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Artificially intelligent nasal perception for
rapid sepsis diagnostics
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Sepsis, a life-threatening disease caused by infection, presents amajor global health challenge due to
its high morbidity and mortality rates. A rapid and precise diagnosis of sepsis is essential for better
patient outcomes. However, conventional diagnostic methods, such as bacterial cultures, are time-
consuming and can delay sepsis diagnosis. Considering these, researchers investigated alternative
techniques that detect volatile organic compounds (VOCs) produced by bacteria. In this study, we
designed colorimetric gas sensor arrays, which change color upon interactionwith biomarkers, offer a
direct visual signal, and demonstrate high sensitivity and specificity in detecting sepsis-related VOCs.
Furthermore, an artificial intelligence (AI) based algorithm, Rapid Sepsis Boosting (RSBoost), was
employed as an analytical technique to enhance diagnostic accuracy (96.2%) in blood sample. This
approach significantly improves the speed and accuracy of sepsis diagnostics within 24 h, holding
great potential for transforming clinical diagnostics, saving lives, and reducing healthcare costs.

Sepsis is a critical condition inducedby infection, representing amajor global
health issuedue to its highmorbidity andmortality rates1–5. Sepsis affects 148
per 100,000 people annually worldwide, can rapidly lead to organ failure,
shock anddeathwithoutprompt treatment, often causedbyvariousbacteria,
and provokes a systemic response1–3,6. The primary bacterial species
responsible for sepsis include gram-negative bacteria such as Escherichia coli
(E. coli), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeru-
ginosa (P. aeruginosa), as well as gram-positive bacteria like Staphylococcus
aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae)7,8. Thus,
rapid and accurate diagnostics for sepsis is essential for an effective and early
treatment9. However, conventional culture-based diagnostic methods are
labor-intensive and slow, often taking several days to yield results, which
delays the administration of optimal antibiotics and increases the risk of
overuse and resistance. Additionally, prolonged incubation periods can lead
to high contamination rates, reducing the accuracy of bacterial
identification10,11. Thus, a diagnostic platform that resolves these limitations
and delivers faster, more reliable, and accurate results is urgently needed.

To address these challenges, researchers have investigated alternative
strategies that detect volatile organic compounds (VOCs), including

trimethylamine (TMA), ammonia (NH3), and hydrogen sulfide (H2S),
emitted by bacteria. Among the myriad sensor technologies, colorimetric
gas sensor arrays stand out in disease diagnostics due to their visual signal
and ability to detect a wide range of gas concentrations, identifying complex
mixtures of VOCs associated with infections12–14.

Several studies havehighlighted thepotential of colorimetric gas sensor
arrays in sepsis diagnosis15–17. For instance, Jang et al. introduced a cellulose
nanofiber pH indicator infused with red radish extract, which effectively
monitoredminced pork freshness, showing clear color transitions from red
(fresh) to purple (spoiled), demonstrating its suitability for intelligent food
packaging15. Sun et al. described the colorimetric paper-based band-aids for
detecting and treating bacterial infections. These band-aids change color to
indicate infection (yellow) or drug resistance (red) and use antibiotics or
photodynamic therapy accordingly. The detection limit of the sensors is 104

colony-forming units (CFU)/ml for drug-resistant E. coli.16. Furthermore,
Chen et al. successfully identified four spoilage bacteria strains using a
colorimetric sensor array. The sensor detected specific VOCs, achieving a
100% classification accuracy with linear discriminant analysis and con-
firming genetic relationships through hierarchical cluster analysis17.

1School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea. 2Advanced Bio and Healthcare Materials Research Division, Korea Institute of
Materials Science (KIMS),Changwon,Republic of Korea. 3ElectronicMaterials ResearchCenter, Korea Institute of Science andTechnology (KIST), Seoul, Republic
of Korea. 4George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. 5Department of Molecular Science and
Technology, Ajou University, Suwon, Republic of Korea. 6The Dabom Inc, Seoul, Republic of Korea. 7Department of Laboratory Medicine, College of Medicine,
Yonsei University, Seoul, Republic of Korea. 8Materials Science and Engineering, Korea University, Seoul, Republic of Korea. 9Department of IntegratedMedicine,
Yonsei University, Yonsei University, Seoul, Republic of Korea. 10These authors contributed equally: Joonchul Shin, Gwang Su Kim, Seongmin Ha, Taehee Yoon.

e-mail: wkdwltn92@kist.re.kr; jskim@kist.re.kr; uridle7@yonsei.ac.kr; cykang@kist.re.kr

npj Digital Medicine |           (2025) 8:476 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01851-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01851-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01851-4&domain=pdf
mailto:wkdwltn92@kist.re.kr
mailto:jskim@kist.re.kr
mailto:uridle7@yonsei.ac.kr
mailto:cykang@kist.re.kr
www.nature.com/npjdigitalmed


However, in the early stages of sepsis, bacterial concentrations are notably
low, typically ranging from 1 to 10 CFU/ml, making early diagnostics
challenging18,19. In this study, we have synthesized pH indicators and poly
ionic liquids (PILs) to enhance the sensitivity and dynamic range of sensors.
PILs are a unique class of polymers that integrate the innovative features of
ionic liquids with enhanced mechanical robustness and dimensional sta-
bility post-polymerization. One of the remarkable attributes of PILs is their
superior ion-exchange capability, allowing the synthesis of PILswith diverse
counteranions by polymerizing a single ionic liquid monomer and per-
forming anion-exchange reactions20. These results enable the extraction of
multi-class characteristic equations for classification learning and assign-
mentofweights toeffective indicesusingmachine learning21. Thus,machine
learning has also been employed to interpret correlations within large-scale
datasets, showing promising accuracy.

Artificial intelligence (AI) technology has emerged as a transformative
tool in sensor applications, healthcare, food logistics, and environmental
monitoring22–26.Machine learning-basedhybrid algorithms for sensor signal
classification27, particularly for array sensors that generate complex and
overlapping signals, have garnered significant attention. These algorithms,
such as Convolutional Neural Networks (CNNs) for multi-class classifica-
tion and ensemblemodels formulti-substance concentrationprediction, are
becoming innovative tools for large-scale, multi-class data analysis. CNN-
based models excel in extracting morphological features from complex
blood cell image data, achieving high classification accuracy with minimal
preprocessing28. However, increasing the number of training classes leads to
longer training times and potential biases in classification outcomes.

Conversely, ensemble-based models analyze the correlation structure
of data frommultiple substances, deriving latent characteristic equations to
predict concentrations with a 6% error rate through regression learning.
Despite their high accuracy rates, these models require large datasets and
labor-intensivepreprocessing, resulting in extended training times29.Hybrid
algorithms that integrate the strengths of existing models are essential for
analyzing large, complex, multi-class datasets30. These algorithms are pre-
cious for early sepsis diagnosis, where timely and accurate detection is
crucial for effective treatment31. In machine learning-based regression
models combined with colorimetric sensors, the number of sensors and
independent variables significantly impacts the prediction performance for
multi-class data types.Modelswith fewer independent variablesmay exhibit
improved prediction performance but can become overly complex. Con-
versely, using many independent variables increases model complexity and
prediction performance but at the cost of increased training time32.

