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Prediction Model for Insulin Resistance and 
Implications for MASLD in Youth: A Novel Marker, 
the Pediatric Insulin Resistance Assessment Score
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Purpose: Insulin resistance (IR) is a condition closely associated with cardiovascular risk factors and metabolic dysfunction-asso-
ciated steatotic liver disease (MASLD) is emerging as a significant IR-related complication. We aimed to develop a predictive model 
for IR in youths and implicate this model for MASLD.
Materials and Methods: A total of 1588 youths from the population-based data were included in the training set. For the test sets, 
121 participants were included for IR and 50 for MASLD from real-world clinic data. Logistic regression analysis, random forest, ex-
treme gradient boosting (XGBoost), light gradient boosting machine (GBM), and deep neural network (DNN) were used to devel-
op the models. A nomogram scoring system was constructed based on a model used to predict the probability of IR and MASLD.
Results: After stepwise selection, age, body mass index (BMI) standard deviation score (SDS), waist circumference (WC), systol-
ic blood pressure, HbA1c, high-density lipoprotein cholesterol, triglyceride, and alanine aminotransferase levels were included 
in the model. A nomogram scoring system was constructed based on a multivariable logistic regression model. The areas under 
the curves (AUCs) of the models for IR prediction in external validation were 0.75 (logistic regression), 0.78 (random forest), 0.72 
(XGBoost), 0.71 (light GBM), and 0.71 (DNN). For MASLD prediction, the AUCs were 0.93 (logistic regression), 0.95 (random 
forest), 0.90 (XGBoost), 0.91 (light GBM), and 0.85 (DNN). BMI SDS and WC SDS were the most important contributors to IR pre-
diction in all models. 
Conclusion: The Pediatric Insulin Resistance Assessment Score is a novel scoring system for predicting IR and MASLD in youths.

Key Words: ‌�Insulin resistance, metabolic dysfunction-associated steatotic liver disease, machine learning, child, adolescent

Original Article 

pISSN: 0513-5796 · eISSN: 1976-2437

Received: December 23, 2024   Revised: January 31, 2025   Accepted: February 19, 2025   Published online: April 15, 2025
Co-corresponding authors: Hye Sun Lee, PhD, Biostatistics Collaboration Unit, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
E-mail: hslee1@yuhs.ac and
Yu-Jin Kwon, MD, PhD, Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin 
16995, Korea.
E-mail: digda3@yuhs.ac

•The authors have no potential conflicts of interest to disclose.

© Copyright: Yonsei University College of Medicine 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Yonsei Med J 2025 Aug;66(8):464-472
https://doi.org/10.3349/ymj.2024.0442

http://crossmark.crossref.org/dialog/?doi=10.3349/ymj.2024.0442&domain=pdf&date_stamp=2025-07-08


465

Kyungchul Song, et al.

https://doi.org/10.3349/ymj.2024.0442

INTRODUCTION

Insulin resistance (IR), a condition closely related to metabol-
ic syndrome and type 2 diabetes, is a risk factor for future cardio-
vascular disease (CVD), a leading cause of death worldwide.1-3 
The prevalence of IR-related complications is worsening with 
the adverse trend of obesity in children and adolescents, such as 
in prediabetes, increasing from 0.93% to 10.66% worldwide, 
while the prevalence of metabolic syndrome is 3% in children 
and 5% in adolescents globally.4-7 Early detection and manage-
ment of IR are crucial to prevent these complications and re-
duce the risk of future CVD.8-10

The euglycemic clamp test is the gold standard to detect IR, 
but it is highly invasive and a burden for children.8,11 Although 
the homeostasis model assessment of IR (HOMA-IR), a mark-
er derived from the serum level of insulin and glucose, is sug-
gested as a practical parameter, insulin measurement is not a 
routine laboratory test and is limited due to the standardization 
problem.12 To overcome these limitations, prediction models 
and markers for IR have been proposed for adults; however, 
these markers were developed based on studies conducted in 
adults and do not account for the age-related growth and de-
velopmental changes specific to children and adolescents, 
thereby limiting their applicability in younger populations.10,13

