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ARTICLE INFO ABSTRACT
Keywords: Background: Nursing data can help detect patient deterioration early and predict patient outcomes. Moreover,
Artificial intelligence rapid advancements in machine learning have highlighted the need for clinical prognosis prediction models for

Intensive care units
Machine learning
Nursing records

intensive care unit patients. Although prediction models that incorporate nursing data generated during the care
of critically ill patients are increasing, a comprehensive understanding of the specific types of nursing data
Prediction models utilized and these models to predict health outcomes has not yet been achieved.

Prognosis Objective: This scoping review aimed to identify the current state of research on machine learning-based models
Scoping review that utilize nursing data to predict health outcomes of intensive care unit patients, focusing on the types of
nursing data in these models.

Methods: This scoping review was conducted with a systematic literature search until December 2023 across
seven databases. Literature that utilized machine learning using nursing data to predict the prognosis of adult
patients hospitalized in the intensive care unit was included. Data were organized into the study, model-related,
and nursing data characteristics.

Resuits: A total of 151 studies were included, which were published between 2004 and 2023, with an upward
trend since 2018. More than half of the studies developed prediction models using open access data, with Medical
Information Mart for Intensive Care data being the most frequently used. Most studies employed supervised
learning, followed by deep learning and neural networks, while other methods were rarely used. Among su-
pervised learning techniques, regression was the most commonly used, followed by boosting and random forests.
Nursing-sensitive outcomes (13.0 %) were chosen less frequently than clinical ones (87.0 %) in prediction
models. In this review, nursing data were classified into nursing scales (n = 150), nursing assessment records (n
= 83), nursing activity records (n = 13), and nursing notes (n = 23), with nursing scales being the most frequent.
Nursing scales and notes exhibited an increasing trend recently.

Conclusions: This scoping review identified the various utilization of nursing data in models to predict the
prognoses of critically ill patients. Overall, nursing scales, structured data that objectively show specific health
conditions of patients, were the most utilized. As other types of nursing data also have the potential to predict
patients' clinical prognoses, future research should explore the development of prediction models incorporating
various nursing data. These findings may contribute to providing insights into the use of nursing data and could
aid healthcare providers and researchers aiming to develop prediction models related to clinical prognoses in the
intensive care unit setting.

Social media abstract: This scoping review identified the various utilization of nursing data in models to predict
the prognoses of critically ill patients.

* Corresponding author at: College of Nursing, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
E-mail address: monachoi@yuhs.ac (M. Choi).

https://doi.org/10.1016/j.ijnurstu.2025.105133
Received 27 May 2024; Received in revised form 17 May 2025; Accepted 2 June 2025

Available online 7 June 2025
0020-7489/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:monachoi@yuhs.ac
www.sciencedirect.com/science/journal/00207489
https://www.elsevier.com/locate/ns
https://doi.org/10.1016/j.ijnurstu.2025.105133
https://doi.org/10.1016/j.ijnurstu.2025.105133
https://doi.org/10.1016/j.ijnurstu.2025.105133
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnurstu.2025.105133&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Y. Kim et al.
What is already known

e The importance of nursing data, which represent nursing activities
conducted while providing bedside care, is increasingly emphasized.

e Recently, nursing data that reflect the clinical concerns of nurses has
been used in models for the early prediction of the prognosis of
intensive care unit patients.

e There is a lack of comprehensive understanding regarding the types
of nursing data used in prediction models to forecast the health
outcomes of critically ill patients.

What this paper adds

o This scoping review classified nursing data used in prediction models
for critically ill patients into four types: nursing scales, nursing
assessment records, nursing activity records, and nursing notes.
Nursing scales, which were structured data, were prominently used
in prediction models, while nursing activity records and notes were
comparatively less utilized.

Our findings can contribute to providing insights into the various
uses of nursing data in models related to prognosis in the intensive
care unit setting, which can be beneficial to healthcare providers and
researchers aiming to use nursing data effectively.

1. Introduction

Considering the widespread progress and development of electronic
health records, electronic nursing records are generated in substantial
quantities by nursing professionals across diverse healthcare systems
(Shafiee et al., 2022). Nurses are required to produce extensive records,
documenting all nursing activities performed while caring for patients
(Khan et al., 2022; Shafiee et al., 2022). Nursing data comprise struc-
tured and unstructured formats. Structured nursing data include nu-
merical values (Collins et al., 2018), checkbox-formatted information (Li
et al.,, 2022), and coded data using standardized terminologies and
classifications (Fennelly et al., 2021), such as the North American
Nursing Diagnosis Association-I and the International Classification for
Nursing Practice, to encode nursing care in electronic health records
systematically. Unstructured nursing data, on the contrary, are docu-
mented as free text or narratives (Huang et al., 2024). The scope of
nursing data covers a broad range, from non-numeric data related to
biomedical and healthcare entities in nursing research to comprehensive
data in nursing practice, including direct patient care and specific
nursing diagnoses, such as anxiety and pain (Kim et al., 2017; Lee et al.,
2020). Nursing data can be used to facilitate knowledge sharing among
healthcare providers, enhance nursing workflows, and develop predic-
tive models for health for patient health outcomes and decision-support
systems that contribute to the delivery of optimal treatment and
improvement in the quality of care (Gleason et al., 2024; Harrison et al.,
2024; Huang et al., 2024; Rossetti et al., 2021; Saranto et al., 2022).

Nursing data in electronic health records can aid the early detection
of patient deterioration and the prediction of patient outcomes. With
their unique position and expertise, nurses can recognize patients at-risk
for deterioration based on behavioral and physiological indicators
(Odell et al., 2009). Moreover, nurses can increase the frequency of
nursing data documentation, such as measurements of vital signs,
medication withheld, and unstructured free-text comments according to
their clinical concerns (Collins et al., 2013; Kang et al., 2020; Rossetti
et al., 2021). Previous studies have indicated that the data generated
based on nurses' situational awareness and clinical judgment can be
interpreted along with clinical context related to patient outcomes
(Kang et al., 2020; Odell et al., 2009; Rossetti et al., 2021). Therefore,
nursing data can be used to help predict the occurrence of adverse health
outcomes.

