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Long non-coding RNAs (lncRNAs) regulate the progression and metastasis of high-grade serous 
carcinoma ovarian cancer (HGSC). However, HGSC is yet to be classified based on these transcripts. In 
addition, the crosstalk between master transcriptional factors (MTFs) and lncRNAs remains unclear. 
Therefore, we aimed to classify HGSC based on lncRNA expression and identify the integrated MTFs 
for highly correlated mRNAs and lncRNAs. Unsupervised clustering was conducted using highly 
expressed lncRNAs derived from 367 HGSC samples obtained from The Cancer Genome Atlas. DNA 
mutations, somatic copy number alterations, microRNA expression, and DNA methylome were 
analyzed to identify the genetic and epigenetic factors affecting unsupervised clustering. Multiple 
Sample Virtual Inference of Protein-activity by Enriched Regulon analysis (msViper) was conducted to 
identify transcription factors simultaneously exhibiting positive correlation with lncRNAs and mRNAs 
in each cluster. In vitro analyses were performed to determine if these lncRNAs regulate both the 
MTFs and target genes. Functional analysis enabled the lncRNA-based classification of HGSC into five 
groups: "Immune," "EMT," "Estrogen response," "EMT-Androgen response," and “Differentiation” 
groups. The EMT-Androgen response group showed poor prognosis in the oncologic outcome. Of the 
transcription factors selected in this group, three MTFs with the highest eigenvector centrality scores 
were identified (MSC, AEBP1, CREB3L1). However, seven lncRNAs exerted a higher centrality than 
the selected MTFs. Our results suggest that HGSC can be classified based on lncRNA expression and 
characterized using molecular features. Therefore, lncRNAs and MTFs may synergistically contribute to 
molecular features of HGSC that could be indicators for personalized medicine.
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Ovarian cancer (OVCA) is an aggressive gynecological malignancy that is responsible for > 130,000 cancer-
related deaths worldwide. The overall 5-year survival rate is approximately 40% after surgery and systemic 
chemotherapy. Epithelial ovarian cancer (EOC) is composed of five histological subtypes: high-grade serous, 
low-grade serous, mucinous, clear-cell, and endometrioid. High-grade serous carcinoma (HGSC), the most 
common histological subtype, constitutes 70% of EOC cases. HGSC is typically diagnosed at an advanced 
stage, when the tumor has spread to the abdomen or outside the abdominal cavity, because it has no specific 
symptoms1,2. This underscores the need for new diagnostic and therapeutic targets.

Long non-coding RNAs (lncRNAs) are transcripts that were identified in genomic studies in the late 1990s 
and 2000s. They are longer than 200 nucleotides and are presumed not to encode proteins. LncRNAs may 
regulate gene expression through chromatin remodeling, transcription, alternative splicing, and generation of 
microRNAs (miRNAs) or short biologically active peptides3,4. Several lncRNAs affect the biological behavior of 
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ovarian cancer, such as ANRIL, CCAT1, FAL1, H19, HOTAIR, and MALAT15,6. However, OVCA is yet to be 
classified based on lncRNAs.

Transcription factors and their regulatory networks govern gene expression programs that drive essential 
cellular processes and contribute to disease development. Master transcription factors (MTFs) often sit at the 
top of these regulatory hierarchies, directing the activity of other transcription factors and playing key roles 
in defining cell identity7,8. Similar to other RNAs, lncRNAs are likely to be regulated by transcription factors. 
Conversely, lncRNAs can regulate the function of transcription factors. However, the crosstalk between MTF 
and lncRNAs has not been fully elucidated.

Although lncRNAs and transcription factors are known to regulate each other, the crosstalk between 
master transcription factors (MTFs) and lncRNAs in ovarian cancer remains poorly understood. Despite their 
emerging biological importance, lncRNAs have not yet been utilized for the molecular classification of high-
grade serous ovarian cancer (HGSC), the most common and aggressive subtype of epithelial ovarian cancer. 
Previous stratification efforts have predominantly focused on protein-coding genes, potentially overlooking 
regulatory programs governed by non-coding elements. Since lncRNAs may reflect distinct transcriptional and 
epigenetic regulatory mechanisms, we hypothesized that lncRNA-based clustering could uncover novel HGSC 
subtypes that are not captured by coding gene expression alone.

In this study, we aimed to classify HGSC through unsupervised clustering based on lncRNA expression. 
We further aimed to identify the MTF representing each group. Finally, we investigated the interrelationship 
between lncRNA and MTF in the most clinically aggressive group. Our findings advance the understanding of 
how lncRNAs and MTFs cooperatively influence gene regulatory programs associated with tumor progression 
and aggressiveness in HGSC.

