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IMPORTANCE Blood-based biomarkers for Alzheimer disease (AD) are clinically available,
but their value is not well understood in syndromes typically associated with frontotemporal
lobar degeneration syndromes (FTLD).

OBJECTIVE To investigate the clinical importance and detectability of AD in FTLD-related
neurodegenerative syndromes using 3 plasma biomarkers, phosphorylated tau 217
(p-tau217), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP).

DESIGN, SETTING, AND PARTICIPANTS This clinicopathological study took place at the University
of California San Francisco Alzheimer Disease Research Center from August 2008 to July 2022.
Autopsied individuals with clinical evaluation and neuropathological examination, diagnosed with
clinical syndromes related to AD (n = 125), frontotemporal lobar degeneration (FTLD; n = 198),
or cognitively unimpaired (CU) at the time of evaluation (n = 16) were included.

EXPOSURES AD-related or FTLD-related clinical syndromes or CU.

MAIN OUTCOMES AND MEASURES P-tau217, NfL, and GFAP were measured with
single-molecule array (SIMOA). AD was defined as intermediate or high AD neuropathological
change (ADNC) at autopsy. Clinical biomarker associations were evaluated using linear
regressions. Imaging analyses used bayesian linear mixed-effects modeling.

RESULTS A total of 349 individuals (191 [55%] male; mean [SD] age at death, 72 [11] years)
were included. AD was common in both AD-related syndromes (110/125 [88%]) and
FTLD-related syndromes (45/198 [23%]). Neuropathological stage at autopsy was higher in
AD-related syndromes (high ADNC: 82/88 [93%] AD vs 13/23 [56%] FTLD), and AD was
frequently considered a copathology in FTLD-related syndromes (30/198 [15%]). Plasma
p-tau217 concentrations were higher in AD-related syndromes (mean [SD], 0.28 [0.16]
pg/mL) than FTLD-related syndromes (mean [SD], 0.10 [0.09] pg/mL) (P < .05). Plasma
p-tau217 concentrations were highest in atypical AD-related syndromes (mean [SD], 0.33
[0.02] pg/mL), followed by typical late-onset amnestic syndromes (mean [SD], 0.27 [0.03]
pg/mL). FTLD-related syndromes with AD (mean [SD], 0.19 [0.02] pg/mL) were higher
compared to without (mean [SD], 0.07 [0.00] pg/mL). Plasma p-tau217 detected AD
neuropathology across syndromes (area under the receiver operating characteristic curve
[AUC], 0.95; 95% CI, 0.93-0.97), with slightly better performance in AD-related syndromes
(AUC, 0.98; 95% CI, 0.95-1.00) compared to FTLD-related syndromes (AUC, 0.89; 95% CI,
0.83-0.94). NfL and GFAP had lower performance for detecting AD (AUC, 0.73; 95% CI,
0.68-0.78 and AUC, 0.75; 95% CI, 0.67-0.80, respectively) and added little to no diagnostic
value either alone or in combinations with p-tau217. The presence of AD in FTLD-related
syndromes was associated with lower Mini-Mental State Examination score (mean [SD],
−2.90 [1.09]; P < .05), worse performance on memory (mean [SD] z score, −0.64 [0.32]),
executive (mean [SD] z score, −0.74 [0.19]), and visuospatial composites (mean [SD] z score,
−0.88 [0.37]) as well as increased rates of posterior cortical atrophy.

CONCLUSION Clinically relevant AD was prevalent across neurodegenerative syndromes
and detectable with plasma p-tau217. Plasma p-tau217 may be a useful tool to investigate
the clinical impact of AD copathology in non-AD neurodegenerative syndromes, including the
effect of disease-modifying therapies.
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T he approval of disease-modifying treatments for
Alzheimer disease (AD) have greatly increased the role
of AD biomarkers in the clinic, and several blood-

based biomarkers have emerged, often with extensive valida-
tion in detecting amyloid plaques and tau tangles in late-
onset amnestic clinical syndromes, the primary intended
context of use.1-7 In addition, as familiarity with blood-based
biomarkers increases, clinical use is expected in neurodegen-
erative syndromes not typically associated with AD, such as
frontotemporal dementia (FTD) spectrum syndromes, which
are typically associated with underlying frontotemporal lo-
bar degeneration (FTLD). The use of AD biomarkers in FTLD-
related syndromes may be appropriate and even critical, as
autopsy studies have shown that AD is frequently present as
a copathology and may occasionally be the primary (driving)
pathology.8,9 However, previous clinicopathological studies
tying AD copathology to clinically relevant symptomatology
in FTLD-related syndromes are limited,8-10 largely because in-
vestigations into these questions require autopsy due to the
lack of confirmatory biomarkers of FTLD.