Herein, we introduce a novel approach to sepsis diagnostics by inte-
grating an advanced colorimetric gas sensor array with a sophisticated
machine-learning model. We then employed the Rapid Sepsis Boosting
(RSBoost) combining an advanced colorimetric gas sensor array with a
sophisticated machine learning-based hybrid algorithm. The RSBoost
hybrid algorithm combines the multi-class classification performance of
Convolutional neural networks-support vector machine (CNN-SVM) with
the multi-substance concentration prediction capability of least square
boosting (LSBoost), enabling simultaneous high-precision bacterial classi-
fication and concentration-based regression. This novel approach demon-
strates excellent sensitivity and precision in detecting VOCs emitted by
bacteria in septic patients. TheRSBoost predicts the proportion of unknown
bacterial species with an error rate of less than 3.8%, surpassing existing
hybrid algorithms in accuracy and analysis speed. This method enhances
the robustness and reliability of sepsis detection, ensuring timely and
accurate diagnosis and treatment. Thus, integrating advanced sensor tech-
nologies with AI-driven algorithms holds great promise for improving
sepsis diagnostics. The contributions of this paper are summarized as
follows:

The proposed algorithm (RSBoost, Rapid Sepsis Boost) comprisesCNN-
SVM and LSBoost layers, enabling simultaneous classification and
regression training across different data types. The CNN-SVM layer
extracts 3 morphological pattern characteristics of colorimetric sensors
to achieve high-accuracy multi-class classification, while the LSBoost

layer introduces a feature equation extraction and automated weight
allocation based on indexing for multi-class concentration prediction.
The algorithm’s hidden layer employs parallel learning, which can
improve learning speed and efficiency by providing a 4-fold training on
datasets.
The learning results have been evaluated through Monte Carlo Cross
Validation (MCCV= 100), correlation matrix analysis, and Pearson
correlation coefficients verification.

Results
Gas sensing performance of sensor array
This study presents a novel diagnostic method for sepsis by analyzing
volatile organic compounds (VOCs) produced by bacteria. Figure 1a illus-
trates the two key features: Nasal perception for bacterial gas and Digital
diagnostics for sepsis. The gas sensor array comprises a grid of reactive
materials, including PILs and pH indicators (Bromophenol Blue as BPB,
Tetraiodophenolsulfonephthalein as TET, and Cu-PAN), which selectively
interact with certain VOCs to boost the sensitivity. The PILs chemically
interact with VOCs, even at low concentrations, inducing color alterations
in the array.

The pH indicators embedded in PILs change color reversibly in
response to acidity shifts triggered by VOC binding, providing a dynamic
visual signal of bacterial presence. The ground truth data is employed to
enhance the identification and concentration prediction accuracy of
bacteria critical for sepsis diagnostics. Figure 1b shows the RSBoost
hybrid algorithm processes the input data (color intensities) through two
specialized layers: the CNN-SVM layer for large-scale multi-class image
classification and the LSBoost layer for multi-class substance con-
centration prediction28,29. Each layer utilizes a latent feature extraction
technique for classification and regression learning to identify color and
morphological features. The extracted features are then processed by the
algorithm’s output layer, which uses the flatten and fully connected layers
to predict the concentration ratios of 3 bacteria. These predictions can be
subsequently provided to clinicians for early sepsis diagnostics. The
sensing mechanism, chemical surface, structures and compositions of the
PIL, BPB-PIL, and TET-PIL were analyzed using x-ray photoelectron
spectroscopy (XPS), Ultraviolet-visible (UV) spectroscopy, and 1H
nuclear magnetic resonance (NMR) spectroscopy (Supplementary Note
1–3, Supplementary Figs. 1–5).

The colorimetric gas sensor array was fabricated using a plastic mold
and pressed sugar, then soaked into each sensing solution in Fig. 2a. To
ensure batch-to-batch consistency, all sensor arrays were fabricated under
identical conditions.Weperformed cross-batchquality checks on randomly
selected sensors: XPS confirmed consistent elemental compositions and
1H-NMR analysis verified that the chemical structure of the PIL–dye
complexes was uniform across batches (Supplementary Note 1–3, Supple-
mentary Figs. 1–5). Subsequently, a smartphone-based analysis system was
employed to quantify the sensors’ color change in real time. The gas-sensing
performance of the colorimetric sensor array was evaluated within a cus-
tomized chamber, as illustrated in Supplementary Fig. 6. A Mass Flow
Controller (MFC) precisely regulated the gas flow rate, maintaining a
consistent rate of 1000 sccm. The target gas was mixed and calibrated at
room temperature (RT) and relative humidity (RH) of 60%, replicating
realistic conditions33,34. The color changes of the sensorswere recordedusing
a Samsung Galaxy S7 smartphone. For real-time analysis, the recorded
videoswere transferred to a laptop, where the RGBvalueswere converted to
brightness (V) values. To prevent interference from ambient contaminants,
the gas-exposure chamber was purged with inert gas and sealed before
introducing the target analytes, ensuring that sensor color change arises
solely fromthe targetVOCs.Additionally, the smartphone camerawasfixed
at a consistent position with uniform focus, exposure, and white balance
under an LED-lit closed imaging box,minimizing variability due to external
lighting or angle.

The colorimetric sensor arrays comprise BPB-PIL sensors for NH3

detection, TET-PIL sensors for TMA detection, and Cu-PAN sensors for
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H2S detection. The sensors were exposed to target gas concentrations ran-
ging from 0.2 to 3 ppm, with color changes captured in real time and
converted to brightness values. The sensor response was defined in Eq. (1):
Vair and Vgas represent the brightness values in the absence and presence of
the target gas, respectively.

Responseð%Þ ¼ ð ΔV
Vðgas or airÞ

� 1Þ× 100 ð1Þ

InFig. 2b–d, the applicationofPIL significantly enhances the responses
of BPB and TET sensors. The BPB-PIL demonstrates a response 5.1 times
greater than BPB when exposed to 1 ppm NH3, while TET-PIL shows a

response 2.5 times higher than TET for 1 ppmTMA. Furthermore, the Cu-
PANsensor exhibits a fast response toH2S up to 1 ppm, followed by gradual
saturation up to 3 ppm (Supplementary Figs. 7, 8). Response linearity is an
important factor that provides high reliability in computational diagnostic
monitoring. The response linearity was evaluated for the target gas con-
centration between 0.2 and 1 ppm, which is the low concentration range.
The BPB-PIL sensor, TET-PIL sensor, and Cu-PAN sensor exhibited R2

values of 0.939, 0.945, and 0.96 for NH3, TMA, and H2S, respectively. The
theoretical detection limits (signal-to-noise ratio >3)were 49.4 ppb for BPB-
PIL, 21.2 ppb for TET-PIL, and 173 ppb for Cu-PAN.

Additionally, the selective response of the colorimetric sensor to
target gases was confirmed by introducing other reactive gases (1 ppm

Fig. 1 | The schematic diagram illustrates an advanced approach to sepsis diag-
nostics through bacterial gas detection and digital analysis. aNasal perception for
bacterial gas, where volatile organic compounds (VOCs) associated with sepsis, such
as NH₃, TMA, and H₂S, are detected using a gas sensor array (BPB-PIL, TET-PIL,
Cu-PAN). This approach surpasses normal pH indicators in resolution and dynamic
range, enabling precise detection in parts per billion (ppb). bDigital diagnostics for

sepsis employs a hybrid algorithm that integrates CNN-SVM and LSBoost layers for
data processing and early detection of bacterial species like E. coli, P. aeruginosa, and
S. aureus. The diagnostic platform offers high accuracy and sensitivity within 24 h,
requiring only beginners, compared to conventional bacterial culture and PCR
methods, which take up to 48 h and need experts.
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NH3, TMA, H2S, and 5 ppm C2H5OH, CH3COCH3, CO, C8H8, C8H10,
NO2) in the air (Fig. 2e–g). The Cu-PAN sensor exhibited high reactivity
solely to H2S gas and did not react with other gases. BPB-PIL and TET-
PIL sensors revealed reactivity to both NH3 and TMA gases. As shown in
Fig. 2h, BPB and TET exhibited similar response of 59 and response time
of 800 s for TMA gas. Conversely, for NH3 gas, the BPB-PIL sensor
demonstrated 2.7 times higher response and 1.2 times faster response
times compared to the TET-PIL sensor. In this regard, we noted that the
pH-indicator sensors (BPB–PIL and TET–PIL) exhibit reversible color
changes upon exposure to their target basic gases (NH₃ or TMA). Once
the basic gas is removed and the local pH returns to neutral, these sensors