With advancements in technology, the introduction of machine
learning has enabled the efficient analysis of large volumes of data.
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Machine learning, a subset of artificial intelligence, is a data-driven
approach that develops algorithms capable of making decisions based
on learned data (O’Connor et al., 2023). It can be categorized into
several types, including supervised learning, unsupervised learning,
deep learning and neural networks, reinforcement learning, and natural
language processing (Woodman and Mangoni, 2023). Supervised
learning uses labeled datasets to predict outcomes, while unsupervised
learning applies clustering techniques to identify patterns and trends in
unlabeled data. Deep learning and neural networks involve building
complex models using multilayered neural architectures to analyze
various types of data, such as images, videos, and audio. Reinforcement
learning enables decision-making through interactions with the envi-
ronment, where feedback is received in the form of rewards based on
specific actions. Natural language processing facilitates multiple levels
of analysis, including preprocessing and semantic extraction from un-
structured text data. Recently, the development of predictive models
using machine learning techniques applied to electronic health records
has been extensively explored (Atallah et al., 2023; Kang et al., 2022).

In intensive care units, predicting patient outcomes is considered
crucial due to the potential for rapid deterioration caused by the
complexity of underlying diseases and the severity of patients' clinical
conditions (Roodenburg et al., 2014). Enriched intensive care unit pa-
tient data generated from monitoring devices or through continuous
bedside care by healthcare professionals have been employed to develop
prediction models for patient health outcomes, including cardiac arrest,
readmission, and mortality (Chen et al., 2023; Kim et al., 2023; Romero-
Brufau et al., 2021; Rossetti et al., 2021; Schultz et al., 2021; Son et al.,
2021). These models could assist decision-making to prevent adverse
clinical outcomes among intensive care unit patients and promote the
implementation of effective treatments.

Among the various types of data collected in intensive care units,
nursing data have been particularly used in the development of pre-
dictive models aimed at the early detection of adverse outcomes. Pre-
vious studies have revealed the notable finding that nursing data
reflecting clinical nurses' concerns can predict deteriorating health
outcomes before the decline of physiological measures, such as vital
signs (Kang et al., 2020; Odell et al., 2009). Furthermore, predictive
models developed by integrating nursing data demonstrated higher
performance in predicting health outcomes than those using only
physiological measures (Romero-Brufau et al., 2021; Rossetti et al.,
2021). Studies on machine learning-based predictive models have
employed several types of nursing data, such as nursing assessments and
notes, and utilized direct and indirect measures to predict clinical out-
comes, including pressure injury, sepsis, delirium, and mortality, for
critically ill patients (K. Huang et al., 2021; Romero-Brufau et al., 2021;
Rossetti et al., 2021; Song et al., 2021). However, a comprehensive
understanding of the specific types of nursing data used and machine
learning-based models to predict health outcomes for critically ill pa-
tients has not yet been achieved.

Previous reviews of predictive models for intensive care unit patients
have found that machine learning technologies have been used to pre-
dict adverse outcomes, such as intensive care unit-acquired weakness
(W. Zhang et al., 2021), delirium (Ruppert et al., 2020), sepsis (Moor
et al., 2021), intensive care unit readmission (Ruppert et al., 2023), and
mortality (Keuning et al., 2020). However, whether nursing data have
been incorporated into the prediction models remains unclear. Although
previous reviews have examined the role, real-world applications, and
implementation stages of artificial intelligence in nursing care (Ng et al.,
2022; O’Connor et al., 2023; von Gerich et al., 2022), these reviews did
not explicitly address nursing data generated from electronic health
records and patient outcomes related to nursing data in artificial
intelligence-based predictive models. Further reviews using a well-
classified perspective of the types and scope of nursing data used in
predictive models are required.

Therefore, this scoping review aimed to identify the current state of
research on machine learning-based models that use nursing data to
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predict the health outcomes of intensive care unit patients, focusing on
the types of nursing data employed in these models. In clinical settings,
nurses who closely observe and intervene near the intensive care unit
patient can contribute to producing evidence by documenting the pa-
tient's condition based on clinical concerns, which helps predict clinical
deterioration. This review could assist researchers in developing state-
of-the-art prediction models for health outcomes using nursing data in
an intensive care unit setting and provide direction for future research in
this area.

2. Methods
2.1. Study design

Considering the diversity of predictive models for clinical outcomes
in intensive care unit patients, a scoping review was conducted to
address research questions and expand understanding of predictive
models using nursing data. This scoping review was performed in
accordance with the guidelines of Arksey and O'Malley (2005) and the
JBI Methodology for Scoping Reviews (Peters et al., 2020; Pollock et al.,
2023). This scoping review is reported using the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses for Scoping Review
(PRISMA-ScR) (Tricco et al., 2018). Based on the research purpose of
this review, the following design was used: 1) population, adult patients
in intensive care units; 2) concept, clinical prognosis prediction models
based on machine learning; and 3) context, using nursing data in elec-
tronic health records. The scoping review protocol was registered on the
Open Science Framework Registries (https://doi.org/10.17605/0SF.
10/CN3Q5).

2.2. Search strategy

A literature search was conducted using seven electronic databases
(PubMed, Embase, CINAHL, Cochrane Library, Scopus, Web of Science,
and IEEE Xplore). The search strategy was developed by combining free
text and Medical Subject Headings terms of each database according to
the population, concept, and context of this review. An experienced
librarian at the researcher's university reviewed the search strategy
comprehensively. The total search strategy is shown in Supplementary
material Table 1. The initial search was conducted in July 2022, and a
further search was conducted to discover additional articles published
through December 2023.