Three blood-based biomarkers increasingly used in clini-
cal settings are tau phosphorylated at 217 (p-tau217), neuro-
filament light chain (NfL), and glial fibrillary acidic protein
(GFAP).11 Plasma p-tau217 has emerged as a particularly prom-
ising biomarker for AD, demonstrating high specificity and
sensitivity across studies, including those involving gold-
standard autopsy confirmation.1-7 Similarly, plasma NfL con-
centrations have diagnostic value across a range of neurologi-
cal disorders, serving as a nonspecific marker of neuroaxonal
damage,12 whereas GFAP has been identified as a marker of as-
trocytic activation, reflecting neuroinflammatory processes
linked to amyloid pathology.13,14 Recent research has also ex-
plored combinations of these biomarkers to enhance diagnos-
tic accuracy,15,16 and these blood-based biomarkers have the
potential to identify candidates for disease-modifying AD
therapies. However, without consideration of the clinical
context, a positive AD biomarker may lead to misattribution
of all clinical symptoms to AD, even though in many syn-
dromes an alternative neuropathology may be more clini-
cally relevant. This misattribution might lead to misplaced
confidence in how patients respond to treatment, especially
as atypical presentations of AD and FTLD-related syndromes
were not included in amyloid-targeting clinical trials.17 It re-
mains an intriguing possibility that patients with non-AD neu-
ropathology, who also have AD copathology, may benefit from
disease-modifying AD therapies, but this is far from certain,
especially as it is little known to what degree AD copathology
contributes to clinical symptoms.

The University of California, San Francisco (UCSF) Neu-
rodegenerative Disease Brain Bank is poised to address these
questions due to a wide spectrum of neurodegenerative syn-
dromes that have come to autopsy after antemortem clinical
evaluation paired with blood banking, especially those with
syndromes associated with FTLD. Better understanding the
prevalence and role of AD in this cohort, and whether AD is
detectable with blood biomarkers, would permit rapid iden-
tification of the AD in these syndromes, leading to new op-
portunities to parse contributions from various neuropatholo-

gies to clinical presentation.18 Therefore, we investigated
whether plasma biomarkers could identify individuals with AD
on autopsy in 12 clinical neurodegenerative syndromes asso-
ciated with either AD or non-AD neuropathology to better un-
derstand the clinical value of testing for plasma p-tau217, GFAP,
and NfL in these cohorts. The ability of these biomarkers to de-
tect both amyloid and tau neuropathology and the added value
of combining multiple blood biomarkers were evaluated.

Methods
Cohort Selection
This retrospective autopsy study included research partici-
pants evaluated between August 2008 and March 2021 at the
UCSF Alzheimer Disease Research Center. Participants pro-
vided written informed consent at the time of enrollment, and
studies were approved by the institutional review board at
UCSF. This study followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting
guideline. All autopsied participants with clinical evaluation
matched to blood collection were considered for inclusion
(N = 370). Unclassifiable or nonneurodegenerative diagnoses
(eg, psychiatric) were excluded (n = 21), resulting in a final
cohort of 349: cognitively unimpaired (CU; n = 16), mild
cognitive impairment (MCI; n = 19), late-onset amnestic AD
(onset after age 65 years; LOAD; n = 35), early-onset amnestic
AD (onset before age 65 years; EOAD; n = 36), logopenic variant
primary progressive aphasia (lvPPA; n = 16), posterior cortical
atrophy (PCA; n = 19), corticobasal syndrome (CBS; n = 35),
progressive supranuclear palsy–Richardson syndrome (PSP-
RS; n = 40), nonfluent variant PPA (nfvPPA; n = 21), semantic
variant PPA (svPPA; n = 21), behavioral variant frontotemporal
dementia (bvFTD; n = 76), amyotrophic lateral sclerosis (ALS;
n = 5), and dementia with Lewy bodies (DLB; n = 10). For
grouped analyses, AD-related syndromes (n = 125; MCI, LOAD,
EOAD, lvPPA, and PCA) and FTLD-related syndromes (n = 198;
CBS, PSP-RS, nfvPPA, svPPA, bvFTD, and ALS) were combined
reflecting a priori assumptions of a hypothetical treating
clinician.

Key Points
Question What is the clinical value of blood-based biomarkers
(plasma phosphorylated tau217 [p-tau217], glial fibrillary acidic
protein [GFAP], and neurofilament light chain [NfL]) to detect
Alzheimer disease (AD) in clinical syndromes related to
frontotemporal lobar degeneration (FTLD)?

Findings In this cohort study including 349 individuals,
AD neuropathology was common in FTLD-related syndromes and
associated with worse clinical performance and differing patterns
of atrophy. AD was accurately detected with plasma p-tau217,
whereas NfL and GFAP added little value.

