis-
tinct clusters. (6) Machine learning classifiers using the oral
microbiome effectively classified the migraine status, with
a high AUC of 0.83–0.88.

Participants with migraine in this study were divided into EM
and CM groups based on clinical and biological distinctions
recognized in current headache research. According to the
ICHD-3, CM is defined as headache occurring on at least
15 days per month for more than 3 months, with migraine
features present on at least 8 days.24 In addition to frequency,
CM is increasingly recognized as a distinct clinical entity,
characterized by greater disease burden, higher rates of psy-
chiatric comorbidities, and an increased risk of medication
overuse.30,31 Furthermore, CM involves pathophysiologic
alterations, including increased cortical excitability, sustained
neuroinflammation, and heightened central sensitization,
which contribute to impaired pain modulation compared with
EM.32 These distinctions provided the rationale for examining
EM and CM separately in this study. Recent research has also
shown that patients with CM, particularly those with medi-
cation overuse, exhibit increased gut permeability and sys-
temic inflammation, which may disrupt the gut-brain axis and
promote migraine chronification.33

Despite a number of studies demonstrating oral dysbiosis in
several neurologic diseases,13-15 there is a paucity of research
concerning the oral microbiome in migraine.21,34 On the
other hand, previous studies have reported that oral health
conditions, such as periodontitis, can directly and indirectly
exacerbate migraine and increase the risk of chron-
ification.35,36 We hypothesized an association between oral
dysbiosis and migraine and identified distinct taxonomic and
functional signatures of the oral microbiome for migraine.
Given the anatomical proximity of the trigeminovascular
system to the oral cavity, significant changes in oral con-
ditions, including local inflammation and oral dysbiosis, may
directly or indirectly influence the development of migraine.
Moreover, previous studies have suggested that saliva may
provide valuable insights into migraine, highlighting several
biomarkers such as enzymes, hormones, and neuropeptides in
saliva.5-11 Our findings revealed that the salivary microbiome
may serve as an additional promising biomarker for migraine.

Furthermore, the oral microbiome is known to play a critical
role in the first step of a nitrate-nitrite-nitric oxide pathway.37

Nitrate from diet or endogenous metabolism accumulates in
saliva and is reduced to nitrite by oral bacteria. Nitric oxide has

been implicated in the pathophysiology of migraine by
influencing cerebral vasodilation, neurogenic inflammation,
and nociceptive processing in the CNS.38 We observed a sig-
nificant increase in the abundance of the genera Gemella,
Streptococcus, and Granulicatella in both the CM and EM
groups and an increase in the abundance of the genera Rothia
and Schaalia in the CM group compared with controls. In line
with the previous study,34 all of these genera have species with
the capacity to reduce nitrate and/or nitrite. However, some
of the genera which were significantly depleted in both the
CM and EM groups—the genera Veillonella, Haemophilus,
Selenomonas, and Kingella—also include nitrate-reducing
species. The findings were comparable with those observed
in the previous study, which demonstrated that dietary nitrate
increased the relative abundance of certain nitrate-reducing
bacteria (e.g., Rothia) while simultaneously reducing the
abundance of other nitrate reducers (e.g., Veillonella).39 Fur-
ther studies with a longitudinal design are needed to clarify the
implications of the findings.

This study identified several distinct clusters of genera within
the oral microbiome, with a notable prevalence of the cluster
comprising Rothia, Gemella, Streptococcus, and Granulicatella
in participants with migraine. Moreover, these oral bacteria
formed a cluster in the gut, suggesting that they may possess
distinct characteristics or niche habits within the bacterial
community. It has been demonstrated that oral bacteria
generally exhibit limited colonization in a healthy intestine.
However, in pathologic conditions such as inflammatory
bowel disease, there is an increased likelihood of oral patho-
gens becoming more abundant in the gut, thereby reinforcing
the connection between oral and gut microbiomes.19 We
observed that the number and abundance of shared taxa be-
tween the oral and gut microbiomes were low; however, rare
but selective taxa including these 4 oral genera were identified
in the gut microbiome. This observation underscores the
importance of these oral microbes in that they are abundant in
the disease group and therefore have greater potential to be
used as diagnostic and therapeutic targets.

This study has several limitations. First, although the 16S rRNA
amplicon approach is cost-effective, it has a limited resolution
for the identification of bacterial species. To determine the
species-level composition, further studies using shotgun met-
agenomics are required. Second, the cross-sectional design of
this study precludes the possibility of establishing a causal re-
lationship between the observed differences in relative abun-
dance in taxonomic and functional profiles andmigraine. Third,
although participants with ongoing or past treatment of oral or
gastrointestinal disease were excluded, those with asymptom-
atic forms such as apical periodontitis or subclinical in-
flammatory bowel disease may have been included. Finally, the
machine learning–based classification models developed for
migraine were validated internally. Future studies may need to
use independent cohorts to provide more robust evidence for
the potential use of oral microbial signatures as a diagnostic
marker for migraine.
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This study has the following strengths: (1) The study was
designed to achieve the sample size required for statistical
power based on our previous research.22 (2) The study
concurrently examined the oral and gut microbiomes in
individuals with migraine. (3) The study investigated and
adjusted for the confounding host variables, including de-
mographic, lifestyle, and psychiatric factors, which are known
to contribute to variability across microbiota studies.

Anxiety, depression, and fibromyalgia are particularly preva-
lent among individuals with migraine,30,40 with independent
associations reported between these conditions and alter-
ations in the oral and gut microbiome.41-43 In our cohort,
anxiety, depression, and fibromyalgia were reported in 27%,
27%, and 9% of patients with EM, respectively, and in 60%,
60%, and 46% of patients with CM, respectively. Acknowl-
edging the potential for confounding effects, we carefully
evaluated and adjusted for these conditions in the analyses.
Although subgroup analyses excluding participants with
comorbidities could have provided additional insights, the
limited number of eligible participants precluded such anal-
yses without compromising statistical validity. Furthermore,
given the high prevalence of these conditions among indi-
viduals with migraine, results derived from a strictly
comorbidity-free cohort would likely have limited generaliz-
ability to the broader real-world migraine population. Nev-
ertheless, the observed alterations in the oral microbiome
remained consistent after adjustment, supporting the signifi-
cance of oral microbial signatures in relation to the migraine
disease state.

In conclusion, our findings suggest that oral dysbiosis may
play a role in the development of migraine, highlighting
specific oral microbiota taxa as potential diagnostic bio-
markers and therapeutic targets for migraine.
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