2.3. Selection criteria

The following inclusion criteria were used to assess the eligibility of
articles: 1) studies that included adult patients admitted to the intensive
care unit; 2) studies that predict clinical prognosis, including clinical
outcomes and nursing-sensitive outcomes in intensive care unit patients;
3) studies that used machine learning in models to predict clinical
prognosis; and 4) studies in which nursing data from electronic health
records were used as predictors in models. Nursing data referred to data
that either reflected nurses' efforts or were generated by nurses. In
contrast, studies were excluded if they met the following exclusion
criteria: 1) studies that included patients in both the intensive care unit
and other settings, such as the general ward, emergency department,
and operating room; 2) studies that included neonate, child, and
adolescent patients; 3) studies in which the study design was an inter-
vention study or mixed-methods study using a predictive model; 4)
studies that were not original, such as review, editorial, letter, or pro-
tocol; 5) studies that were not peer-reviewed, such as abstract, confer-
ence proceeding, preprint, dissertation, or thesis; and 6) studies not
written in English or Korean.
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2.4. Study selection

After one researcher (YK) searched the literature, the search results
were exported to the reference management software program EndNote
X9 (Clarivate Analytics). Duplicate literature was removed, and the
remaining literature was extracted using Excel (Microsoft). Two re-
searchers (YK and MK) independently selected the literature according
to inclusion and exclusion criteria using Abstrackr, a website that helps
with screening (http://abstrackr.cebm.brown.edu/account/login).

A total of 12,515 relevant articles were retrieved from seven elec-
tronic databases. After removing duplicates, 6965 articles were screened
by two researchers (YK and MK) based on their titles and abstracts.
Following this, 1166 full-text articles were assessed for eligibility by the
same two researchers. Of these, 1015 were excluded based on the
eligible criteria, resulting in 151 articles being included in the review
(Fig. 1). In cases of disagreement, consensus was reached through dis-
cussion and the participation of a third researcher (MC).

2.5. Data extraction and analysis

Two researchers (YK and MK) extracted the data independently from
selected literature using Excel (Microsoft). The collected data were
organized into the study, model-related, and nursing data characteristics
according to the Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modelling Studies checklist (Moons et al., 2014).
Study characteristics comprised first author, published year, country,
and intensive care unit type.

Model-related characteristics comprised the datasets for develop-
ment, sample size for development, type of model validation, type of
internal validation, datasets for external validation, sample size for
external validation, modeling methods, calibration for model perfor-
mance, types of outcomes for model, location, and period of outcomes.
Regarding modeling methods, the category of machine-learning models
was restructured and analyzed based on a prior review of machine-
learning algorithms (Woodman and Mangoni, 2023). The modeling
methods were categorized as follows: supervised learning (i.e., regres-
sion, decision trees, random forests, boosting, support vector machines,
k-nearest neighbors, Bayes' theorem-based models, and others), unsu-
pervised learning, deep learning and neural networks, reinforcement
learning, and natural language processing.

The characteristics of nursing data included the types of nursing data
used as model predictors. A comprehensive literature review and
extensive discussions within our research team were conducted to
classify nursing data. Specifically, the framework for the categorization
was developed by reviewing studies that reported how various types of
nursing data—such as nursing scales, assessments, and activi-
ties—influence patient clinical outcomes (Gasperini et al., 2021; Lee
etal., 2024; Song et al., 2021). Subsequently, discussions were held with
research team members with clinical experience in intensive care units.
These discussions resulted in the final systematic categorization of
nursing data into four distinct domains, reflecting the diverse and
multifaceted nature of nursing documentation. The first domain, nursing
scales, is data measured using standardized and objective tools, which
nurses document to evaluate specific patient outcomes or conditions.
The second domain, nursing assessment records, includes data nurses
collect through assessments of patients' symptoms, signs, or observa-
tions of their overall condition. The third domain, nursing activity re-
cords, refers to the documentation of interventions performed by nurses
in patient care, encompassing both routine practices and as needed.
Finally, nursing notes represent narrative documentation authored by
nurses, providing detailed and contextual insights into patient care. The
results organized by each characteristic were summarized by frequency
and percentage using descriptive statistics. The results of this study are
displayed through tables, figures, and charts.
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Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram of the literature selection.
3. Results Marafino et al., 2015, 2018; Mathis et al., 2022; Mbous et al., 2023;

This review included 151 articles through the screening process
(Fig. 1) (Alanazi et al., 2023; Alderden et al., 2018; Allen et al., 2020;
Apichartvongvanich et al., 2023; Asgari et al., 2022; Bansal et al., 2021;
Bao et al., 2023; Barbieri et al., 2020; Bardak and Tan, 2021; Bender
et al., 2022; Bolton et al., 2022; Bouvarel et al., 2023; Caicedo-Torres
and Gutierrez, 2019, 2022; Carvalho et al., 2023; Cavalli et al., 2023;
Chen et al., 2020, 2022; Cheng et al., 2022; Chiu et al., 2023, 2022a,
2022b; Cho and Chung, 2011; Choi et al., 2022; Cox et al., 2020; Cramer
et al., 2019; da Silva et al., 2021; Danilatou et al., 2022; de Hond et al.,
2023; De Silva et al., 2021; Deasy et al., 2020; Delahanty et al., 2018;
Deng et al., 2023; Desautels et al., 2016, 2017; Ding et al., 2022, 2018;
Eickelberg et al., 2020; Fabregat et al., 2021; Fika et al., 2018; Fitzgerald
et al., 2023; Fleuren et al., 2021a, 2021b; Fonseca et al., 2023; Fu et al.,
2021; Gao et al., 2023, 2020, 2021; Ge et al., 2022; Giang et al., 2021;
Gong et al., 2023; Gu et al., 2022; Harerimana et al., 2022; Harutyunyan
et al., 2019; Henry et al., 2015; Hirosako et al., 2017; H.W. Huang et al.,
2021; K. Huang et al., 2021; Huddar et al., 2016; Hur et al., 2021a,
2021b; Hyun et al., 2019; Jiang et al., 2019; Kaewprag et al., 2017; Kang
et al.,, 2021; H.B. Kim et al., 2022; M.K. Kim et al., 2022; King et al.,
2023; Kurtz et al., 2022; Ladios-Martin et al., 2020; Le et al., 2021, 2020;
Lee, 2017; Lee et al., 2015, 2018, 2022; Liao and Voldman, 2023; Lin
et al., 2019, 2006; C.F. Liu et al., 2022; Liu et al., 2021; M. Liu et al.,
2023; P. Liu et al., 2023; Liu et al., 2019; S. Liu et al., 2022; S. Liu et al.,
2023; Z. Liu et al., 2022; Ma et al., 2019; Mahbub et al., 2022; Mahendra
et al,, 2021; Maheshwari et al., 2020; Majhi and Kashyap, 2023;