Meaning In this study, plasma p-tau217 detected clinically
relevant AD in FTLD-related syndromes, which could support
investigations into the impact of AD-targeted therapies
in non-AD syndromes.
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Clinical Assessment and Autopsy
All participants underwent a comprehensive clinical assess-
ment. Clinical syndrome was diagnosed based on all avail-
able data at the time of clinical evaluation, following estab-
lished diagnostic criteria,19-25 updated to follow contemporary
nomenclature. Clinical disease severity was reported using
the Mini-Mental State Examination (MMSE) and the Clinical
Dementia Rating (CDR) plus the National Alzheimer Coordi-
nating Center (NACC) FTLD (CDR+NACC FTLD).26 Domain-
specific cognitive z scores were determined from a standard-
ized neuropsychological battery (eMethods in Supplement 1).27

Post mortem brain tissue was analyzed between November
2008 and July 2022 by the UCSF Neurodegenerative Disease
Brain Bank (NDBB). Neuropathological diagnosis sought to
identify the primary neuropathological diagnosis (the one
most closely linked to the clinical syndrome), the presence of
contributing diagnoses (plausibly linked, anatomically, to a
reported major symptom), and incidental diagnoses (with-
out a clear link to a major symptom), in the opinion of the
neuropathologist. Assessment of AD Neuropathological
Change (ADNC), FTLD, and LBD followed standard
protocols.28-30 AD was defined as present if intermediate or
high ADNC was present.

Neuroimaging
MRI acquisition and processing details are available in the
eMethods in Supplement 1. Voxel-based time trajectories of
gray matter and white matter atrophy were modeled using
hierarchical empirical bayesian linear mixed-effects
methods.31 Annualized atrophy rates were calculated and
compared between groups after accounting for age and total
intracranial volume.

Plasma Biomarkers
Blood was collected in ethylenediaminetetraacetic acid
(EDTA) tubes, centrifuged, and aliquoted into polypropylene
tubes for −80 °C storage until sent for analyses (zero freeze/
thaw cycles).32 Fasting state was not collected. Plasma
p-tau217 was quantified with single-molecule array (SIMOA)
technology as previously described.27,33 Plasma NfL and
GFAP were quantified using commercially available SIMOA
kits (Neurology 2-Plex B, Quanterix). Assays were performed
by Quanterix in duplicate from the same aliquot in the same
batch, blinded to sample identity. Coefficient of variation
was less than 5% for each assay (eTable 2 in Supplement 1),
which was unrelated to the age of sample. Analyses incorpo-
rated all data.

Statistical Analysis
Clinical characteristics were compared across groups using lin-
ear or logistic regressions incorporating age, sex, and educa-
tion as covariates for clinical severity comparisons or age, sex,
and interval to autopsy (time between collection and au-
topsy) for biomarkers. Diagnostic performance was assessed
using area under the receiver operating characteristic curve
(AUC) using a binarized neuropathological variable as out-
come and plasma biomarker(s) as predictor, covaried for age,
sex, and interval to autopsy. Youden index cutoffs were de-

termined for each biomarker, and diagnostic performance was
assessed across clinical syndromes. For comparisons with
multiple plasma biomarker predictors, AUCs were calculated
for each model and compared via DeLong tests.34 Analyses
were performed in R version 4.2.1 (R Foundation).

Results
Clinical Characteristics
Characteristics of 349 autopsied individuals (191 [55%] male
and 158 [45%] female; mean [SD] age at death, 72 [11] years)
are presented in the Table, including demographic character-
istics, clinical severity, AD neuropathology, and plasma bio-
marker concentrations, displayed by clinical syndrome at time
of evaluation and combined into cohorts representing AD-
related (n = 125) and FTLD-related clinical syndromes (n = 198).
Of note, CU individuals (n = 16), recruited through healthy ag-
ing studies, were older on average at time of assessment and
death than neurodegenerative cohorts, and half had possibly
clinically relevant neuropathology at autopsy that may have
been present at evaluation or developed in the mean (SD) 2.9
(2.8)–year interval. Individuals with AD-related syndromes
were older at time of assessment and death than those with
FTLD-related syndromes, and individuals with FTLD-related
syndromes had a shorter interval to autopsy than those with
AD-related syndromes (mean [SD], 3.8 [2.2] vs 3.1 [2.3] years;
P < .05), consistent with known earlier onset and faster dis-
ease course in FTLD. Sex, education, and race and ethnicity
did not differ between cohorts. MMSE scores were lower in
individuals with AD-related syndromes than in those with
FTLD-related syndromes, but disease severity, measured by
CDR+NACC FTLD global and box scores, did not differ, al-
though neurodegenerative cohorts had higher CDR+NACC
FTLD than CU individuals.