Meanwhile, metabolic dysfunction-associated steatotic liver 
disease (MASLD), a steatotic liver disease (SLD) combined 
with metabolic risk factors, is emerging as an important IR-re-
lated complication.14-16 This new concept, suggested in 2023, re-
places the older term, non-alcoholic fatty liver disease (NAFLD), 
and reflects a more comprehensive understanding of the met-

abolic aspects of the condition.14 While NAFLD primarily con-
sidered the absence of significant alcohol consumption, MASLD 
accounts for both alcohol intake and the presence of metabolic 
risk factors. Additionally, MASLD adopts the term “steatotic 
liver disease” to move away from the potentially stigmatizing 
language associated with “fatty liver disease.”14,17 While the glob-
al rise in NAFLD prevalence is well-documented,18,19 a recent 
U.S. study reported that the prevalence of MASLD was high: 
33.6% in adults and 5.8% in adolescents and young adults.15 
MASLD is closely related to type 2 diabetes and CVD and can 
progress to severe liver conditions, including cirrhosis, making 
early detection essential.20,21 Although alanine aminotransfer-
ase (ALT) has been suggested as a screening tool for pediatric 
NAFLD, its usefulness is limited due to its low sensitivity and 
specificity.9,22 Moreover, there is a notable lack of research on ef-
fective screening strategies or guidelines for pediatric MASLD.

We, therefore, aimed to develop a prediction model with a 
scoring system for IR in children and adolescents using data 
from the Korea National Health and Nutrition Examination 
Survey (KNHANES) and to validate the model with a test set 
derived from real-world clinical data. In addition, we investi-
gated the clinical implications of this model by evaluating the 
predictability of MASLD.

MATERIALS AND METHODS

Study design and participants
For the training set, we analyzed data from children and ado-
lescents aged 10–18 years who participated in the KNHANES, 

KNHANES 2019–2021 
(n=22559)

Children and adolescents visited 
Yongin Severance Hospital (n=352)

Participants aged 10–18 years (n=1919) Participants aged 10–18 years (n=244) Participants aged 10–18 years (n=311)

  Excluded (n=331)
  • ‌�Missing anthropometric data (n=148)
  • ‌�Missing fasting glucose and/or 

insulin level (n=108)
  • ‌�Missing HbA1c (n=5)
  • ‌�Missing lipid profile (n=0)
  • ‌�Missing AST and/or ALT (n=3)
  • ‌�Missing blood pressure (n=57)
  • ‌�Participants with diabetes mellitus 

(n=10)

  Excluded (n=123)
  • ‌�Missing anthropometric data (n=25)
  • ‌�Missing fasting glucose and/or 

insulin level (n=25)
  • ‌�Missing HbA1c (n=46)
  • ‌�Missing lipid profile (n=0)
  • ‌�Missing AST and/or ALT (n=0)
  • ‌�Missing blood pressure (n=21)
  • ‌�Participants with diabetes mellitus 

(n=4)

Final train set (n=1588) Final test set for IR (n=121) Final test set for MASLD (n=50)

Machine learning with 5-fold cross validation Prediction model for IR Implication for MASLD

Children and adolescents visited Yogin Severance 
Hospital or Gangnam Severance Hospital (n=477)

  Excluded (n=261)
  • ‌�Missing anthropometric data 

(n=47)
  • ‌�Missing abdominal 

sonography (n=150)
  • ‌�Missing HbA1c (n=55)
  • ‌�Missing lipid profile (n=2)
  • ‌�Missing AST and/or ALT (n=0)
  • ‌�Missing blood pressure (n=7)
  • ‌�HBV or HCV infection (n=0)
  • ‌�Cryptogenic SLD (n=0)

Fig. 1. Study flowchart. KNHANES, Korea National Health and Nutrition Examination Survey; AST, aspartate aminotransferase; ALT, alanine aminotrans-
ferase; IR, insulin resistance; HBV, hepatitis B virus; HCV, hepatitis C virus; SLD, steatotic liver disease; MASLD, metabolic dysfunction-associated steatot-
ic liver disease. 
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a nationwide survey conducted in Korea for health screening 
and nutrition between 2019 and 2021. For the test set used to 
evaluate IR, we retrospectively reviewed the medical records 
of Korean children and adolescents who visited the outpatient 
clinic of the Department of Pediatrics at Yongin Severance 
Hospital with complaints of overweight or obesity, specifically 
for the evaluation of obesity-related comorbidities. For the 
test set evaluating the clinical implications related to MASLD, 
we included Korean children and adolescents who visited the 
outpatient clinic of the Department of Pediatrics at Yongin Sev-
erance Hospital with complaints of overweight or obesity, as 
well as those who underwent check-ups at Gangnam Severance 
Hospital. Finally, 1588, 121, and 50 participants were included in 
the training set, test set for IR, and test set for MASLD, respec-
tively. Fig. 1 depicts the flowchart of the study.