gradually return to their original color. In contrast, the Cu-PAN sensor’s
color change is chemically irreversible, because H₂S reduces Cu²⁺ to an
insoluble copper sulfide (CuS) precipitate that does not revert to the
original complex. We emphasize that this makes the Cu-PAN element
single-use, whereas the BPB–PIL and TET–PIL sensors can be reused.
These performance disparities were evident in the plotted response
percentages and reaction times. Subsequent bacterial culture experiments
and machine learning analysis confirmed the classification capabilities of
these sensors, indicating that their differential cross-reactivity can be
effectively utilized for the accurate detection and differentiation of NH3

and TMA.

Fig. 2 | The pH-indicator-coated PDMSsponges enable selective, linear, real-time
colorimetric detection of NH₃, TMA, and H₂S. a The figure presents the fabrica-
tion of pH indicator-coated PDMS sponges designed for selective gas detection. The
process begins with sugar dissolution to create porous PDMS sponges, followed by
applying three pH indicators (BPB-PIL, TET-PIL, Cu-PAN). b–d Response curves
demonstrate the sensors’ sensitivity to gases such asNH₃, TMA, andH₂S, with linear
correlations (R²) supporting their detection accuracy. e–h Time-dependent

brightness measurements reveal real-time sensor responses during gas introduction
and removal. Simultaneously, comparing response times highlights the distinct
sensitivities of BPB-PIL toNH₃ and TET-PIL to TMA (The color legend assigns blue
to NH₃, yellow to TMA, purple to H₂S, dark green to C₂H₅OH, red to CH₃COCH₃,
pink to CO, turtle to C₈H₈, dark blue to C₈H₁₀, and brown to NO₂.). i Color
intensities change across various gas concentrations, demonstrating their effec-
tiveness for gas detection.
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Figure 2i illustrates the color change of the actual BPB-PIL, TET-PIL,
and Cu-PAN sensors when the main target gases, NH3, TMA, andH2S, are
introduced in a broad concentration range of 0–20 ppm. The colorimetric
sensor exhibited a detectable change at a low concentration of 1 ppm or less
and stabilized after an acceptable change at 5 ppm ormore. The exceptional
sensor that can observe the reaction within 5min, even to ppb unit gas, was
fabricated based on the limit-of-detection (LOD).

Nasal perception towards VOCs in bacteria species
The gas sensor array, composed of BPB-PIL, TET-PIL, and Cu-PAN sen-
sors, demonstrated its precision in recording the color change, as depicted in
Fig. 3a. A comprehensive set of one hundred datasets was meticulously

collected for each bacterial concentration (E. coli, P. aeruginosa, and S.
aureus) spanning from 10 to 10³ CFU/ml. Figure 3b vividly represents the
gas sensor array’s response to E. coli emissions. Each sensor showcased
distinct reaction rates, onset times for color change, and sensitivity at dif-
ferent bacterial concentrations. In short, “onset time” is now defined as the
elapsed time from gas introduction to the first detectable response of the
sensor (when the brightness change exceeds noise), whereas “reaction rate”
is the rate of change of the sensor response (ΔV/% per minute) during the
active response period. Notably, the TET-PIL sensor exhibited a faster
response than the BPB-PIL sensor, and the gas response was amplified with
higher bacterial concentrations. This trend was consistently observed for
both BPB-PIL and TET-PIL sensors. The response to P. aeruginosa

Fig. 3 | A smartphone-based pH-indicator gas sensor array monitors brightness
changes to detect E. coli at 10¹ CFU/mL and P. aeruginosa/S. aureus at 10² CFU/
mL in real time. a The figure demonstrates a smartphone-based gas sensor array
system for real-time detection and quantification of bacterial growth. The system
features a smartphone cradle, a dedicated power supply, an on/off switch for LED
illumination control, an integrated gas sensor array plate, and a built-in ventilation

module to ensure proper airflow. b The gas emissions from three bacterial species
(E. coli, P. aeruginosa, and S. aureus) cause a time-dependent decrease in brightness
across BPB-PIL, TET-PIL, and Cu-PAN pH indicator systems, with 10¹ CFU/mL
(Orange), 10² CFU/mL (blue), and 103 CFU/mL (pink). cA real-time PCR evaluates
detection limits of 10¹ CFU/mL for E. coli (red), 10² CFU/mL for P. aeruginosa
(green), and 10² CFU/mL for S. aureus (navy blue).
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emissions is presented. The gas sensor array’s reaction time and response
slope varied precisely according to the bacterial concentration. Similar
variations were observed with S. aureus emissions. Among 3 sensors, the
BPB-PIL sensor exhibited a low response to S. aureus emissions, while the
TET-PIL sensor showed a slightly higher response. TheCu-PANsensor had
a delayed and relatively low response to S. aureus emissions. This dis-
crepancy can be attributed to S. aureus’s slower growth rate and lowerVOC
emission concentration.

Based on these results, the LOD for each gas sensor in identifying
bacterial specieswas determined to be 10CFU/ml (Fig. 3c). A real-timePCR
(polymerase chain reaction) was employed to compare the sensitivity of the
gas sensor array with the conventional detection method. The evaluations
were conducted on each strain in triplicates at varying concentrations
ranging from 10⁶ to 1 CFU/ml to assess the analytical sensitivity and spe-
cificity of bacteria. The PCR-based identification of bacteria was conducted
through 30 cycles, focusing on representative gram-negative bacteria (E. coli
and P. aeruginosa) and gram-positive bacteria (S. aureus). The standard
curves of E. coli, P. aeruginosa, and S. aureus demonstrated the linearity of
each dilution, establishing the limit of detection at 10², 10³, and 10³CFU/ml,
respectively. The bacterial concentrations of 1 and 10 CFU/ml were not
detectable with PCR. The LODwas 10², 10³, and 10³ CFU/ml for E. coli, P.
aeruginosa, and S. aureus. No cross-reactivity was observed in eachDNA at
a high bacterial concentration of 10⁶ CFU/ml. All bacteria types were
detected at a minimum concentration of 10³ CFU/ml. Based on the results,
we noted that E. coli tends to produce a higher amount of TMA relative to
H₂S and NH₃, thus the TET-PIL sensor (for amines) showed the strongest
change for E. coli species. S. aureus, conversely, emits more NH₃ and few
TMA (it lacks the pathways to produce TMA in significant quantity), so the
BPB-PIL sensor (for NH₃) dominated its response, withminimal change in
TET-PIL. P. aeruginosa produces notable H₂S and NH₃. Therefore, the Cu-
PAN sensor (for H₂S) and to some extent BPB-PIL responded for P. aer-
uginosa, while TET-PIL showed little change.

These findings have significant implications for bacterial detection and
monitoring. With its excellent sensitivity and real-time results, the gas
sensor array offers a practical and efficient alternative to the complex and
time-consuming PCR-based identification method. This could revolutio-
nize bacterial detection and monitoring in various applications, including
clinical diagnostics and environmental monitoring.