McWilliams et al., 2019; Meyfroidt et al., 2011; Mirzakhani et al., 2022;
Miu et al., 2014; Moon et al., 2018; Mugisha and Paik, 2022; Nemati
et al., 2018; Nielsen et al., 2019; Nimgaonkar et al., 2004; Park and Kim,
2015; Park et al., 2021; Peres et al., 2022; Persson et al., 2021; Pieroni
et al., 2022; Pourahmad et al., 2019; Raffa et al., 2022; Roimi et al.,
2020; Rojas et al., 2018; Roy et al., 2021; Ryan et al., 2023; Safaei et al.,
2022; Sarton et al., 2021; Schefzik et al., 2023; Shickel et al., 2022; Smit
et al., 2022; Sottile et al., 2018; Srivastava and Rajan, 2023; Su et al.,
2021; Sundas et al., 2023; Sung et al., 2021; Tan et al., 2023; Tang et al.,
2020; Thorsen-Meyer et al., 2020, 2022; Tsiklidis et al., 2022; Tu et al.,
2023; Verma et al., 2020; Wang et al., 2023; Waudby-Smith et al., 2018;
Wei et al., 2019; Weissman et al., 2018; Wu et al., 2023; J. Xu et al.,
2022; W. Xu et al., 2022; Yang et al., 2021; Yeh et al., 2020; Yu et al.,
2020; Yuan et al., 2020; Zeng et al., 2023; Zha et al., 2022; Zhang et al.,
2020, 2022, 2023; Zhou et al., 2023; Zou et al., 2023). The results sec-
tion was organized based on 1) the characteristics of the sources of ev-
idence and 2) the results of individual sources of evidence and their
synthesis.

3.1. Characteristics of sources of evidence

3.1.1. Study characteristics

The included articles were published between 2004 and 2023
(Supplementary material Fig. 1). Since 2018, these publications have
shown an upward trend, accounting for 90.1 % of the included articles.
Among the included studies, 13.9 % involved nursing researchers, with
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1 to 6 nurses participating, and 9.9 % were nurse-led studies. Most
studies originated from Asia (43.0 %) and North America (34.4 %),
followed by Europe (17.2 %), Oceania (3.3 %), and South America (2.0
%). Over half of studies did not report the type of intensive care unit
(52.3 %), followed by those conducted in combined intensive care units
(36.4 %) and single types of intensive care units (11.2 %), such as
medical, surgical, or other units (Table 1). Study characteristics,
including individual references and detailed attributes of the 151
included studies, are outlined in Supplementary material Tables 2 and 3,
respectively.

3.1.2. Model-related characteristics

Table 1 presents the model-related characteristics of the selected
studies. Individual references associated with these characteristics are
shown in Supplementary material Table 2, while Supplementary mate-
rial Tables 3 and 4 provide detailed model-related characteristics for the
151 included studies.

More than half (53.3 %) of the included studies developed prediction
models using open access data, with the Medical Information Mart for
Intensive Care data being the most frequently used (44.2 %). The
Medical Information Mart for Intensive Care datasets, sourced from Beth
Israel Deaconess Medical Center, and the eICU Collaborative Research
Database, sourced from Philips Healthcare, are part of PhysioNet's
publicly available open access electronic health record databases. These
databases primarily comprise data from hospitals and healthcare in-
stitutions in the United States. In approximately 40 % of studies, private
hospital data were used to develop predictive models. The median
sample size for the datasets used in model development was 7717
(interquartile range: 2117-27,502), and the majority of the studies
(83.4 %) used sample sizes greater than 1000. Approximately three-
fourths of studies (76.2 %) developed prediction models and tested
only internal validation, and 13.2 % tested internal and external vali-
dation. Approximately half (50.3 %) of internal validation used holdout
validation, while 11.9 % utilized bootstrap validation. More than half
(56.5 %) of external validation also used open access data, with the
Medical Information Mart for Intensive Care data being the most
frequently used; 34.8 % used private hospital data. The median sample
size for the datasets used in external validation was 7783.5 (inter-
quartile range: 2530-38,491.8), and 80.0 % of studies used a sample size
greater than 1000.

A total of 457 machine learning-based modeling methods were re-
ported across the included studies. These methods included supervised
learning (75.7 %), unsupervised learning (0.2 %), deep learning and
neural networks (23.0 %), reinforcement learning (0.4 %), and natural
language processing (0.7 %). Specific algorithms corresponding to each
type of machine learning modeling method are detailed in Table 1 and
Supplementary material Table 6. Supervised learning accounted for
more than three-quarters of the models, followed by deep learning and
neural networks, which comprised approximately one-quarter. In
contrast, unsupervised learning, reinforcement learning, and natural
language processing were rarely used. Among the supervised learning
methods, the most frequently used were regression (24.7 %), followed
by boosting (17.5 %), random forests (12.5 %), support vector machines
(8.1 %), and decision trees (5.3 %). The trend in the frequency of use of
modeling methods over time is outlined in Supplementary material
Fig. 2. Regression and random forests have been used more frequently in
predictive models since around 2016, with similar patterns. Notably,
there has been a sharp increase in the use of boosting, as well as deep
learning and neural networks, since 2019. Among the included studies,
more than one-third (36.4 %) reported performing calibration to assess
model predictive performance.