This study conformed to the ethical guidelines of the 1975 
Declaration of Helsinki and was approved by the Institutional 
Review Board of the Yongin Severance Hospital (IRB No: 9- 
2024-0098). Written informed consent was obtained from all 
participants in the KNHANES and Gangnam Severance Hospi-
tal, while it was waived for participants at Yongin Severance 
Hospital.

Study variables
Heights were measured with a stadiometer (range: 850–2060 
mm; Seriter, Holtain Ltd., Crymych, UK) with an accuracy of 
0.1 cm in both KNHANES and Yongin Severance Hospital. 
Weights were measured using a Giant 150N scale (HANA, Seoul, 
South Korea) in KNHANES and DB150 (CAS, Yangju, South 
Korea) in Yongin Severance Hospital with a precision of 0.1 kg. 
In Gangnam Severance Hospital, height and weight were mea-
sured using ACCUNIQ BC720 (SELVAS Healthcare, Daejeon, 
South Korea). Body mass index (BMI) was calculated by divid-
ing the weight in kilograms by the height in square meters. The 
height, weight, and BMI standard deviation score (SDS) were 
calculated according to the 2017 Korean National Growth 
Charts.23 Children were classified into three groups based on 
their BMI: normal weight (BMI <85th percentile), overweight 
(BMI between the 85th and 95th percentiles), and obese (BMI 
≥95th percentile). Waist circumference (WC) was measured at 
the midpoint between the lower margin of the least palpable rib 
and the top of the iliac crest in the horizontal plane. Blood pres-
sure (BP) was measured on the right arm, which was supported 
at the heart level, after the participants had been seated and 
at rest for 5 minutes. High systolic BP (SBP) was defined as SBP 
≥95th percentile, and high diastolic BP (DBP) was defined as 
DBP ≥95th percentile for age and sex according to Korean ref-
erence data.24

Blood samples were drawn from the antecubital vein after a 
minimum 8-hour overnight fast. The collected samples were 
processed immediately and refrigerated. In KNHANES, fasting 
levels of glucose, total cholesterol, high-density lipoprotein-cho-
lesterol (HDL-C), triglycerides (TG), aspartate transferase (AST), 

ALT, and uric acid were measured using the Labospect 008AS 
(Hitachi, Tokyo, Japan), while serum HbA1c levels were mea-
sured using the Tosoh G8 (Tosoh, Tokyo, Japan), and insulin 
levels were determined using the Modular E801 (Roche, Basel, 
Switzerland). In Yongin Severance Hospital, fasting levels of 
glucose, total cholesterol, HDL-C, TG, AST, ALT, and uric acid 
were measured using the Roche Cobas 8000 c702 (Roche). Se-
rum HbA1c levels were measured using the D-100 (Bio-Rad, 
Hercules, CA, USA), and insulin levels were determined using 
the Roche Cobas e801 (Roche). In Gangnam Severance Hospi-
tal, fasting levels of glucose, total cholesterol, HDL-C, TG, AST, 
ALT, and uric acid were measured using the AU580 (Beckman 
Coulter, Brea, CA, USA). Serum HbA1c levels were measured 
using the HLC-723 G11 (Tosho), and insulin levels were deter-
mined using the cobas e 801 (Roche).

The Friedewald formula was used to compute low-density 
lipoprotein-cholesterol (LDL-C) levels as LDL-C=total choles-
terol-HDL-C-TG/5 with TG levels of ≤400 mg/dL, whereas it 
was set as missing for samples with TG values >400 mg/dL.12 
HOMA-IR was calculated by multiplying fasting insulin (mg/dL) 
by fasting glucose (mg/dL) and then dividing the result by 22.5. 
IR was defined as a HOMA-IR value above the 95th percentile 
for each age and sex group, according to Korean reference data.25

Body composition was assessed using InBody720 (Inbody, 
Seoul, South Korea) through bioelectrical impedance analysis 
(BIA), including measurements of skeletal muscle mass (SMM) 
and percentage of body fat (PBF). BIA was conducted exclu-
sively at Yongin Severance Hospital.