Pattern recognition for sepsis diagnostics
Our research introduces an advancedhybrid algorithmdesigned to improve
the speed and accuracy of sepsis diagnosis. This algorithm leverages the
RSBoost algorithm to perform regression and classification tasks, aiming to
predict and classify bacterial compositions detected by a gas sensor array.
This facilitates prompt and precise sepsis diagnosis and the selection of
appropriate antimicrobial treatments. Identifying the dominant bacterial
species responsible for sepsis is crucial for enhancing treatment precision
and minimizing antimicrobial resistance.

The RSboost algorithm, a novel approach for rapid sepsis diagnosis,
stands out for its unique integration of classification and regression learning.
It utilizes heterogeneous data (24-h imaging and intensity data) as input,
categorizing them based on gas concentration values emitted by three
bacterial species. The first dataset contains S. aureus: E. coli: P. aeruginosa at
a ratio of (0:0:10) with a concentration of 1000 CFU/ml, measuring TMA,
H2S, andNH3 gas, with dimensions [10× 89959]. The second dataset, with a
ratio of (0:10:0) at the same concentration, has dimensions [10×89840]. The
third dataset, with a ratio of (10:0:0) at 1000 CFU/ml, measures the same
gases with dimensions [21 × 84305].

These datasets (70% as training and 30% as blind test) train an
ensemble-based Least Squares Boosting (LSBoost) layer for regression. For
each bacterial concentration class, Root Mean Square Error (RMSE) and
Pearson Correlation Coefficient (R2)35 are calculated to derive indicators
defining inter-gas relationships. These indicators are ranked to assign
weights, resulting in characteristic equations. The training efficiency is
quadrupled by conducting 4 instances of partial parallel training (L1 to L4) in

a single process. The correlation between TMA, H2S, and NH3 concentra-
tion classes emitted by each species is evaluated using a correlation matrix,
with indices ranging from−1 to 1 36. In the classification learning stage, a key
component is the use of aCNN-SVM layer. This layer, specialized formulti-
class classification, plays a significant role in the algorithm’s ability to
accurately classify the 3 bacterial species.

Bacterial concentration images recordedover24 hwere split frame-by-
frame for classification learning. Morphological features were extracted
from each image using three methods (length scale, shape factor, RGB
index)28, resulting in distinct feature vectors. The CNN-SVM layer employs
a CNNwith a 7 × 7 kernel filter to extract spatial features. Hyperparameters
are set as follows: input size (480 × 272), batch size (32), learning rate (0.01),
epoch (1000), and iteration (500).

We set the input resolution to 480 × 272 pixels (with a superpixel seg-
mentation density of 300) to preserve key spatial features of the sensor’s
colorimetric response while keeping computational cost low. This reso-
lutionwas found to capture the relevantmorphology in the sensor images
without unnecessary detail.
Usingmini-batches of 32 stabilized the training convergence and allowed
the model to capture spatial variability across sensor images in each
update. A smaller batch size risked noisy updates, whereas much larger
batches did not improve accuracy.
We chose a moderate learning rate of 0.01 to ensure stable and efficient
gradient descent. This value was high enough to allow reasonably fast
convergence but low enough to avoid overshooting minimal values
during backpropagation.
The algorithmwas trained for 1000 epochs toprovide sufficient iterations
for learning diverse spatial and temporal patterns, consistently resulting
in high classification accuracy.
The RSBoost algorithm was configured with 500 boosting iterations to
enhance classifier diversity, reduce classification bias, and avoid redun-
dancy or unnecessary computation.

This process extracts latent features, generates feature maps, and
transforms them into activation maps. The activation map is classified into
multiple classes using anSVMclassifier integrated into theCNNmodel.The
three bacterial species are classified based on spiked blood samples using a
blind test dataset. RSBoost validates the blind test classification results using
a confusionmatrix andArea under the curve (AUC) values. The algorithm’s
regression and classification results are verified throughMCCV 37, repeated
100 times. These results are visualized in a 3-dimensional scatter plot,
enabling trend analysis of accuracy across MCCV iterations (Detailed
information for the algorithm learning process is shown in Supplementary
Fig. 9).

Data preprocessing and feature extraction
Thehybrid algorithmanalyzes associations amongdiverse data collected via
enhanced gas sensor, employing classification and regression learning based
ongas concentration ratios. InFig. 4a, imagedata froma colorimetric sensor
over 24 h are preprocessed into numerical datasets, such as intensity values,
enhancing analytical accuracy and reducing training time. The RSBoost
algorithm’s input layer employs 3 image analysis tools for preprocessing
classification learning: (1) The superpixel refers to an image segmentation
technique used to extract spatial coordinates representing object-shaped
regions within the image38. In practice, we applied MATLAB’s Superpixel
segmentation (SLIC) to segment each 24-h sensor image into ~200–350
regions per sensor spot based onRGB intensity variations, and the averaged
RGB values of each region were used to represent the spot’s response. This
enabled real-time spatial vector extraction that facilitated class discrimina-
tion. (2) Region of Interest (ROI) masks identify significant RGB value
variations over time, defining RGB index ranges for different categories39.
(3) grayscale conversion and binary segmentation extract morphological
features for classification learning40. For regression learning, preprocessing
involves identifying unique indexings from intensity values corresponding
to distinct bacterial types. This defines the latent attributes of the data,
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varying with gas combination ratios, and assigns weights to the most valid
indexings, enhancing reliability and minimizing prediction error rates. The
CNN-SVMhybrid algorithm performs classification learning in the hidden
layer, capitalizing on its strengths in large-scale image data analysis and
multi-class classification28. Concurrently, the LSBoost layer manages
regression learning, utilizing automatic property equation extraction and

weight allocation for concentration categories29. (Detailed hybrid algorithm
is shown in Algorithm 1).

The hybrid algorithm employed superpixel and RGB index toolboxes
to extract key features related to sensor responsiveness across various bac-
terial concentrations (10, 100, 1000 CFU/ml) (Supplementary Fig. 10).
Three morphological characteristic techniques were employed using a

Fig. 4 | The RSBoost hybrid model utilizes CNN-SVM feature extraction with
LSBoost regression on heterogeneous datasets to achieve robust classification
and regression. a The figure illustrates the dynamic structure of the RSBoost hybrid
algorithm, integrating with CNN-SVM and LSBoost layers. The CNN-SVM layer,
tailored for classification, computes length scale values to extract 3 key morpholo-
gical features. It employs a superpixel tool to analyze sensor color distributions,
shape factors to track color area changes over time, and the RGB index to identify
color variations. The LSBoost layer, designed for regression learning, is trained on
RGB intensity datasets from 3 bacterial types based on varying concentration
combinations (CFU/ml). This process is enhanced by parallel learning, feature
equation extraction, weight allocation, and iterative feedback training, showcasing

the algorithm’s adaptability. bA3D scatter plot of nine classes (S. aureus at 101 CFU/
mL in purple; S. aureus at 102CFU/mL in pink; S. aureus at 103 CFU/mL in red;E. coli
at 101 CFU/mL in light blue; E. coli at 102 CFU/mL in navy; E. coli at 103 CFU/mL in
blue; P. aeruginosa at 101 CFU/mL in lime; P. aeruginosa at 102 CFU/mL in turtle;
and P. aeruginosa at 103 CFU/mL in darkest green), evaluated using Monte Carlo
cross-validation (MCCV), compares actual versus predicted values. c A ROC curve
illustrates the classification results. dAn R-plot compares actual and predicted RGB
intensity values for nine classes (Applied the same color legend to all nine classes
mentioned in b). e In the Pearson correlation matrix, correlation coefficients near
+1 (in yellow) indicateminimal latent features, whereas coefficients near−1 (in sky-
blue) denote maximal potential for latent feature extraction.
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CNN-SVM layer to enhance classification accuracy. Each technique
revealed unique vector value ranges that increased with higher bacterial
concentrations. Integrating 3 feature extraction models and applying them
to a CNN-SVM layer significantly improves feature extraction, leading to
more accurate image classification than using each algorithm individually.
Thus, we incorporated these morphological extraction methods into the
RSBoost hybrid algorithm.