Neuropathological Distribution of AD Primary and
Copathology Across Neurodegenerative Clinical Syndromes
AD was present in 167 of 349 individuals (67%), including
110 of 125 with AD-related syndromes (88%), 45 of 198 with
FTLD-related syndromes (23%), and 7 of 10 with DLB (70%).
Excluding MCI, 92 of 101 AD-related syndromes (91%) had
underlying AD as the primary neuropathological diagnosis
(Figure 1). The prevalence of AD as the primary pathology
was highest in lvPPA (16/16 [100%]), followed by EOAD
(34/36 [94.4%]), LOAD (30/35 [85.7%]), and PCA (16/19
[84.2%]). All AD-related syndromes where the primary
pathology was not AD did have AD present as a copathology,
except for 2 LOAD cases (Pick disease and chronic traumatic
encephalopathy) and 1 EOAD case with FTLD-TDP-A related
to a pathogenic variant in the GRN gene. In FTLD-related
syndromes, the prevalence of AD neuropathology was vari-
able across clinical syndromes: CBS (14/35 [40%]), nfvPPA
(6/21 [29%]), PSP-RS (11/40 [28%]), svPPA (4/21 [19%]),
bvFTD (10/76 [13%]), with no AD copathology observed in
ALS (0/5), and the percentage of cases where AD was consid-
ered primary was lower: CBS (8/35 [23%]), nfvPPA (2/21
[10%]), svPPA (2/21 [10%]), bvFTD (3/76 [5%]), PSP-RS
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(0/40), and ALS (0/5). In FTLD-related syndromes, when AD
was present, it was frequently intermediate ADNC (20/45
[44%]) and more likely to be considered copathology (30/45
[67%]). Full neuropathological characteristics for the cohort
are available in eTable 1 in Supplement 1.

Plasma Biomarker Concentrations Across Clinical Syndromes
Plasma p-tau217 was higher in AD-related syndromes (mean
[SD], 0.28 [0.16] pg/mL) than in FTLD-related syndromes
(mean [SD], 0.10 [0.09] pg/mL; P < .05) (Figure 2A; Table).
Within AD-related syndromes, atypical AD syndromes (EOAD,
lvPPA, and PCA) had the highest p-tau217 concentrations (mean
[SD], 0.33 [0.2] pgm/L), followed by typical LOAD (mean [SD],
0.27 [0.03] pg/mL) (Figure 3A), whereas FTLD-related syn-
dromes with AD had higher p-tau217 concentrations than
FTLD-related syndromes without AD (mean [SD], 0.19 [0.02]
pg/mL vs mean [SD], 0.07 [0.00] pg/mL) (Figure 3A). Regres-
sion analysis measured effect size of increasing age (β, −0.03;
95% CI, −0.13 to 0.12; P = .61), female sex (β, 0.10; 95% CI, 0.03
to 0.19; P < .05), and longer autopsy intervals (β, 0.03; 95% CI,
−0.06 to 0.12; P = .48), and whereas female sex had a small ef-
fect size on p-tau217 (higher concentrations), sensitivity
analyses removing sex did not change overall results. Within
clinical syndromes, p-tau217 was higher in those with AD neu-
ropathology vs no AD neuropathology in both FTLD-related
syndromes and AD-related syndromes (eFigure 1A in Supple-
ment 1).

As expected, NfL was higher in FTLD-related syndromes
(mean [SD], 50 [50] pg /mL) compared to AD-related syn-
dromes (mean [SD], 31 [28] pg /mL) (Figures 2B and 3B; Table),
whereas GFAP was higher in AD-related syndromes (mean [SD],
267 [131] pg /mL vs mean [SD], 201 [155] pg /mL) (Figures 2C
and 3C; Table). For NfL, female sex (β, 0.16; 95% CI, 0.06 to
0.26; P < .05) and longer interval to autopsy (β, −0.24; 95% CI,
−0.35 to −0.14; P < .05) had small effect sizes, but not older
age (β, 0.05; 95% CI, −0.08 to 0.18; P = .44); whereas for GFAP,
both older age (β, 0.21; 95% CI, 0.07 to 0.34; P < .05) and fe-
male sex (β, 0.20; 95% CI, 0.10 to 0.30; P < .05) had small ef-
fect sizes, but not a longer autopsy interval (β, −0.04; 95% CI,
−0.15 to 0.07; P = .45). NfL was also higher in those with AD
neuropathology vs no AD neuropathology within AD-related
clinical syndromes, but not within FTLD-related syndromes
(eFigure 1B in Supplement 1). GFAP was also higher in FTLD-
related syndromes with AD vs without (eFigure 1C in Supple-
ment 1).

Diagnostic Performance of Plasma Biomarkers
to Detect AD Neuropathology
Plasma p-tau217 had excellent diagnostic accuracy in pre-
dicting intermediate or higher ADNC across the entire cohort
(AUC, 0.95; 95% CI, 0.93-0.97), with better diagnostic per-
formance in AD-related syndromes (AUC, 0.98; 95% CI,
0.95-1.00) compared to FTLD-related syndromes (AUC,
0.89; 95% CI, 0.83-0.94) (eFigure 2 in Supplement 1). Across
the entire cohort, plasma p-tau217 was accurate in detecting
AD neuropathology (ie, ADNC), including both amyloid (ie,
Thal phase and Consortium to Establish a Registry of Alzhei-
mer Disease [CERAD] score) and tau (ie, Braak stages), withTa

bl
e.