Diagnosis of MASLD
The diagnosis of SLD was made based on the results of an ab-
dominal ultrasound using Aplio i800 (Canon Medical Systems, 
Otawara, Japan) and LOGIQ E10 (GE Healthcare, Wauwatosa, 
WI, USA) at Yongin Severance Hospital, and HDI 5000 (Philips, 
Bothell, WA, USA) at Gangnam Severance Hospital, by experi-
enced radiologists. The participants were categorized into four 
grades according to the presence and severity of hepatic fat ac-
cumulation. This categorization was based on the assessment 
of liver tissue echogenicity, the contrast between the liver and 
the right kidney, and the visibility of vascular structures.9 
Grades 1 to 3 of hepatic fat accumulation were considered in-
dicative of SLD, while grade 0 indicated a normal condition. 
MASLD was defined as SLD with the presence of at least one 
of five cardiometabolic risk factors according to the internation-
al consensus.14 Cardiometabolic risk factors included: 1) over-
weight, obesity, or abdominal obesity (WC at or above the 
95th percentile) based on Korean reference;23,26 2) BP thresh-
olds of ≥130/85 mm Hg for individuals aged 13 years and old-
er, or ≥130/80 mm Hg or the 95th percentile for those under 
13 years; 3) fasting glucose levels of at least 100 mg/dL or 
HbA1c of 5.7% or higher; 4) TG levels of 150 mg/dL or higher; 
and 5) HDL-C levels below 40 mg/dL.14
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Statistical analysis and machine learning
All continuous variables are depicted as the mean±standard 
deviation, while categorical variables are presented as num-
bers (percentages). Continuous variables were compared us-
ing the independent t-test, whereas categorical variables were 
compared using the chi-squared test or Fisher’s exact test. Sub-
group analyses were conducted based on the presence or ab-
sence of IR within the respective set, and BIA parameters were 
specifically examined in participants with obesity, categorized 
by the presence or absence of IR, at Yongin Severance Hospi-
tal. Univariate logistic regression analysis was performed with 
IR as the dependent variable and multivariable logistic regres-
sion analyses were performed using stepwise selection.

To develop the IR prediction model, logistic regression analy-
ses, random forest, extreme gradient boosting (XGBoost), light 
gradient boosting machine (GBM), and deep neural network 
(DNN) were used in the training set, and hyperparameter tun-
ing of the model was performed using a grid search with five-
fold cross-validation. Internal validation was performed on the 
training set and external validation was performed on the test 
set for IR. Additionally, the model was validated for MASLD 
prediction by external validation of the test set for MASLD. Re-
ceiver operating characteristic (ROC) curve analyses were per-
formed to assess the model performance, and the Delong test 
was performed for pairwise comparisons. A nomogram scor-
ing system was constructed based on a logistic regression mod-
el used to predict the probability of IR. Nomogram points for 
each predictor were determined by the ratio of the absolute 
coefficient to the largest absolute coefficient, scaled to 100 
points. The probability of IR was calculated from the total points 
summed by the patient’s predictor points. The Shapley’s addi-
tive explanation (SHAP) values were computed to quantify the 
impact of each parameter. Data were analyzed using SAS (ver-
sion 9.4; SAS Inc., Cary, NC, USA) and R, version 4.3.2 (The R 
Foundation for Statistical Computing, Vienna, Austria; http://
www. R-project. org/). Statistical significance was set at p<0.05.

RESULTS

Baseline characteristics
Table 1 shows the baseline characteristics of the training set 
based on the presence or absence of IR. The IR group consisted 
of 376 participants, while the non-IR group included 1212 par-
ticipants. Age, HDL-C level, and the proportion of female sex 
were lower in participants with IR than in those without IR. 
Height SDS, weight SDS, BMI SDS, WC SDS, SBP, DBP, glu-
cose, insulin, HbA1c, total cholesterol, TG, LDL-C, non-HDL-
C, AST, ALT, uric acid, HOMA-IR, and the proportion of obesi-
ty, high SBP, and high DBP were higher in participants with IR 
than in those without IR.