The included studies identified 193 outcomes, classified as either
nursing-sensitive (n = 25, 13.0 %) or clinical (n = 168, 87.0 %) out-
comes. Regarding nursing-sensitive outcomes, pressure injury (n = 10,
5.2 %) was the most frequently used, followed by delirium (n = 7, 3.6
%), functional impairment (n = 4, 2.1 %), such as a reduced level of
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Table 1
Study and model-related characteristics of included studies (n = 151).
Category n %
Study characteristics
Continents Asia 65 43.0
Europe 26 17.2
North America 52 34.4
South America 3 2.0
Oceania 5 3.3
ICU type Single
Medical 5 3.3
Surgical 10 6.6
Others 2 1.3
Combined 55 36.4
Not reported 79 523
Model characteristics
Datasets for Open access data
development” MIMIC 73 44.2
elCU 10 6.1
PhysioNet 5 3.0
Private hospital data 65 39.4
Other data 12 7.3
Sample size for <1000 25 16.6
development 1000-10,000 55 36.4
>10,000 71  47.0
Type of model No validation 16  10.6
validation Internal validation only 115 76.2
Internal and external validation 20 13.2
Type of internal Holdout validation 4 2.6
validation” K-fold cross-validation 76  50.3
Nested cross-validation 5 3.3
Bootstrap validation 18 119
Other validation 9 6.0
Not reported 39 258
Datasets for external Open access data
validation® MIMIC 9 39.1
elCU 4 17.4
Private hospital data 8 348
Other data 2 8.7
Sample size for <1000 2 10.0
external validation 1000-10,000 8 40.0
(n = 20) >10,000 8  40.0
Not reported 2 10.0
Modeling methods® Supervised learning
Regression (e.g., logistic, linear, ridge, 113 24.7
lasso, Cox proportional hazards, elastic net,
generalized linear models, logistic
discriminant analysis, Gaussian processes,
among others)
Decision trees (e.g., decision trees, 24 5.3
classification and regression trees, logistic
model trees)
Random forests (e.g., random forests, 57 12.5
ExtraTrees)
Boosting (e.g., AdaBoost, CatBoost, 80 17.5
XGBoost, gradient boosting, LightGBM,
among others)
Support vector machines (e.g., support 37 8.1
vector machines, support vector classifiers,
among others)
K-nearest neighbors 14 3.1
Bayes' theorem-based model (e.g., naive 14 31
Bayes, Gaussian naive Bayes, Bayesian
network models, among others)
Others 7 1.5
Unsupervised learning 1 0.2
Deep learning and neural networks (e.g., 105  23.0
artificial neural networks, convolutional
neural networks, recurrent neural
networks, among others)
Reinforcement learning 2 0.4
Natural language processing (e.g., 3 0.7
Doc2Vec, Bag-of-Words, BERT-based
models)
Calibration for model ~ Yes 55 36.4
performance No 96 63.6

(continued on next page)
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Table 1 (continued)

Category n %

Outcomes in Nursing-sensitive outcomes

prediction model® Pressure injury 10 5.2
Delirium 7 3.6
Functional impairment 4 2.1
Unplanned extubation 2 1.0
Nosocomial infection 2 1.0

Clinical outcomes
Mortality 87 451
Length of stay 20 10.4
Readmission 7 3.6
Sepsis 14 7.3
Cardiovascular-related 5 2.6
Respiratory-related 19 9.8
Renal-related 7 3.6
Others 9 4.7

Note. eICU, electronic intensive care unit; ICU, intensive care unit; MIMIC,
medical information mart for intensive care.

@ Multiple counts across all 151 included studies, with percentages based on
the total number of instances (n = 165).

b Multiple counts across 135 studies, with percentages based on the total
number of instances (n = 151).

¢ Multiple counts across 20 studies, with percentages based on the total
number of instances (n = 23).

4 Multiple counts across all 151 included studies, with percentages based on
the total number of instances (n = 457).

¢ Multiple counts across all 151 included studies, with percentages based on
the total number of instances (n = 193).

mobility and limited ability to perform activities of daily living, un-
planned extubation (n = 2, 1.0 %), and nosocomial infections (i.e.,
intensive care unit-acquired bloodstream infections and ventilator-
associated pneumonia) (n = 2, 1.0 %). The most frequently used clin-
ical outcome was mortality (n = 87, 45.1 %), followed by length of stay
(n =20, 10.4 %), respiratory-related outcomes (n = 19, 9.8 %), sepsis (n
= 14, 7.3 %), other outcomes (e.g., neurology, hemorrhage, multiple
organ dysfunction, and infection) (n =9, 4.7 %), readmission (n =7, 3.6
%), renal-related outcomes (n = 7, 3.6 %), and cardiovascular-related
outcomes (n = 5, 2.6 %). Supplementary material Fig. 3 illustrates the
trend in the nursing-sensitive outcomes of prediction models over time.
Despite the increase in the use of machine learning-based models since
2014, nursing-sensitive outcomes have been less studied in prediction
models compared to the clinical outcomes. Conversely, for clinical
outcomes, a notable increase in the use of mortality for models was
observed, which was in line with the trend of increasing studies on
machine learning-based prediction models that utilize nursing data
(Supplementary material Fig. 4).

The locations and periods in which outcomes for mortality and
readmission occurred are shown in Table 2 and Supplementary material
Table 5. Mortality was adopted as a clinical outcome in more than half of

Table 2
Location and period for outcomes including mortality and readmission.
Outcome Location n % Period n %
Mortality” (n = 87)  ICU 41 471 <7 days 17 195
Hospital 46 529  8-30 days 14 15.6
Out-of- 4 4.6  31-90 days 8 8.9
hospital
No limitation 5 5.7  91-365 days 6 6.7
No 60 66.7
limitation
Readmission (n = ICU 6 857 <2days 1 14.3
7) Hospital 1 143 3-30days 4 571
No 2 28.6
limitation

Note. ICU, intensive care unit.
@ Multiple counts across 87 studies, with percentages based on the total
number of studies (n = 87).
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the studies (n = 87), with the majority reported in hospital settings
(52.9 %) and intensive care unit settings (47.1 %). Studies reporting
mortality periods covered a wide range of timeframes, with particularly
high frequencies for mortality within <7 days (19.5 %) and between 8
and 30 days (15.6 %). For readmissions (n = 7), most studies reported
the location as an intensive care unit (n = 6), with the readmission
period most commonly ranging from 3 to 30 days (n = 4).

3.2. Results of individual sources of evidence and synthesis

3.2.1. Nursing data characteristics

This scoping review identified nursing data from 151 studies used in
models to predict the prognosis of intensive care unit patients. The
nursing data used in each study were categorized into four domains: 1)
nursing scales, 2) nursing assessment records, 3) nursing activity re-
cords, and 4) nursing notes. This classification helps in understanding
the diverse applications and the relevance of each type of nursing data in
the context of the prognosis prediction model in the intensive care unit
setting. The findings related to individual sources of evidence for the
nursing data are summarized in Supplementary material Table 4.