Co
ho

rt
Ch

ar
ac

te
ris

tic
sa

(c
on

tin
ue

d)

Cl
in

ic
al

sy
nd

ro
m

e

N
o.

(%
)

Al
l

CU

AD
-r

el
at

ed
sy

nd
ro

m
es

FT
LD

-r
el

at
ed

sy
nd

ro
m

es

DL
B

AD
-r

el
at

ed
sy

nd
ro

m
es

FT
LD

-r
el

at
ed

sy
nd

ro
m

es
M

CI
LO

AD
EO

AD
lv

PP
A

PC
A

CB
S

PS
P-

RS
nf

vP
PA

sv
PP

A
bv

FT
D

AL
S

Pl
as

m
a

bi
om

ar
ke

rs

P-
ta

u2
17

,m
ea

n
(S

D)
,

pg
/m

L
0.

28
(0

.1
6)

b
0.

10
(0

.0
9)

b
0.

10
(0

.0
8)

0.
12

(0
.0

7)
0.

27
(0

.1
6)

c
0.

33
(0

.1
5)

c
0.

33
(0

.1
7)

c
0.

32
(0

.1
5)

c
0.

13
(0

.1
1)

0.
10

(0
.0

6)
0.

11
(0

.1
2)

0.
09

(0
.1

2)
0.

08
(0

.0
6)

0.
08

(0
.0

4)
0.

12
(0

.0
7)

N
fL

,m
ea

n
(S

D)
,p

g/
m

L
31

(2
8)

b
50

(5
0)

b
32

(1
4)

32
(1

9)
34

(1
9)

26
(3

0)
39

(5
2)

29
(1

3)
63

(9
3)

c
36

(2
0)

38
(1

6)
41

(2
0)

c
57

(4
5)

c
61

(2
0)

17
(4

)

GF
AP

,m
ea

n
(S

D)
,

pg
/m

L
26

7
(1

31
)b

20
1

(1
55

)b
23

5
(6

7)
20

4
(9

0)
29

2
(1

23
)c

25
9

(1
31

)c
28

5
(1

97
)c

28
6

(9
4)

c
23

5
(1

77
)

20
3

(1
44

)
20

9
(1

00
)

19
0

(1
27

)
18

9
(1

72
)

12
8

(6
3)

21
4

(5
6)

Ab
br

ev
ia

tio
ns

:A
D,

Al
zh

ei
m

er
di

se
as

e;
AD

N
C,

AD
ne

ur
op

at
ho

lo
gi

ca
lc

ha
ng

e;
AL

S,
am

yo
tr

op
hi

cl
at

er
al

sc
le

ro
sis

;
bv

FT
D,

be
ha

vi
or

al
va

ria
nt

fr
on

to
te

m
po

ra
ld

em
en

tia
;C

BS
,c

or
tic

ob
as

al
sy

nd
ro

m
e;

CD
R,

Cl
in

ic
al

D
em

en
tia

Ra
tin

g;
CU

,c
og

ni
tiv

el
y

un
im

pa
ire

d;
D

LB
,d

em
en

tia
w

ith
Le

w
y

bo
di

es
;E

O
AD

,e
ar

ly
-o

ns
et

Al
zh

ei
m

er
di

se
as

e;
FT

LD
,

fr
on

to
te

m
po

ra
llo

ba
rd

eg
en

er
at

io
n;

GF
AP

,g
lia

lf
ib

ril
la

ry
ac

id
ic

pr
ot

ei
n;

LO
AD

,l
at

e-
on

se
tA

lz
he

im
er

di
se

as
e;

lv
PP

A,
lo

go
pe

ni
cv

ar
ia

nt
pr

im
ar

y
pr

og
re

ss
iv

e
ap

ha
sia

;M
CI

,m
ild

co
gn

iti
ve

im
pa

irm
en

t;
M

M
SE

,M
in

i-M
en

ta
lS

ta
te

Ex
am

in
at

io
n;

N
AC

C,
N

at
io

na
lA

lz
he

im
er

’s
Co

or
di

na
tin

g
Ce

nt
er

;N
fL

,n
eu

ro
fil

am
en

tl
ig

ht
ch

ai
n;

nf
vP

PA
,n

on
flu

en
t

va
ria

nt
pr

im
ar

y
pr

og
re

ss
iv

e
ap

ha
sia

;P
CA

,p
os

te
rio

rc
or

tic
al

at
ro

ph
y;

PS
P-

RS
,p

ro
gr

es
siv

e
su

pr
an

uc
le

ar
pa

lsy
–R

ic
ha

rd
so

n
sy

nd
ro

m
e;

p-
ta

u2
17

,p
ho

sp
ho

ry
la

te
d

ta
u

21
7;

sv
PP

A,
se

m
an

tic
va

ria
nt

pr
im

ar
y

pr
og

re
ss

iv
e

ap
ha

sia
.