Supplementary Table 1 (only online) shows the baseline 
characteristics of participants in the training and test sets for IR 

and the test sets for MASLD. Age, DBP, glucose, HbA1c, and 
HDL-C levels were higher in the training set than in the test set 
for the IR group. Height SDS, weight SDS, BMI SDS, WC SDS, 
SBP, insulin level, TG, AST, ALT, uric acid, HOMA-IR, and the 
proportions of obesity, high SBP, high DBP, and IR were higher 
in the test set for IR than in the training set. Age, DBP, and HDL-
C levels were higher in the training set than in the MASLD test 
set. The height SDS, weight SDS, BMI SDS, SBP, glucose, HbA1c, 
TG, AST, ALT, and uric acid levels, and the proportion of obesity, 
high SBP, and high DBP were higher in the test set for MASLD 
than in the training set.

Supplementary Table 2 (only online) presents a comparison 
of body composition among participants with obesity, catego-
rized by the presence of IR, at Yongin Severance Hospital. No 
significant differences were observed in SMM, PBF, or WC 
SDS between participants with IR and those without IR.

Table 1. Baseline Characteristics of the Train Set according to IR

IR (n=376) Non-IR (n=1212) p value
Age, yr 13.40±2.54 13.96±2.56 <0.001
Sex, female 137 (36.44) 577 (47.61) <0.001
Height SDS 0.58±1.08 0.30±1.04 <0.001
Weight SDS 1.50±1.26 0.01±1.08 <0.001
BMI SDS 1.54±1.33 -0.16±1.13 <0.001
WC SDS 1.48±0.99 0.10±0.95 <0.001
BMI percentile <0.001

Normal 130 (34.57) 1033 (85.23) <0.001
Overweight   73 (19.41)   95 (7.84) <0.001
Obesity 173 (46.01)   84 (6.93) <0.001

SBP, mm Hg 112.73±10.33 106.91±9.77 <0.001
DBP, mm Hg 67.60±9.43 66.48±8.65   0.041
High SBP   41 (10.90)   36 (2.97) <0.001
High DBP 28 (7.45)   51 (4.21)   0.012
Glucose, mg/dL 96.23±7.42 91.29±6.37 <0.001
Insulin, IU/L 31.47±21.36 10.94±4.21 <0.001
HbA1c, % 5.49±0.25 5.38±0.25 <0.001
Total cholesterol, mg/dL 169.99±29.03 162.33±26.93 <0.001
HDL-C, mg/dL 47.16±8.87 53.54±10.01 <0.001
TG, mg/dL 120.04±64.45 78.24±39.73 <0.001
LDL-C, mg/dL 101.05±26.46 93.43±23.44 <0.001
Non-HDL-C, mg/dL 122.83±28.37 108.79±25.18 <0.001
AST, IU/L 25.01±13.74 21.01±10.90 <0.001
ALT, IU/L 29.20±29.17 15.03±11.67 <0.001
Uric acid, mg/dL 6.05±1.45 5.29±1.29 <0.001
HOMA-IR 7.53±5.70 2.48±1.01 <0.001
IR, insulin resistance; SDS, standard deviation score; BMI, body mass index; 
WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; HDL-C, high-density lipoprotein-cholesterol; TG, triglycerides; LDL-C, 
low-density lipoprotein-cholesterol; AST, aspartate aminotransferase; ALT, ala-
nine aminotransferase; HOMA-IR, homeostasis model assessment of IR.
Values are presented as mean±SD for continuous variables and number (per-
centage) for categorical variables.

http://www. R-project. org/
http://www. R-project. org/
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Fig. 3. ROC curves from internal and external validation for IR and external validation for MASLD. (A) ROC curves from internal validation in train set for IR. 
(B) ROC curves from external validation in test set for IR. (C) ROC curves from external validation in the test set for MASLD. IR, insulin resistance; MASLD, 
metabolic dysfunction-associated steatotic liver disease; ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic 
curve; XGBoost, extreme gradient boosting; GBM, gradient boosting machine; DNN, deep neural network.