3.2.2. Type of nursing data as model predictors

In this scoping review, a total of 269 nursing data were extracted
from 151 studies (Table 3 and Supplementary material Table 6). Nursing
scales were reported as the most frequently used type of nursing data in
prediction models, accounting for 150 out of the 269-nursing data
identified in the studies included in this scoping review. Glasgow coma
scale, which assesses patient consciousness, was the most frequently
utilized (n = 113/150, 75.3 %). The Richmond agitation-sedation scale
(n=11/150, 7.3 %), which evaluates the level of sedation or agitation in
patients, and the Braden scale (n = 9/150, 6.0 %), which assesses the
risk of pressure injury, were also identified as commonly used nursing
scales in the prediction models. Other nursing scales identified in the

Table 3
Type of nursing data as model predictors.
Type of nursing data Category n %
Nursing scales (n = 150) Glasgow coma scale 113 753
Richmond agitation-sedation scale 11 7.3
Braden scale 9 6.0
Confusion assessment method 4 2.7
Morse fall scale 3 2.0
Barthel index 2 1.3
Therapeutic intervention scoring 2 1.3
system
Bristol stool scale 1 0.7
Norton scale 1 0.7
Nursing activity score 1 0.7
Perineal assessment tool score 1 0.7
Riker sedation and agitation score 1 0.7
Rothman index 1 0.7
Nursing assessment records Urination 27 325
(n = 83) Circulation-related 1 13.3
Mental-related 8.4
Respiratory-related 8.4
Intake 6.0
Pain-related 6.0
Defecation 4.8

Function-related
Nurse-validated vital signs
Psychological-related
Skin-related

Blood loss
Drainage-related

NUAAFRNWWDRRDDOONN =
N
®

Nursing activity records (n Restraint application 46.2

=13) Positioning 385

Suctioning 15.4

Nursing notes (n = 23) Clinical notes with other healthcare 12 522
providers

Only nursing notes 11 47.8
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scoping review include the Confusion assessment method for the
intensive care unit (n = 4/150, 2.7 %), the Morse fall scale (n = 3/150,
2.0 %), the Barthel index (n = 2/150, 1.3 %), the Therapeutic inter-
vention scoring system (n = 2/150, 1.3 %). The Bristol stool scale, the
Norton scale, the Nursing activity score, the Perineal assessment tool
score, the Riker sedation and agitation Score, and the Rothman index
were each identified in one study (n = 1/150, 0.7 %), respectively.

Nursing assessment records (n = 83/269) were the second most
frequently used type of nursing data. Among the various patient health
domains, urination-related assessment records were the most common
(n = 27/83, 32.5 %). Circulation-related records (n = 11/83, 13.3 %)
were the second most frequently reported, including capillary refill rate
and peripheral sensory evaluation. Mental-related records (n = 7/83,
8.4 %) included assessments of consciousness level, pupil response, and
pupil size. Respiratory-related records (n = 7/83, 8.4 %) covered cough
strength, volume of airway secretions, need for suctioning, endotracheal
tube cuff pressure, and ventilator settings. Intake assessment records (n
= 5/83, 6.0 %) primarily included the volume of fluid intake; pain-
related records (n = 5/83, 6.0 %) encompassed assessments of pain
location and pain scores. Defecation, function-related, and nurse-
validated vital sign records were each reported in four studies (4.8 %).
Function-related records included limb paralysis, weakness, and motor
power assessments. Psychological-related records (n = 3/83, 3.6 %)
included agitation and sedation; skin-related records (n = 3/83, 3.6 %)
encompassed pressure injury assessments and overall skin condition.
Blood loss and drainage-related records were reported in two (n = 2/83,
2.5 %) and one (n = 1/83, 1.2 %) studies, respectively.

Nursing activity records (n = 13/269) were the least utilized type of
nursing data. Records related to using restraints on patients (n = 6/13,
46.2 %) were the most frequently reported. Subsequently, documenta-
tion concerning changes in patient positioning (n = 5/13, 38.5 %) and
suctioning (n = 2/13, 15.4 %) was also identified.

Lastly, nursing notes, identified as 23 out of 269 cases of nursing
data, were mainly clinical notes with other healthcare providers (n =
12/23, 52.2 %), followed by only nursing notes (n = 11/23, 47.8 %).
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3.2.3. Trends in types of nursing data

The trends in utilization according to the types of nursing data are
presented in Fig. 2. All types of nursing data exhibited an upward trend
since 2016. Notably, nursing scales demonstrated a consistently
increasing trend. Nursing assessments also showed a consistent trend of
being used in prediction models, followed by nursing scales. In addition,
nursing notes showed an increase in utilization since 2019.

4. Discussion

Predicting clinical prognoses and responding early are crucial to
enhance patient outcomes in the intensive care unit. This review aimed
to identify and synthesize the range of nursing data utilization in clinical
prognosis prediction models for intensive care unit patients and the
related clinical outcomes. The findings showed that prediction models
utilizing nursing data have been published since 2004; however, the
majority of the studies were released after 2018, indicating that this
research area is in its initial stages. Approximately 10 % of the studies
were nurse-led, suggesting the need for nursing researchers to actively
utilize nursing data in studies aimed at predicting clinical outcomes of
intensive care unit patients using machine learning-based methods. The
discussion focused on the characteristics of the studies and models, as
well as the specific attributes of nursing data.

Over half of the datasets used to develop prediction models were
primarily sourced from open access data, with the Medical Information
Mart for Intensive Care dataset constituting a significant proportion. The
prevalent use of the Medical Information Mart for Intensive Care data
can be attributed to its public availability, which facilitates easy access
to anonymized real-world patient data with institutional approval
(Johnson et al., 2023). Conversely, private hospital data, used in
approximately 40 % of the studies, are valuable for prediction models as
real-world data. However, barriers related to data access and usage
resulted in its less frequent actual use. A qualitative study conducted in
Canada identified multiple barriers encountered when accessing and
utilizing data from large tertiary hospitals, including prolonged
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timeframes for data access, inconsistent and opaque data access pro-
cesses, and ineffective integration with hospital data (Ho et al., 2018).
Moreover, barriers related to privacy and ethical considerations were
identified (Ho et al., 2018).