a
St

at
ist

ic
al

co
m

pa
ris

on
su

se
d

re
gr

es
sio

n
w

ith
ag

e,
se

x,
an

d
ed

uc
at

io
n

as
co

va
ria

te
sf

or
cl

in
ic

al
se

ve
rit

y
co

m
pa

ris
on

sa
nd

ag
e,

se
x,

an
d

in
te

rv
al

to
au

to
ps

y
as

co
va

ria
te

sf
or

bi
om

ar
ke

rc
om

pa
ris

on
s,

co
m

pa
rin

g
be

tw
ee

n

AD
-r

el
at

ed
an

d
FT

LD
-r

el
at

ed
sy

nd
ro

m
es

(P
<

.0
5)

or
co

m
pa

rin
g

ea
ch

cl
in

ic
al

sy
m

pt
om

to
CU

(P
<

.0
5)

.F
or

ca
lc

ul
at

io
n

of
m

ea
ns

,A
D

N
C

w
as

co
de

d
as

0
=

no
t,

1=
lo

w
,2

=
in

te
rm

ed
ia

te
,3

=
hi

gh
.

b
P

<
.0

5.
c

P
<

.0
5.

d
Ra

ce
an

d
et

hn
ic

ity
da

ta
w

er
e

se
lf-

re
po

rt
ed

by
st

ud
y

pa
rt

ic
ip

an
ts

.A
tt

he
U

ni
ve

rs
ity

of
Ca

lif
or

ni
a,

Sa
n

Fr
an

ci
sc

o,
ra

ce
,e

th
ni

cg
ro

up
,a

nd
et

hn
ic

ity
da

ta
ar

e
co

lle
ct

ed
fr

om
pa

tie
nt

su
sin

g
th

e
W

e
As

k
Be

ca
us

e
W

e
Ca

re
fo

rm
.

Re
po

rt
in

g
ra

ce
an

d
et

hn
ic

ity
in

th
is

st
ud

y
w

as
m

an
da

te
d

by
th

e
N

at
io

na
lI

ns
tit

ut
es

of
H

ea
lth

,c
on

sis
te

nt
w

ith
th

e
in

cl
us

io
n

of
w

om
en

,m
in

or
iti

es
,a

nd
ch

ild
re

n
po

lic
y.

Ra
ce

an
d

et
hn

ic
ity

w
er

e
co

lle
ct

ed
to

as
se

ss
eq

ui
ty

in
pa

rt
ic

ip
at

io
n

an
d

ge
ne

ra
liz

ab
ili

ty
of

re
su

lts
.

Research Original Investigation Alzheimer Neuropathology in Clinical Syndromes With Blood-Based Biomarkers

348 JAMA Neurology April 2025 Volume 82, Number 4 (Reprinted) jamaneurology.com

Downloaded from jamanetwork.com by Medical Library Yonsei University user on 08/14/2025

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017


the best diagnostic performance being detection of high
ADNC, Thal phase greater than 3, Braak stage greater than 4,
and frequent CERAD neuritic plaques (eFigures 2 and 3 in
Supplement 1). Youden index identified an optimum plasma
p-tau217 cutoff for detecting AD across the entire cohort:
0.125 pg/mL. Diagnostic performance to detect AD (primary
or copathology) was calculated for each biomarker in each
clinical syndrome (eFigure 4 and eTable 3 in Supplement 1),
with diagnostic performance generally lower for FTLD-
related syndromes (although this should be cautiously inter-
preted, given low prevalence in certain syndromes).

In contrast, NfL and GFAP had worse diagnostic perfor-
mance compared to p-tau217 in the entire cohort (NfL AUC,
0.73; 95% CI, 0.68-0.78; GFAP AUC, 0.75; 95% CI, 0.67-0.80),
with slightly better performance in AD-related syndromes
than in FTLD-related syndromes (eFigure 2 in Supplement 1).
Detection was equally poor for both amyloid and tau, but
better detection of high ADNC and Braak stages was observed
within AD-related syndromes where lower NfL values were
predictive of AD as higher NfL values were identifying FTLD
mimics. Generally, NfL was elevated in lower stages of AD
neuropathology, reflecting the higher likelihood of FTLD
in this cohort (eFigure 5 in Supplement 1). GFAP concentra-

tions were elevated in higher levels of amyloid neuropathol-
ogy (CERAD frequent, Thal phase 4 or higher), but the fold-
change over higher ADNC and Braak stages was modest
compared to p-tau217 (eFigure 6 in Supplement 1).

Plasma Biomarker Combinations
to Detect AD Neuropathology
To investigate the value of combining plasma biomarkers to
detect AD neuropathology, we analyzed diagnostic perfor-
mance across the entire cohort for each plasma biomarker
alone and in combination (eFigure 7 in Supplement 1). All analy-
ses included age, sex, and interval to autopsy as covariates;
sensitivity analyses performed excluding these covariates
did not differ. As above, plasma p-tau217 alone (AUC, 0.95)
demonstrated significantly higher AUC values compared
to the plasma NfL (AUC, 0.73) or GFAP (AUC, 0.75) alone, or
NfL+GFAP in combination (AUC, 0.86) when p-tau217 was
not included. Across all combinations, the highest numerical
AUC values were observed with the combination of
p-tau217+NfL (AUC, 0.96), which did not differ from
p-tau217+NfL+GFAP (AUC, 0.96), but these combinations were
not statistically different from plasma p-tau217 alone (eTable 4
in Supplement 1).