Logistic regression analyses and scoring system
Fig. 2A shows a forest plot of the multivariable logistic regression 
analyses after stepwise selection. Age and HDL-C levels were 
negatively associated with IR, whereas BMI SDS, WC SDS, SBP, 
HbA1c, TG, and ALT levels were positively associated with IR.

We constructed a nomogram scoring system, the Pediatric 
Insulin Resistance Assessment Score (PIRAS), for IR prediction 
based on a multivariable logistic regression model as follows:

Probability (IR)=1/[1+exp(-y)]
where y=‌�-7.320-0.126×Age+0.463×BMI SDS+0.569×WC SDS 

+0.021×SBP+0.849×HbA1c-0.019×HDL-C+0.009 
×TG+0.012×ALT

Fig. 2B shows a representation of the scoring system using 
a nomogram for IR. The participants were 14 years old (9.92 
points). The BMI SDS, WC SDS, and SBP were 1 (45.45), 2 (55.85), 
and 90 mm Hg (6.30), respectively. HbA1c, HDL-C, TG, and 

ALT levels were 4.8% (13.33 points), 35 mg/dL (22.06 points), 
200 mg/dL (36.75 points), and 140 IU/L (32.01 points), respec-
tively. According to the nomogram, the probability of IR was 
0.795 (79.5%) for 221.67.

ROC curve analyses of the models
In ROC curve analyses, the area under the ROC curves (AUCs) 
of the models for IR prediction were 0.87 (logistic regression), 
0.85 (random forest), 0.96 (XGBoost), 0.97 (light GBM), and 
0.95 (DNN) in internal validation for the training set (Fig. 3). 
For external validation of the test set, the corresponding val-
ues were 0.75 (logistic regression), 0.78 (random forest), 0.72 
(XGBoost), 0.71 (light GBM), and 0.71 (DNN) for IR predic-
tion, respectively. For MASLD prediction, AUCs of the models 
were 0.93 (logistic regression), 0.95 (random forest), 0.90 (XG-
Boost), 0.91 (light GBM), and 0.85 (DNN). Supplementary Ta-
ble 3 (only online) summarizes the hyperparameters for each IR 
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Fig. 2. Multivariable logistic regression model (A) and nomogram of the model for prediction of IR (B). (A) Forest plot of odds ratio (OR) [95% confidence 
interval (CI)] of the stepwise logistic regression model. (B) A scoring system with a nomogram for predicting IR using the results of multivariable logistic 
regression analysis. The participants were 14 years old (9.92 points). The BMI SDS, WC SDS, and SBP were 1 (45.45), 2 (55.85), and 90 mm Hg (6.30), re-
spectively. HbA1c, HDL-C, TG, and ALT levels were 4.8% (13.33 points), 35 mg/dL (22.06 points), 200 mg/dL (36.75 points), and 140 IU/L (32.01 points), respec-
tively. According to the nomogram, the probability of IR was 0.795 (79.5%) for 221.67. IR, insulin resistance; BMI, body mass index; SDS, standard deviation 
score; WC, waist circumference; SBP, systolic blood pressure; HDL-C, high-density lipoprotein-cholesterol; TG, triglycerides; ALT, alanine aminotransferase.

Age

BMI SDS

WC SDS

SBP

HbA1c

HDL-C

TG (per 10 mg/dL)

ALT
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prediction model, including random forest, XGBoost, light 
GBM, and DNN, along with the final values selected through 
hyperparameter tuning to optimize model performance.

In pairwise comparisons, the light GBM model was superi-
or to the other models, followed by XGBoost, DNN, logistic re-
gression, and random forest for IR prediction in the training set 
(Supplementary Table 4, only online). The AUCs were not sig-
nificantly different among the models in the test sets for IR. In 
the test sets for MASLD, the AUC was higher in the random for-
est model compared to the DNN model.

SHAP
The SHAP values of the variables were computed to demon-
strate their importance in the prediction model for IR in the 
external validation of the test set (Fig. 4). Among these param-
eters, WC SDS and BMI SDS were the most important contrib-
utors to IR prediction in all models. TG was the third most im-
portant contributor in the logistic regression, XGBoost, light 
GBM, and DNN models. In the random forest model, ALT was 
the third most important contributor, followed by TG.