Specifically, the length scale (L) for each bacterium increased from 10
to 78, while the RGB index ranged from 52 to 220. Depending on the
bacterial concentration, the shape factor demonstrated distinct vector
values, varying from 14 to 98. Notably, BPB-PIL bacteria exhibited the
highest L values, ranging from 16 to 80, with an RGB index between 82 and
158, representing the lowest range. The shape factor values for this class
varied from 16 to 96. These findings highlight the crucial role of morpho-
logical characteristic techniques in accurately identifying and classifying
bacteria based on their concentrations (Supplementary Figs. 11–13).

The output layer monitors predictive learning outcomes through
feedback, as shown in Fig. 4b. A 3-dimensional scatterplot illustrates clas-
sification results using Monte Carlo cross-validation (MCCV) to validate
learning outcomes37. The RSBoost algorithm has demonstrated unbiased
and overfitting-free classification accuracy across all categories. Further
evaluation in Fig. 4c examines learning performance using AUC values of
ROC (Receiver operating characteristic) curves, ranging between 0.97 and
0.99, indicating high classification proficiency. Figure 4d presents Pearson
correlation coefficient (R2) analysis for regression reliability, achieving an R2

value of 0.99 across all blind test outcomes, indicating high predictive
accuracy. And Fig. 4e displays the correlation matrix results for regression-
trained multiple-concentration classes, with correlation indices ranging
from−1 to 1, indicating feature correlation strength36. These matrices help
identify andweight themost valid values, reducing regression learning error
rates (Refer to Supplementary Table 1 for detailed Pearson correlation
coefficient analysis metrics and the complete correlation matrix for all
concentration classes).

Figure 5 presents an analysis of the classification and regression
learning outcomes from training and blind testing using theRSBoost hybrid
algorithm. Figure 5a shows the confusion matrix for classification based on
the training set. The average accuracy per bacterial type for each gas-specific
concentration combination was 97.1%, with classification accuracies of
98.8% for S. aureus, 96.9% for E. coli, and 95.6% for P. aeruginosa. The
highest accuracywas observed for S. aureus and the lowest forP. aeruginosa,
attributed to overlapping eigenvector values with other bacteria. Figure 5b
depicts a 3D scatter plot of classification results using MCCV, indicating
consistent accuracy across all bacterial classes and confirming the RSBoost
algorithm’s reliability. Figure 5c presents the ROC curve plots for each
bacterial class,withAUCvalues of 0.99 for S. aureus, 0.98 forE. coli, and 0.97
for P. aeruginosa. These high AUC values demonstrate the algorithm’s
strong classification accuracy and confidence.

Figure 5d–f demonstrate the adaptability of the RSBoost algorithm to
real-world scenarios, as seen in the classification results from blind testing
using blood sample data. Supplementary Fig. 14 represents a stable color
intensity of the sensor array with negligible changes over time in blood
sample from healthy donors. It reveals that the RSBoost algorithm exclu-
sively employs the datasets representing color changes caused by bacterial
VOCs in blood. Figure 5d presents the confusionmatrix, with classification
accuracies of 97.4% for S. aureus, 96.8% for E. coli, and 94.5% for P. aeru-
ginosa. These results underscore the algorithm’s compatibility and high
usability in real blood-based diagnostics. Figure 5e features a 3D scatter plot
of blind test results validated with 100 MCCV trials. It shows regions with
similar accuracy to the training set, confirming the algorithm’s reliable
classification performance. Figure 5f reveals ROC curve plots for the blind
test, with AUC values of 0.99 for S. aureus, 0.98 for E. coli, and 0.98 for P.
aeruginosa. These values affirm the high reliability and accuracy of the
RSBoost algorithm under randomized conditions. Figure 5g compares the
RSBoost algorithm against other classification models using the same
training and blind testing conditions. TheRSBoost algorithmoutperformed

all models, achieving a classification accuracy of 96.2%, compared to 79.8%
for the convolutional neural network (CNN) model. This highlights the
RSBoost algorithm’s potential for high-accuracy early sepsis diagnostics, a
crucial advancement in bacterial classification. Additionally, we compare
RSBoost against various machine learning models in terms of accuracy,
AUC, sensitivity, specificity, training time, inference time, and memory
usage in the Supplementary Table 2. Moreover, Fig. 5h compares the total
training times of the RSBoost algorithm and other classification models
under identical training and blind testing conditions using a large hetero-
geneous dataset. The RSBoost algorithm completed training in 96 h, 143 h
less than the 239 h required by theCNNmodel. This significant reduction in
training time highlights the potential for early diagnosis by accurately
predicting the optimal combination of sepsis-causing bacteria proportions
in large, complex datasets. Additionally, an ablation study is conducted to
evaluate whether the RSBoost model leads to synergistic improvement or
introduces redundancy in the supplementary material (see Supplementary
Fig. 15). The results from the ablation studywere analyzed using the p-value
to maintain a more robust confidence interval. To validate the statistical
significance of RSBoost’s performance gains, we conducted paired t-tests
over 100 bootstrap resampling runs. As a result, p-values were <0.01, con-
firming that RSBoost’s improvements are statistically significant and reflect
a higher confidence level in its performance compared to baseline models.

Discussion
In this study, we incorporate a highly sensitive sensing system and hybrid
algorithm to overcome the bottlenecks of the following previous studies.
Convolutional neural network (CNN) and Boost model are the most
common methods for image segmentation and prediction for accurate
diagnostics. For instance, Bukkapatnam et al. employs a convolutional
neural network (CNN) to detect sepsis fromblood smears. TheCNNmodel
is trainedonaugmenteddata to classify samples into “sepsis”or “not sepsis.”
Despite promising initial accuracy, the model needs to be more balanced,
mainlydue to the limiteddataset size,which impairs overfitting41. Yuan et al.
presented an AI algorithm using XGBoost for early sepsis diagnosis in the
ICU,using electronicmedical record (EMR)data. Themodelwas trainedon
1588 instances with an accuracy of 82%, sensitivity of 65%, and AUROC of
0.89.However, the limitationswere foundaspotential overfittingdue todata
from a single institution andmissing dynamic features42. Zhao et al. showed
ICU data to apply LightGBM algorithms to predict early sepsis in 6 h. The
feature generation method, which used statistical and medical features,
outperformed the mean processing method, achieving an AUC of 0.979
with LightGBM, indicating strong prediction capabilities. However, there
were challenges, including high data imbalance, missing data, and the dif-
ficulty of clinical interpretation43. Random Forest was employed to predict
sepsis and ICUadmissionbased solely on complete blood count (CBC)data.
The model achieved an AUROC of 0.872 internally and performed well in
external validations (AUROC: 0.805–0.845). Procalcitonin (PCT) was
added to the model to improve prediction accuracy (AUROC: 0.857).
Otherwise, ICD-coded diagnoses underestimated sepsis cases and the
challenge of clinical applicability in non-ICU settings44.