Figure 1. Neuropathological Distribution of Alzheimer Disease (AD) Primary and Copathology Across Neurodegenerative Clinical Syndromes
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Primary neuropathology was defined by an expert neuropathologist.
AD copathology was defined as present if intermediate or high AD
neuropathological changes were present. For corticobasal syndrome (CBS),
other pathology included 1 case of Huntington disease; for behavioral variant
frontotemporal dementia (bvFTD), other pathology comprised 8 cases of rarer
pathologies, including frontotemporal lobar degeneration (FTLD) fused in
sarcoma (n = 4), FTLD with ubiquitinated inclusions (n = 2), FTLD with no
inclusions (n = 1), and cerebral amyloid angiopathy (n = 1). Numbers in bars

indicate case counts. ALS indicates amyotrophic lateral sclerosis;
DLB, dementia with Lewy bodies; EOAD, early-onset Alzheimer disease;
LBD, Lewy body dementia; LOAD, late-onset Alzheimer disease;
lvPPA, logopenic variant primary progressive aphasia; MCI, mild cognitive
impairment; nfvPPA, nonfluent variant primary progressive aphasia;
PCA, posterior cortical atrophy; PSP-RS, progressive supranuclear
palsy–Richardson syndrome; svPPA, semantic variant primary progressive
aphasia; TDP, transactive response DNA-binding protein.

Alzheimer Neuropathology in Clinical Syndromes With Blood-Based Biomarkers Original Investigation Research

jamaneurology.com (Reprinted) JAMA Neurology April 2025 Volume 82, Number 4 349

Downloaded from jamanetwork.com by Medical Library Yonsei University user on 08/14/2025

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.5017?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017
http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.5017


Clinical Relevance of AD Neuropathology
in FTLD-Related Clinical Syndromes
As the clinical importance of AD in FTLD-related clinical syn-
dromes is poorly understood, linear regressions were used to
determine the effect of AD on neuropsychological testing,
controlling for age, sex, and education (eTable 5 in Supple-
ment 1). Within FTLD-related syndromes, the presence of AD
was associated with lower MMSE (mean [SD], −2.90 [1.09])
and worse performance on memory (mean [SD] z score, −0.64

[0.32]), executive (mean [SD] z score, −0.74 [0.19]), and visuo-
spatial domains (mean [SD] z score, −0.88 [0.37]) but not lan-
guage (mean [SD] z score, −0.26 [0.46]). Finally, rates of
atrophy on MRI were compared within FTLD-related clinical
syndromes, stratified by the presence or absence of AD. FTLD
cases with AD copathology showed higher rates of posterior
atrophy, whereas pure FTLD syndromes showed higher rates
of atrophy in regions typical for FTLD, such as the right
anterior temporal lobe (Figure 4).

Figure 2. Plasma Biomarker Concentrations Across Neurodegenerative Clinical Syndromes
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variant primary progressive aphasia; PCA, posterior cortical atrophy;
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aDifferent from each other (P < .05).
bDifferent from CU (P < .05).
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Discussion

In this cohort study, AD was common and most accurately de-
tected by p-tau217 alone across a diverse spectrum of neuro-
degenerative syndromes, not only in clinical syndromes com-

monly associated with AD, but also in clinical syndromes
typically associated with FTLD neuropathology. The rela-
tively high prevalence of clinically relevant AD copathology
highlights that relying solely on AD biomarkers to determine
the likely cause of dementia may result in misdiagnosis or mi-
sattribution errors if clinical features are not part of diagnos-

Figure 4. Alzheimer Disease (AD) Copathology in Frontotemporal Lobar Degeneration (FTLD)–Related
Syndromes and Increased Rates of Posterior Cortical Atrophy
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Figure 3. Plasma Biomarker Concentrations Comparing Atypical Alzheimer Disease (AD), Typical Late-Onset AD,
and Frontotemporal Lobar Degeneration (FTLD)–Related Syndromes With and Without AD Neuropathology
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tic algorithms, especially in neurodegenerative syndromes
where other neuropathologies are more frequently caus-
ative. However, the relatively accurate detection of AD across
clinical syndromes provides an opportunity to understand the
clinical relevance of AD neuropathology in these patients, in-
cluding whether they would potentially benefit from disease-
modifying therapeutics that have evidence of efficacy in typi-
cal amnestic AD presentations. Therefore, our findings support
the use of AD biomarker testing for any patient presenting
with cognitive and behavioral concerns, but clinical features
must be factored into interpretation of results and treatment
decisions. Intriguingly, female sex also had a small positive
effect size on all biomarkers, in line with our previous find-
ings in CU cohorts.27