DISCUSSION

Our prediction models developed prediction models for IR and 
implicated the models for MASLD using population-based data 
demonstrating outstanding performance across various ma-
chine learning methods among children and adolescents. Key 

contributors included age, BMI SDS, WC SDS, SBP, TG, HDL-C, 
ALT, and HbA1c levels. In addition, we developed a scoring sys-
tem, the PIRAS, using these variables, making it a practical tool 
for real-world clinical settings.

We developed IR prediction models and a scoring system 
using various machine learning techniques, which demon-
strated AUCs from 0.85 to 0.97 in internal validation and 0.77 
to 0.84 in external validation. The performance differences 
among the machine learning models were influenced by hy-
perparameter tuning and data characteristics, but all models 
consistently showed excellent predictive power for IR overall. 
Although prediction models for IR have been extensively stud-
ied in adults owing to their clinical significance, to our knowl-
edge, similar investigations in children have not been conduct-
ed. An IR prediction model developed in Taiwan using logistic 
regression and various machine learning showed AUCs rang-
ing from 0.83 to 0.87 among adults.10 A Korean study devel-
oped a prediction model for IR in adults aged over 40 years, 
which demonstrated an AUC of 0.82 using logistic regression.13 

Biomarkers such as TG-glucose index (TyG) and TG-to-
HDL-C ratio (TG/HDL-C) have been suggested for predicting 
IR in adults and validated in children.8,11 In a cross-sectional 
study, the AUC of TyG for IR was 0.723 in children and adoles-
cents.8 In another cross-sectional study, the AUC of TG/HDL-C 
for IR was 0.729 in children and adolescents.27Although these 
existing markers, such as TyG and TG/HDL-C, were originally 
proposed as simple markers in studies involving adults, they 
inherently have limitations when applied to children.28 Specifi-

Fig. 4. SHAP summary plots for contribution of the variables for prediction of IR. (A) SHAP summary plot of the prediction model using logistic regression 
analysis. (B) SHAP summary plot of the prediction model using random forest. (C) SHAP summary plot of the prediction model using XGBoost. (D) SHAP 
summary plot of the prediction model using light GBM. (E) SHAP summary plot of the prediction model using DNN. The color in the plot indicates whether 
a parameter has a high or low value within the participant dataset. The horizontal position on the plot indicates whether the parameter has a higher or 
lower impact on the prediction. IR, insulin resistance; SHAP, Shapley’s additive explanation; XGBoost, extreme gradient boosting; GBM, gradient boosting 
machine; DNN, deep neural network; WC, waist circumference; SDS, standard deviation score; BMI, body mass index; TG, triglycerides; SBP, systolic 
blood pressure; HDL-C, high-density lipoprotein-cholesterol; ALT, alanine aminotransferase.
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cally, these markers fail to account for the dynamic changes in 
BMI and metabolic factors associated with age and growth dur-
ing childhood and adolescence.29 In contrast, the proposed 
new marker, PIRAS, is designed to overcome these limitations. 
PIRAS incorporates variables that reflect age-related growth 
and metabolic changes in children, such as age, BMI SDS, and 
WC SDS. Furthermore, PIRAS was developed using diverse 
machine learning with external validation, providing a distinct 
advantage over traditional markers in capturing the unique 
metabolic dynamics of children and adolescents.

In the model developed in our study, BMI SDS and WC SDS 
were the most important contributors to IR prediction, followed 
by TG, age, SBP, HbA1c, HDL-C, and ALT, in the logistic regres-
sion analysis. In addition, the BMI SDS, WC SDS, and TG were 
major contributors to all machine learning-based models. 
These findings suggest the validity of our model, aligning with 
the pathophysiology of IR and corroborating previous research 
on factors related to IR.9,30-32 Excess body fat, particularly visceral 
fat associated with BMI and WC, releases inflammatory cyto-
kines that impair insulin signaling.8,33 This disruption leads to 
decreased glucose uptake in the muscles and increased glu-
cose production in the liver, exacerbating IR.9 Moreover, IR 
exacerbates obesity and abdominal obesity by inducing an in-
crease in free fatty acids, which promote fat accumulation, es-
pecially in the abdominal region.30,34 In addition, increases in 
TG levels lead to an increased influx of free fatty acids into the 
liver, which impairs insulin signaling and promotes hepatic 
glucose production.8,9,35 This process exacerbates IR by further 
increasing blood glucose levels and insulin demand, creating 
a vicious cycle that perpetuates metabolic disturbances.34,35 In 
a meta-analysis, the pooled relative risks of BMI and WC for 
incident diabetes were both 1.87.33 A cross-sectional study re-
ported that increased WC and TG levels were positively asso-
ciated with IR among adolescents.34 An adult study develop-
ing an IR prediction model identified BMI, glucose, TG, and 
HDL-C as major risk factors.10 Furthermore, a cohort study re-
ported that improvements in BP in non-obese patients with 
hypertension might reduce the severity of NAFLD.32