Moreover, conventional classification and regression methods require
different models depending on the data type. Such models commonly
employ transfer learning, which limits the extraction of potential features
from a myriad of datasets45. Considering these, a hybrid learning algorithm
using both classification and regression methods has been proposed. This
approachcaneffectively learn fromheterogeneousdatasetswith similar data
types, addressing the constraints of traditional methods46. For instance,
Marek Tatarko et al. introduced a hybrid SVM classification and regression
algorithm that employed a multiple-class frequency shift dataset to identify
the similar effects of trypsin and plasmin on k-casein. The hybrid algorithm
distinguished and quantified these enzymes with over 95% accuracy, out-
performing conventional methods by 15–20min47. Still, the model requires
adjusting the hyperparameters to avoid overfitting, particularly when using
high-harmonic data. Additionally, the hybrid algorithm’s non-specific
combination reduces classification accuracy when subjected to excessive
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iterations during training. Similarly, Adak et al. developed a hybrid artificial
bee colony (ABC) algorithm for classifying five types of alcohol, achieving
superior performance and a lower error rate compared to the back-
propagation (BP) algorithm typically used in such analyses, with anMSE of
1.41 × 10⁻⁶46.

Conversely, the model shows a potential overfitting in the artificial
neural network (ANN) while tuning specific hyperparameters. Also, the
ABC algorithm for training can struggle with parameter instability. Asa-
dollah et al. also proposed a hybrid model, combining Gradient Boosting
(GB) and Support Vector Regression (SVR) to predict soil moisture in lake
watersheds. This Gradient Boosting-Support Vector Regression (GB-SVR)
hybrid model demonstrated improvements of 17%, 10%, and 13% in

correlation coefficient (R²), RMSE, and MAE, respectively, compared to
standalone GB and SVR models48. A small number of in-situ soil moisture
samples may restrict model generalizability. Moreover, the GB-SVR hybrid
model’s performance inconsistencies across various soil types and climatic
conditions hinder its applicability across diverse environments. Herein, we
successfully introduced a hybrid algorithm that can learn from various
learning models and large-scale datasets, significantly improving learning
performance and accuracy.

In Table 1, ML-based platforms combining colorimetric sensor
arrays and machine learning achieve high accuracy rates above 90%.
However, including preprocessing and analysis time, the process can take
a minimum of 240 h to 180 days. While this approach provides high

Fig. 5 | Learning results of the RSBoost hybrid algorithm. a The confusion matrix
of training results for three classes of bacteria (S. aureus is red, E. coli is blue, and P.
aeruginosa is green). bThe 3-dimensional scatter plot of actual and predicted data is
validated by the Monte Carlo cross-validation (MCCV) in the training set. c The
ROCplot andAUCvalues of each class for the training set.dThe confusionmatrix of
the blind test result for three classes of bacteria. e The 3-dimensional scatter plot of

actual and predicted data is validated by the Monte Carlo cross-validation (MCCV)
in the blind test set. f The ROC plot and AUC values of each class for the test set.
g Comparison of classification accuracy for each model in classification learning for
three types of bacteria. h Learning time comparison of each classification model for
identifying three bacterial species (All bacterial classes are the same as the color
legend mentioned above).
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classification accuracy, it has the drawback of lengthy analysis relative to
the number of classes. Additionally, extracting features from the large-
scale data generated by conventional colorimetric sensor arrays is highly
complicated and time-consuming. This leads to biased learning, resulting
in low reliability for specificity and sensitivity values and frequent
occurrences of overfitting.

This study presents a comprehensive investigation into sepsis diag-
nostics, emphasizing the enhanced sensitivity of the colorimetric gas sensor
array through poly ionic liquids and pH indicators. We also propose inte-
grating ML-based hybrid algorithms for bacterial classification to provide
clinicians with vital information regarding the dominant bacterial species
causing sepsis. Additionally, the results demonstrate the model’s ability to
detect and differentiate bacterial species accurately and estimate bacterial
concentrations in controlled laboratory conditions and blood samples. The
RSBoost hybrid algorithm, combining the strengths of two existing hybrid
models for large-scale multi-class classification on heterogeneous datasets,
analyzes complex correlation structures that are visually challenging to
discern, performing simultaneous classification and regression learning
through latent feature extraction andweight assignment. In blind tests using
blood samples, the algorithm achieved an average accuracy of 96.2% and
speed of less than 24 h (after training the RSBoost hybrid algorithm). Thus,
our approach is expected to improve sepsis diagnosis and patient outcomes
by enabling rapid, accurate, targeted interventions to manage this life-
threatening condition. Still, we acknowledge that our initial validation was
conducted on a tiny and homogeneous donor group (three healthy, non-
smoking male donors) to ensure controlled proof-of-concept conditions,
which is a study limitation. Therefore, future studies will include larger and
more diverse populations to validate and generalize our findings, ensuring
that these promising results broadly apply to diverse patient populations.

Methods
Synthesis of PIL and anionic pH dye
Each pH indicator dye was prepared in solution under conditions ensuring
its anionic form (for example, 10mgofBPBdissolved in 14mLethanolwith
a small amount of tributyl phosphate) before combining with the PIL
solution. We blended the dye solution with the polymeric ionic liquid
(20:1 v/v) to allowanion exchange between the dye and thePIL’s original Br⁻
counterions, effectively anchoring the dye anions in the polymer matrix. A
homogeneous solution was prepared by stirring and ultrasonicallymixing a
1:1 weight ratio of [Bvim][Br] and acrylonitrile with 8 wt% divinylbenzene
(based on the monomer’s weight) and 1 wt% benzoin isobutyl ether as a
photoinitiator. The solution was cast into a glass beaker and photo-
crosslinked at room temperature under 254 nm UV light. Consecutively, it
was immersed in a pHdye solution to undergo an anion-exchange reaction.
The solution was cast into a glass beaker and photo-crosslinked under
254 nmUV light (5–10mW/cm² intensity at 10 cm distance) for 30min at
room temperature, yielding a fully crosslinked polymer gel.

Fabrication of pH indicator-based colorimetric sensor
Optical modeling and the associated A 10:1 weight ratio of PDMS pre-
polymer (Sylgard 184A) and curing agent (Sylgard 184B) was mixed to
fabricate the porous PDMS sponge. The mixture was consecutively poured
over sugar cubes due to complete solubility, macroporosity, and bio-
compatibility in a petri dish, degassed at 0.08MPa, and cured at 80 °C. And
the sugar templates were dissolved in deionized water, dried at 80 °C, and
coated with the sensor solution49.

Characterization
The absorbance measurements for the colorimetric sensors were acquired
using a UV–Vis spectrophotometer (Infinite® 200 PRO, Tecan Inc.). The
results were assessed by recording the UV–Vis absorption spectrum with
monochromators, covering the 300 to 800 nm wavelength range.

NMR (Nuclear Magnetic Resonance) spectroscopy were conducted
using a Bruker 9.4T wide-bore magnet (400MHz for the 1H Larmor fre-
quency), controlled by anAVANCE-III NMR spectrometer. The probewas
a Bruker 3.2 mm double-resonance 1H/X CPMAS probe, and the sample
temperature was maintained at 298.1 K. The spectra were acquired using
DMSO as the solvent, and the spinning frequency of the sample was set to
10 kHz in both cases.XPS spectra were collected on an X-ray photoelectron
spectroscopy (XPS, 5000 VersaProbe) using a monochromatic Al Kα
(1486.6 eV) radiation. The samples were analyzedunder ultra-high vacuum
conditions (2 × 10− 7 Pa). After recording a broad range spectrum (pass
energy 187.85 eV), high-resolution spectra were recorded for the B1s, N1s,
C1s, and O1s. Spectrum processing was carried out using the Casa XPS
software package.