Similar to previous studies,1-7 including our own, we
found excellent diagnostic detection of primary AD neuropa-
thology using p-tau217, even when the clinical phenotype
was not AD related. However, the diagnostic accuracy of
p-tau217 did vary slightly by clinical syndrome, likely driven
by the proportion of cases with intermediate ADNC (often
copathology), where p-tau217 concentrations are less
elevated and diagnostic performance is lower, highlighting
that p-tau217 may be best used in symptomatic patients with
higher or detectable levels of neuropathology. Intriguingly,
not only was AD detectable by p-tau217 in FTLD-related syn-
dromes, but the presence of AD was associated with worse
cognitive performance and different patterns of atrophy,
suggesting clinically relevance. Herein, we also replicated
prior studies of the differential diagnostic value of plasma
p-tau217 for AD, including our own work using the Lilly
assay on the MSD platform,1 with a clinically available
p-tau217 assay on the SIMOA platform.1,33 The p-tau217
immunoassay used in this study has shown comparable per-
formance to other immunoassays in head-to-head studies
detecting amyloid measured by positron emission
tomography.35 Future studies with simultaneous biomarker
measurement of all neuropathologies (eg, Lewy bodies and
transactive response DNA-binding protein 43) would further
clarify the relative contribution of each neuropathology to
clinical features, although this is not currently possible out-
side of autopsy studies due to a lack of validated biomarkers
for non-AD neuropathologies.

This large autopsy cohort with diverse neuropathologic
etiologies permitted evaluation of the relative diagnostic
performance to detect AD across the spectrum of AD stages,
including cases with little to no AD neuropathology. Similar
to numerous prior studies,3-6 this allowed us to demonstrate
that plasma p-tau217 accurately detected both amyloid
plaques and tau neurofibrillary tangles, even when other
neuropathology was present. We also found increasing accu-
racy at higher levels of neuropathology, with the best detec-
tion occurring at neuropathological stages associated with
symptomatic disease. These findings support the clinical use
of plasma p-tau217 in patients with cognitive or behavioral
symptoms to diagnose clinically relevant AD, including both
amyloid and tau.

Similar to previous studies,36,37 plasma NfL showed com-
paratively lower diagnostic performance to detect AD in the

overall cohort and in diagnostic clinical subgroups. However,
NfL had lower concentrations in AD-related syndromes
compared to FTLD-related syndromes, which may have
diagnostic value, and we cannot exclude that NfL may have
diagnostic utility, perhaps in combination with p-tau217
when FTLD is also on the differential, as in corticobasal syn-
drome. GFAP has been associated with amyloid neuropathol-
ogy and suggested to have a role in early AD detection38,39;
we found GFAP concentrations were higher in AD-related
syndromes, but overall had poor diagnostic performance
due to a comparatively small percentage increase. However,
we acknowledge that this study cannot fully examine this
context of use, as it lacks large numbers of asymptomatic
and mild stages along the AD continuum (without other
copathologies).

Limitations
An important limitation of this study is shared with all clini-
copathological comparisons, namely that individuals’ ante-
mortem clinical features and plasma concentrations were
compared to autopsy findings with variable intervals, some-
times spanning many years, between assessments. Our
analyses controlled for interval to autopsy, but it is not
possible to know whether the neuropathology on which
autopsy diagnoses are based was present at the time of
assessment or developed afterwards. Nonetheless, neuropa-
thology remains the gold standard for biomarker validation,
as it avoids errors introduced when biomarkers are validated
against other, sometimes imperfect, biomarkers, especially
when all neuropathologies present are relevant. An addi-
tional limitation is that the cohort was drawn from observa-
tional research, which introduces referral bias, especially as
our center specializes in atypical AD- and FTLD-associated
neurodegeneration. A further limitation is the lack of racial
and ethnic diversity in this cohort, and although we expect
the basic biology to be shared across groups, conflicting
results on the impact of race on plasma biomarkers suggests
we must replicate these results in a real-world clinical set-
ting with clinic-grade assays in a diverse population.40-42

Conclusions
In conclusion, AD neuropathology was common across many
neurodegenerative presentations, both as primary and copa-
thology. Plasma p-tau217 demonstrated high diagnostic accu-
racy to identify the presence of clinically relevant AD across a
diverse spectrum of symptomatic patients, encompassing
not only AD-related syndromes but also FTLD-related syn-
dromes. In contrast, GFAP and NfL showed comparatively
little diagnostic value to detect AD in this symptomatic co-
hort. These findings suggest that plasma p-tau217 may be a
useful clinical tool for detection of AD neuropathology even
in neurodegenerative syndromes not commonly associated
with AD, potentially enabling evaluation of the effects of
disease-modifying treatments as interventions to reduce
AD copathology in the setting of other neurodegenerative
diseases.
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