In this scoping review, more than three-quarters of the machine
learning modeling methods employed supervised learning. This may be
because the models aimed to predict labeled outcomes—such as nursing-
sensitive or clinical outcomes—using electronic health record data that
included nursing data as input. These predictive models are intended for
application in clinical practice by incorporating factors that significantly
influence these outcomes, ultimately aiming to improve patient out-
comes. Therefore, it can be interpreted that many studies opted for su-
pervised learning due to its relatively higher interpretability and
practical applicability compared to other machine learning approaches
(O’Connor et al., 2023; Woodman and Mangoni, 2023).

Machine learning-based predictive modeling has the potential to
develop highly accurate models for predicting outcomes in intensive
care unit patients by leveraging and optimizing large datasets (Ruppert
et al., 2023). However, perspectives on machine learning-based
modeling remain controversial. Critical perspectives have emerged
concerning issues such as bias, interpretability and explainability,
ethical considerations, and statistical performance. First, bias in training
data can result in models lacking representativeness, which may inad-
vertently harm specific patient populations or adversely affect clinical
decision-making (Ozaydin et al., 2021). Such limitations raise concerns
about fairness and equity in healthcare, necessitating careful interpre-
tation and generalization of model results (Boudi et al., 2024). Second,
machine learning models are often criticized for their limited inter-
pretability and explainability, frequently referred to as “black boxes”
(Ozaydin et al., 2021). This lack of transparency may reduce trust when
healthcare providers apply machine learning-based findings to patient
care (Boudi et al., 2024). Third, the use of machine learning in health-
care raises ethical and legal issues, particularly regarding the collection,
storage, and use of patient data. Continuous efforts are required to
ensure robust regulatory frameworks that protect patient privacy and
data security (Boudi et al., 2024). Lastly, it is important to recognize that
machine learning-based predictive models do not consistently outper-
form traditional statistical models. A systematic review of 71 studies
comparing machine learning algorithms to logistic regression in clinical
prediction models found no consistent evidence of superior performance
by machine learning approaches (Christodoulou et al., 2019). Similarly,
a meta-analysis of models predicting readmission and mortality in pa-
tients with heart failure showed that machine learning did not consis-
tently demonstrate higher predictive accuracy than traditional
statistical methods (Sun et al., 2022). Thus, machine learning-based
models should be applied and interpreted with a critical understand-
ing of their limitations.

This review identified clinical prognosis prediction models for
intensive care unit patients using nursing data; however, fewer models
used nursing-sensitive outcomes than clinical outcomes. Nursing-
sensitive outcomes, which are health outcomes related to nursing care
provided by nurses (Danielis et al., 2020), can impact patients' clinical
prognoses and safety (Graystone, 2018). A review conducted in 2020 on
predictive models for delirium, a key sensitive outcome among intensive
care unit nurses, described risk factors for delirium prediction. However,
it did not specify which risk factors could be identified as nursing data
(Ruppert et al., 2020). The development of prediction models targeting
nursing-sensitive outcomes using nursing data was scarce, suggesting
that further research is needed in this area.

The types of nursing-sensitive outcomes identified in this review
included pressure injury, delirium, functional impairment, unplanned
extubation, and nosocomial infection, which are relatively limited in
diversity. Falls, one of the common nursing-sensitive outcomes in
intensive care unit patients, were not used as outcomes in any study in
this review (Wu et al., 2022). A previous scoping review on fall pre-
diction models reported physical function, cognitive function, fall
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history, medications, diagnosis, and treatment (Parsons et al., 2023).
Another scoping review on clinical nursing identified fall prediction as
the most common case utilizing machine learning; however, the pre-
dictors used were not based on nurse-generated data and were primarily
derived from community or laboratory settings (Ng et al., 2022).
Furthermore, the use of standardized fall scales in intensive care units to
assess fall risk and provide interventions suggests a lower necessity for
developing new prediction models for falls. In other words, nursing-
sensitive outcomes are utilized in intensive care units to assess patient
conditions and provide nursing interventions, leveraging tools that have
already been established for predicting and managing these conditions.
This suggests that developing additional prediction models targeting
these outcomes may not be necessary.

Regarding clinical outcomes of prediction models utilizing nursing
data, this review identified various types, with mortality commonly
used. Mortality is considered the most crucial and fatal outcome among
clinical prognoses of intensive care unit patients, with numerous studies
employing prediction models to predict mortality (Keuning et al., 2020).
The present findings demonstrate that mortality has similarly been a
primary outcome in research involving prediction models that incor-
porate nursing data. However, although cardiovascular-related clinical
outcomes, including cardiac arrest, are also significant adverse events
for intensive care unit patients, only four studies used them as outcomes
in prediction models. Therefore, research that identifies nursing data
capable of early detection of such conditions should be conducted and
used as predictive factors.

Nursing data used as predictors were categorized into four types:
nursing scales, nursing assessment records, nursing activity records, and
nursing notes. Nursing data were those that either involved nursing
effort or were generated by nurses. In other words, nursing data were
recognized not in its raw data form but as predictors input into the
model. Such nursing data can be viewed from the perspectives of explicit
measures, which are clear and directly expressed, and implicit measures,
which are allusive and indirectly expressed (Rossetti et al., 2021).
Generally, nursing scales, which are calculated and recorded as objec-
tive scores or indexes indicating specific health conditions of patients,
can be regarded as serving the role of explicit measures. Conversely,
nursing activity records and notes, which document the frequency of
nursing care provided based on the nurse's subjective intuition, con-
cerns, worries, and recognition, can be considered implicit measures.
Although these three types can be distinctly categorized, nursing
assessment records cannot be clearly distinguished between explicit and
implicit measures, blending both types. Therefore, when utilizing
nursing assessment records in prediction models, explicit measures, such
as objective signs, and implicit measures, such as subjective symptoms,
must be differentiated when transforming raw data into variables for
predictors.