Gas sensing measurement
The gas sensing properties of the pH indicator coated colorimetric sensors
(BPB, TFT, and Cu-PAN) were measured in the fabricated chamber. The
gas flow was calibrated by mixing dry and humid air with the desired
concentration of the target gases using Mass Flow Controllers (MFCs,
Phocos, i-300CV-S4) to achieve a constantflow rate of 1000 sccm.TheMFC
was precisely controlled via the LabVIEWsoftware and used a fixedmixing
time of 300 s. All target gases (NH₃, TMA, H₂S, etc.) were high-purity
standards (≥99.5%) obtained in certified low-concentration cylinders (e.g.,
10 ppm NH₃ in N₂), purchased from Shinyang Industrial Gases Co. And
before introducing the test gas into the sensor chamber, we diverted all gas
streams (the VOC stream plus dry and humid carrier air) to a vent line for a
300-s pre-mixing period.

The color change of the pH indicator coated colorimetric sensors
according to the gas flow was recorded using a smartphone (Samsung
Galaxy S7), and the smartphonewas taken in an automatic calibration state.
To ensure that color changes arose solely from target gases, all experiments
were conducted in sealed chambers with inert gas purging to eliminate
ambient VOC interference; additionally, a fixed smartphone imaging setup
(10 cm distance) with uniform internal lighting was used to maintain
consistency across tests.

Bacterial strains and growth conditions
The S. aureus, P. aeruginosa, and E. coli were purchased by the Korean
Collection for Type Culture. S. aureus (KCTC 3881), P. aeruginosa (KCTC
1750), E. coli (KCTC 2441), Korean Collection for Type Cultures (KCTC,
Jeongeup, Republic of Korea), LB medium (Alpha Biosciences, Baltimore,
MD,USA). Each bacteriumwas inoculated on lysogeny broth (LB)medium
and grown overnight at 37 °C with shaking at 200 rpm. Then, a 10-fold
dilution series wasmade ranging from 108 CFU/ml down to 101 CFU/ml by
usingLB liquidmedium.The bacterial suspensionwasused for extractionof
DNA as shown in Supplementary Fig. 22.

DNA extraction of bacteria and PCR condition
GenomicDNAwas extracted using anAccuPrepGenomicDNAExtraction
Kit (Bioneer, Korea). The concentration of DNA was measured by Nano-
drop 2000TM spectrophotometer. The extracted DNAs from bacteria were

Table 1 | Comparison of the performance of an ML-powered
sensor platform combining an existing colorimetric sensor
array and machine learning to identify three types of bacteria

Analytical
instruments

Accuracy (%) Total
analysis
time (days)

Number of
the
classes

Reference

Machine learning-
powered
colorimetric
sensor array

95 >12.5 10 57

>90 >180 16 58

91–95 >10 2 59

97 <25 10 60

95 <41.6 5 61

99 >10.8 5 62

98 <16 3 63–66

96 <4.1 9 Our study
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analyzed for identifying the sensitivity and specificity of conventional PCR
method as shown in Supplementary Fig. 23. The primers of each bacterium
were listed in Supplementary Table 3. The temperature of the PCR reaction
had an initial denaturation step of 95 °C for 3min followed by 35 cycles (3 s
at 95 °C, 30 s at 60 °C) in a real time PCR thermal cycler (Biorad, Germany).
Bacterial quantification for DNAwas performed according to the threshold
cycle using the CT method. The values presented in the graphs are
mean ± SD values

Preparation of blood sample
Following the acquisition of written informed consent, three healthy, non-
smoking male participants (mean age 38.2) each donated 10ml of blood.
Human blood samples were collected using the conventional protocol
approved by the Institutional Review Board (IRB) (IRB number of Sever-
ance Hospital, Yonsei University: IRB, 4-2023-1279). Each 10mL donor
blood sample was immediately inoculated with target bacteria (S. aureus,
E. coli, or P. aeruginosa) to create an infected blood culture, mimicking a
sepsis bloodstream infection. A negative-control blood samples (with no
bacteria added) were incubated under the same conditions and yielded no
sensor response.

Preparation of heterogeneous datasets
Data preprocessing is conductedbydividing thedatasets into videodata and
color value data for each sensor area frame based on the hybrid algorithm’s
classification and regression learning. First, the video dataset, with a frame
rate of 29.97 fps and a framewidth of 480 × 272 at 2078 kbps, is split into an
image pixel size of 480 × 272 × 3. Only the sensor area is then extracted and
rescaled using MATLAB’s Vision Toolbox before being sent to the input
layer of the CNN-SVM. Secondly, the intensity datasets, with Red, Green,
and Blue (R, G, B) values extracted for each frame and arranged by column,
are compiled into a datasheet (4 × 89,965) for each combination con-
centration and sent to the input layer of LSBoost for regression learning of
bacterial concentration. Furthermore, all datasets transmitted to each
hybrid algorithm are divided into 70% training and 30% testing sets.

Dataset standardization and normalization
The entire dataset (frames 2–10,000) was randomly split into a training set
(70%) and a test set (30%) to ensure a robust evaluation. Then, the colori-
metric sensor extracted images for each frame from the 24-h video file and
converted them into an image dataset of the same resolution. Next, all
images were resized to a fixed spatial resolution (e.g., 480 × 272 pixels) and
their RGB channels were scaled uniformly, ensuring consistent color
representation across samples. These images were then loaded into a
MATLAB ImageDatastore and shuffled randomly to support unbiased
mini-batch sampling during training. Finally, within each sensor’s region of
interest, pixel intensities are normalized to amean of 0 and a variance of 1 in
both the row and column directions. The number of variables in each row
and column is equalized to eliminate class imbalance.

Extraction of color intensities andmorphological characteristics
from sensor array
To extract the latent characteristics of 3 bacteria species in each frame, the
captured images were used to identify areal changes regarding the bacteria
ratio. Based on these results, spatial vectors were calculated. These spatial
vectors identify the size and number of responsive regions for each gas
concentration, with different vector values for each class. This approach
allows for determining how theRGBratioswithin the contoured sensor area
are divided, resulting in distinct RGB values for each bacterial species.
Following this, the V values were derived from the RGB values of the
scanned images, asV values in theHSV (Hue, Saturation, andValue)model
demonstrated high sensitivity and extensive measurement ranges49–52.

Hyperparameter determination for RSBoost hybrid algorithm
The hyperparameters were assigned to set the conditions for training and
blind testing of the hybrid algorithm: an input size of 480 × 272, a batch size

of 32, a learning rate of 0.01, 1000 epochs, and 500 iterations for classifi-
cation and a leaf size of 8, a learning rate of 0.01, 1000 epochs, and 500
iterations for regression.

Classification process using CNN-SVM layer of RSBoost hybrid
algorithm
The hybrid algorithm employs a superpixel tool (MATLAB 2023b), spe-
cialized in extracting space vector53 values, to uncover latent features in the
data. By setting the superpixel scale to 200, the spatial coordinates of
the sensor area are extracted, and the length scale is calculated to derive the
features. The length scale is computed using Eq. (2). Here, x and y represent
the coordinates of the area along the sensor boundary.

Length scaleðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

x2i þ y2i
� �

n

s

ð2Þ

The RGB index utilizes the masking region tool (MATLAB 2023b) to
collect morphological contour information per frame per second and
extract latent features classified by bacterial combination ratios for each
class. The RGB index is calculated using Eq. (3). Here, n is the number of
color channels in the image.

RGB index ¼ R;G; Bð Þmax � R;G;Bð Þmin

10n
ð3Þ

The shape factor is employed to detect changes in color boundaries
over time within a colorimetric sensor54. It extracts consistent contour
information correlating with color variations due to different bacterial
concentrations. By analyzing the shape of these color changes, the shape
factor is calculated using Eq. (4) to estimate the area of the color region,
which is then divided into 1 to 5 distinct regions, and the internal structure
of the sensor is evaluated. P refers to the perimeter of the sensor, and A
represents the area of the sensor.