In our study, the models demonstrated powerful predict-
ability for MASLD, with AUCs ranging from 0.85 to 0.95. IR is a 
key factor in the pathogenesis of MASLD; IR is also worse in 
individuals with MASLD9,31 and contributes to MASLD by pro-
moting hepatic fat accumulation through increased de novo 
lipogenesis and impaired lipid oxidation.31,35 This hepatic fat 
accumulation, in turn, exacerbates IR by disrupting insulin sig-
naling and promoting inflammatory pathways.9 A cohort study 
reported that adipose tissue IR is higher in youth with MASLD 
compared to those without.36 Based on this evidence, we pre-
dicted MASLD using the IR prediction model, and the predict-
ability was powerful in external validation. Although investi-
gations on the prediction of MASLD have been performed in 
adults,21,37 to our knowledge, our study is the first to extend the 
utility of an IR prediction model to include MASLD in children. 

An adult study developed an IR model and applied it in the 
assessment of CVD risk.10 Furthermore, a German study de-
veloped a machine learning-based model for metabolic dys-
function-associated steatohepatitis in adults, which demon-
strated an AUC of 0.899.21

This study had several limitations. First, this was a retrospec-
tive study, which inherently limits the ability to establish causal 
relationships and may have been subject to selection bias. Ad-
ditionally, the study population was limited to Korean children 
and adolescents, which may restrict the generalizability of the 
findings to other ethnic groups or populations with different 
demographic and genetic backgrounds. Second, several po-
tential confounding factors, including dietary intake, physical 
activity level, and socioeconomic status, were not considered 
in this study. These factors are known to influence both IR and 
MASLD, and their omission can affect the accuracy and appli-
cability of the prediction models. Third, IR was defined using 
HOMA-IR, a widely used but indirect measure, rather than the 
euglycemic clamp test, which is considered the gold standard 
for assessing insulin sensitivity. Fourth, differences in physical 
measurement devices and diagnostic equipment between the 
two institutions and the KNHANES, despite using standard-
ized definitions for IR and MASLD, may have introduced vari-
ability that could have influenced the results. Fifth, SLD was 
diagnosed using ultrasonography, which is a non-invasive 
and widely accessible imaging technique, but is less sensitive 
and specific than liver biopsy, the gold standard for diagnos-
ing and staging liver disease.

Despite these limitations, this study had some strengths, in-
cluding the development of an IR prediction model and a scor-
ing system specifically for children and adolescents using pop-
ulation-based data. The model was externally validated using 
real-world clinical data to enhance its robustness. Furthermore, 
the model demonstrated reliable predictability of pediatric 
MASLD, a key IR-related complication, and was validated using 
multicenter data, suggesting its potential applicability in diverse 
clinical settings.

In conclusion, we developed machine learning-based mod-
els and a scoring system, the PIRAS, for IR, which demonstrat-
ed good predictability in external validation using real-world 
clinical data. Moreover, the models demonstrated powerful 
predictability for pediatric MASLD. The variables contributing 
to the model were easily accessible even in local clinics, dem-
onstrating its usefulness in real-world clinical settings. These 
findings suggest that the prediction model has the potential to 
provide practical assistance in screening strategies for IR and 
related complications including MASLD in children and ado-
lescents. Additionally, PIRAS addresses a significant gap in 
existing IR markers by incorporating age- and growth-specific 
variables such as BMI SDS and WC SDS, which are critical for 
pediatric populations. As a novel tool, PIRAS has the potential 
to enhance early identification and management of IR and 
MASLD, and future research should explore its utility in longi-
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tudinal studies involving children of diverse racial and ethnic 
backgrounds.
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