Studies with nursing data accessible from electronic health records to
develop prediction models were incorporated, with the results indi-
cating that nursing scales were the most prevalent. The nursing scales
included were the Glasgow coma scale, Richmond agitation-sedation
scale, Braden scale, Confusion assessment method, Morse fall scale,
Barthel index, and Therapeutic intervention scoring system, and these
were identified as the most frequently used types in conjunction with
prediction model applications. This prevalence is attributed to the fact
that nursing scales are embedded in electronic health records and can be
more easily extracted as structured data. The review highlighted that the
Glasgow coma scale, Braden scale, and Richmond agitation-sedation
scale, routinely performed and recorded by nurses, were prominently
utilized in prediction models. These scales represent structured data that
sensitively reflect changes in patient conditions and potentially impact
clinical prognoses, thus being highly utilizable in prediction models
(Moghaddam et al., 2023).

Nursing assessment records, which were the second most used type
of nursing data, reflect the clinical concerns of nurses who spend
extended periods of time by the patient's side. A previous review
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reported that nursing assessments, including skin color, pain, and
behavior observation, provoke nurses' concerns (Jensen et al., 2022).
The most common nursing assessment records utilized in the studies
included in this review were related to urine output assessed by nurses.
These records varied in duration, including hourly urine output manu-
ally registered by nurses (Meyfroidt et al., 2011), urine output assessed
every 4 h (Lin et al., 2019), and 24-h urine output (Rojas et al., 2018), all
of which were used to predict patients' clinical outcomes. Such nursing
assessments may increase in frequency when nurses are concerned about
a patient's condition worsening, and this heightened frequency can
facilitate the early detection of cues indicating patient deterioration
(Krom, 2020; Rossetti et al., 2021). Therefore, further research is needed
to determine whether nurses' clinical concerns, including nursing
assessment records, which reflect the patient's overall condition, can
contribute to improving the predictive power of the model.

Nursing activity records, which represent the nursing care provided
to patients during nurses' shifts, primarily included the frequency of
physical restraint use, position changes (Lee et al., 2018), and suctioning
(C.F. Liu et al., 2022). These were the least frequently used type of
nursing data in the predictive models. These findings indicate that
predictive models might need to be designed to integrate contextual
information surrounding nursing activities provided to patients. Stan-
dardizing nursing data has the advantage of enhancing communication
among healthcare providers and facilitating an understanding of its
significance, which can lead to improved patient care outcomes
(Alderden and Cummins, 2016; T. Zhang et al., 2021). Thus, overcoming
these barriers through a standardization process that maps nursing ac-
tivity records for inclusion in prediction models could increase the data
reusability (Kang et al., 2020).

Nursing notes, which contain rich information about the patient's
condition, environment, and context, are unstructured nursing data that
reflect nurses' clinical concerns. Several studies reported that nursing
notes are highly relevant to patients' clinical prognoses (Mechcatie and
Rosenberg, 2018; Waudby-Smith et al., 2018). The types of nursing
notes used in this review included clinical notes written by nurses or
other healthcare providers (Mahendra et al., 2021), as well as nursing
notes typically written every 3—4 h in critical care settings (Huddar et al.,
2016). Although few studies used nursing notes in prediction models, a
trend of increasing use of nursing notes in recent years was observed.
This increase can be attributed to the growing attention to deep
learning, multi-modal learning, and language models, which has led to
an increased use of nursing notes. Furthermore, unstructured nursing
records can be utilized to identify key features through natural language
processing (Trinh et al., 2023). It is essential to explore automated
natural language processing pipelines for large volumes of unstructured
nursing records in electronic health records and leverage standardized
nursing terminologies to expand the knowledge that can be captured
from natural language processing for future research (Mitha et al.,
2023). The ongoing development of various language models is ex-
pected to enhance the utilization of such records. Therefore, the use of
nursing notes, which reflect nurses' concerns, should be encouraged in
the development of clinical prognosis prediction models for intensive
care unit patients.

4.1. Limitations

This scoping review had several limitations. First, during the selec-
tion of literature, studies were included if nursing data were used not
only exclusively as a predictor but also as one of the predictors in pre-
diction models. Even if the researchers did not intentionally mention the
predictor as nursing data, cases generally considered nursing data were
included. This may have introduced uncertainty regarding whether the
variables were intentionally used as nursing data. However, the review
was conducted to identify the diversity of nursing data usage in pre-
diction models. Second, the review did not ascertain the effect of pre-
diction models according to the type of nursing data. Further research

International Journal of Nursing Studies 169 (2025) 105133

should use diagnostic meta-analysis methods to understand the direct
effects of nursing data in prediction models. Third, this scoping review
had limited geographical generalizability, as most studies were from
high-income countries with advanced electronic health record in-
frastructures. Limited technical and financial resources in low- and
middle-income countries may hinder electronic health record imple-
mentation, resulting in fewer studies from these regions. This gap may
have led to omissions of relevant content, reducing the findings' broader
applicability and emphasizing the need for cautious interpretation given
these regional limitations. Finally, this review was limited to articles
published in English or Korean, thereby excluding studies published in
other languages. Future studies are suggested to conduct scoping re-
views with a broader selection of literature without language
restrictions.

5. Conclusions

This scoping review identified the utilization of nursing data in
machine learning-based models for predicting clinical prognoses of
intensive care unit patients. The review included 151 studies, which
exhibited an increasing trend in recent years, with a preference for using
open access data over private hospital data to develop prediction
models. Most studies used supervised learning, followed by deep
learning and neural networks, while other methods were rarely
employed. Despite utilizing nursing data, our findings showed that
nursing-sensitive outcomes were less frequently used than clinical out-
comes. The nursing data used in the prediction models were classified
into nursing scales, nursing assessment records, nursing activity records,
and nursing notes. Overall, nursing scales, which are structured data
that objectively show specific health conditions of patients, were the
most used, whereas nursing activity records and nursing notes were
relatively less used. As other types of nursing data also have the po-
tential to predict patients' clinical prognoses, future research should
explore the development of prediction models incorporating various
nursing data. To this end, considering data standardization as a method
to lower the barriers to inputting electronic health records data into
prediction models may be necessary. Our findings can contribute to
providing insights into the use of various nursing data and could aid
healthcare providers and researchers aiming in developing prediction
models related to clinical prognoses in the intensive care unit setting.
This review suggests that using nursing data can positively impact the
predictive accuracy of models for clinically significant outcomes in pa-
tients admitted to the intensive care unit, ultimately enabling improved
critical care from a clinical perspective.
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