Shape factor ðSFÞ ¼ 4πA

P2
ð4Þ

Regression process using LSBoost layer of RSBoost hybrid
algorithm
For regression learning of gas concentration combinations for three types
of bacteria in the hybrid algorithm, automatic feature equations are
derived using Eqs. (5) and (6). Weight assignment is then performed
using Eq. (7), allocating weights to the index most effective for con-
centration prediction.

Fn xð Þ ¼ Fn�1 xð Þ þ ynWn x; En

� � ð5Þ

yn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðPredicted concentrationðiÞ � Actual concentration ið ÞÞ2

q
� RMSEmin

RMSEmax � RMSEmin

ð6Þ

CorrðX;YÞ ¼ 1
σXσY

1
n

Xn

i¼1

xi � μX
� �

yi � μY
� �

ð7Þ

To quantitatively evaluate the regression learning results, mean abso-
lute error (MAE), mean square error (MSE), and root-mean-square error
(RMSE) equations were applied to the output layer of LSBoost (Eqs. (8), (9),
and (10), respectively).

MAE ¼ 1
n

Xn

i¼1

x̂i � xi
�� �� ð8Þ
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MSE ¼ 1
n

Xn

i¼1

ŷi � yi
�� ��2 ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ŷi � yi
�� ��2

s

ð10Þ

Correlation index
The correlation index pattern, ranging from−1 to 1,was used to analyze the
correlation ofmulti-class regression learning results for the three bacteria at
concentration combinationsof 10, 100, and1000cfs36. Through theRSBoost
hybrid algorithm, this pattern evaluates the linear relationship between
variables. A value close to 1 indicates minimal latent features among the
same class, while a value close to−1 suggests diverse latent features across
different bacterial concentration classes. This correlation index pattern is
calculated using Eq. (11) [Supplementary Fig. 16].

R2 ¼
P

x̂i � xi
� �

ŷi � yi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x̂i � xi
� �2 P

ŷi � yi
� �2

q ð11Þ

Here, R2 represents the correlation coefficient, and xi and yi denote
different bacterial classes x and y, respectively. x̂i and ŷi represent the mean
values of each sample [Supplementary Figs. 17–21]. Residuals are a critical
metric for assessing the performance of regression models55. In this study,
the RSBoost hybrid algorithm was trained on a dataset featuring three
bacterial proportions relevant to sepsis diagnosis. The LSBoost layer,
designed for regression learningwithin the hybrid algorithm,was employed
to analyze the mean and variance of residuals—the discrepancies between
actual and predicted values—to evaluate the consistency of the algorithm’s
prediction errors. Residuals are computed using Eq. (12), and verifying that
they followanormal distribution is essential. The residual ei is defined as the
difference between the actual value yi and the predicted value ŷi.

ei ¼ yi � ŷi ð12Þ

Monte Carlo Cross Validation (MCCV)
MCCV, suitable for large datasets, was employed to evaluate and verify the
reliability of the classification learning results of the RSBoost hybrid
algorithm56.Thenumber ofMCCViterationswas set to 100, as calculatedby
Eq. (13).

εMCCV ð%Þ ¼ 1
100

X100

i¼1

εi ð13Þ

Probability value (p-value)
To evaluate the statistical significance of performance differences between
the RSBoost algorithm and baseline models, a paired t-test was conducted.
The p-value was used as the primary statistical metric to determine whether
the observed differences were likely due to random variation under the null
hypothesis. Where �d represents the mean difference performance metrics,
sd is the standard deviation of those differences, and n is the number
of paired observations used for statistical comparison. It is calculated by
Eq. (14).

t ¼
�d

sd=
ffiffiffi
n

p ð14Þ

All algorithm training processes were executed on an Intel Core i9-
12900KS CPU running at 3.40 GHz, 32GB of RAM, and an NVIDIA
GeForce RTX 3090 Ti graphics card, using MATLAB R2023b (The
MathWorks, Inc.; Natick, MA, USA).

Algorithm 1. The training process of rapid sepsis boosting (RSBoost)
Input: Data sources collected via colorimetric sensors, P; Number of

bacterias, n; The input datasets (image & intensity values) conditions are
randomly set for training, Rn (n = 1, 2); Raw value of each condition, x.

Output: Weight assigned to bacteria class with lowest root mean
square error (RMSE),W; Classified bacteria class, C.

Training Begin {LSBoost layer}: The dataset is fed into the LSBoost
layer of the hybrid algorithm.
1. Fo xð Þ ¼ �y: The rawdataset is loaded into theworkspaceof theLSBoost

layer and transformed into a function (F(x)).
2. For all bacteria (n = 9), regression training is repeated for each bacteria

class per epoch.
3. The optimized hyperparameters are 0.01 learning rate, 1.0 maximum

feature map depth, 8 minimum leaf size, 1000 epochs, and 500
iterations.

4. �yn ¼ yn � Fn�1 xn
� �

: The LSBoost layer of the algorithm normalizes
the regression results for each of the nine classes of bacteria.

5. Rn¼1;2;Pn

� � ¼ argminp
P9

n¼1 �yi � RWn xn;P
� �� �2

:
Among thenormalized variables ofmulti-classes for eachbacteria gas
concentration, weight is assigned to the value with the smallest
average error.

6. Fn xð Þ ¼ Fn�1 xð ÞþRnWn x;Pn

� �
:Every bacteria class assigned a

weight is exported from the workspace to the output layer of the
algorithm.

7. EndFor: The iterative learning for each bacteria class concludes.
8. Return {CNN−SVM layer}: The results of regression learning are sent

to the CNN-SVM layer of the hybrid algorithm.
9. ForThealgorithmis trainedonnine classes for the concentration range

of three bacteria (S. aureus, E. coli, P. aeruginosa): 10 to 1000 CFU/ml.
10. The top nine classes for a concentration of bacteria sorted by des-

cending RMSE trained by the LSBoost layer are used in a 7 × 7 kernel
filter to extract latent features.

11. Rn¼1;2;Pn

� � ¼ argminp
P9

n¼1W �yi � RWn Rn¼1;2 þWn x;Pn

� �
;PWn

� �� �2

Among the ranking using the nine class gas concentrations of bac-
teria, the weight is reapplied to the class with the highest accuracy.

12. The weights are applied to each of the nine classes, ranked by RMSE
values, and the eigenvectors are computed using the characteristic
equation as input to the CNN-SVM layer.

13. Function: A feature map is generated based on the eigenvector range
for each class.

14. Save the trained CNN-SVM layer of the RSBoost algorithm.
15. Send the eigenvector values into the test set of the CNN-SVM layer for

a blind test.
16. The accuracy of each class is calculated using an SVM classifier of the

CNN-SVM layer and exported.
17. End While;
18. End Algorithm.

Data availability
This study uses a heterogeneous dataset authorized byMr.Ha, Dr. Shin and
Dr. Jung at Yonsei University. Users wishing to access information from all
datasetsmust obtain their approval. In comparison, some of the datasets are
partially open and accessible below. Detailed information on some of the
heterogeneous datasets, including blood samples used for the blind test of
the RSBoost algorithm and the training dataset for bacterial gas con-
centration, is available on Zenodo (https://doi.org/10.5281/zenodo.
14053366).

Code availability
The hybrid algorithm developed for this study has been made part of the
code available onGitHub.Thealgorithmwasdevelopedand testedusing the
MATLAB 2023b environment, and information about the code scripts and
toolboxes used can be found at (https://github.com/SeongminHA/
Artificially-intelligent-nasal-perception-for-rapid-sepsis-diagnostics?tab=
readme-overview).
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