Results
HGSC is classified into five clusters based on lncRNA expression
The lncRNAs and mRNAs were extracted from total RNA-seq data (TCGA OVCA) based on GENCODE and 
HUGO probemap, respectively (Fig. 1A). To determine the optimal number of clusters (k) in our cNMF analysis, 
we evaluated clustering results for k values ranging from 2 to 6 using three widely accepted validation metrics: 
cophenetic correlation coefficient, silhouette score, and total within sum of squares (WSS). For each k, consensus 
matrices and sample correlation matrices were generated, and clustering with k = 5 yielded the most consistent 
and stable patterns in both matrices (Fig. S1A). The cophenetic coefficient remained consistently high across all 
k values tested, suggesting overall robustness of clustering. Meanwhile, the average silhouette width indicated 
optimal clustering at k = 2, 4, 5, and 6, implying multiple plausible solutions. In contrast, WSS analysis suggested 
k = 3 as optimal due to minimized intra-cluster variance (Fig. S1B). Taken together, and prioritizing cluster 
stability and interpretability, we selected k = 5 as the most biologically and computationally appropriate solution.

However, clustering performance metrics alone do not capture clinical relevance. Since the primary goal 
of clustering in this study was to stratify patients based on prognosis, we additionally performed survival 
analyses across different k-factors to evaluate whether the identified clusters reflected meaningful differences in 
patient outcomes. survival analyses for k = 2 to 4 showed no significant prognostic differences (Fig. S1C-D), and 
k = 6 lacked consistent support across validation metrics. In contrast, k = 5 demonstrated the most significant 
prognostic separation, with distinct OS and DFS differences between clusters (OS log-rank p = 0.034, DFS log-
rank p = 0.023; Fig. 1B). The number of patients per cluster was as follows: J1, n = 92; J2, n = 66; J3, n = 86; J4, 
n = 57; and J5, n = 66. The number of lncRNAs in the J2 cluster was more than twice that of the other clusters 
(J1 cluster, n = 284; J2 cluster, n = 536; J3 cluster, n = 297; J4 cluster, n = 212; J5 cluster, n = 171; Fig.  1C). The 
expression status of the 1,500 selected mRNAs was evaluated according to the five lncRNA clusters (Fig. 1D). 
Similarly, the number of mRNAs in the J2 cluster was twice as high as that in other clusters (J1 cluster, n = 331; J2 
cluster, n = 577; J3 cluster, n = 208; J4 cluster, n = 201; and J5 cluster, n = 183). In summary, HGSC was classified 
into five clusters according to lncRNA expression. The J4 cluster exhibited poor survival whereas the J2 cluster 
harbored numerous lncRNAs and mRNAs.

The five HGSC clusters showed group-specific function
The function of lncRNAs in each cluster was predicted using the funcpred analysis tool. The lncRNAs in all five 
clusters were commonly related to spermatogenesis (Fig. S2A-E). In contrast, each cluster was associated with 
specific gene sets related to cluster-specific lncRNAs (Fig. 2). The J1 cluster was associated with immune-related 
gene sets such as interferon alpha/gamma and inflammatory responses. The J2 cluster was related to epithelial 
to mesenchymal transition (EMT), whereas the J3 cluster was related to early and late estrogen response. In the 
J4 cluster, apical junction, EMT, adipogenesis, myogenesis, hypoxia, and androgen response were predicted as 
the function of J4-specific lncRNAs. Although EMT was the common function of lncRNAs between J2 and J4 
clusters, J4 was predicted to have diverse lncRNA function compared to J2. In contrast, J5 was related to bile acid 
metabolism and peroxisomes.

We further performed functional analysis using mRNAs that exhibited upregulated expression in each 
cluster. As shown in Fig. S3A-E, functional prediction results similar to those of lncRNAs were observed. For 
example, the J1 cluster showed interferon alpha/gamma and inflammatory responses. However, functional 
prediction using lncRNAs did not identify allograft rejection or upregulation of KRAS signaling. In addition 
to the EMT gene set, mRNAs with upregulated expression in the J2 cluster were related to KRAS signaling. 
The J3 cluster mRNAs were related to estrogen-responsive and immune-related genes such as those related 
to inflammatory response and TNFalpha signaling. The J4 cluster showed identical results to those observed 
during lncRNA functional prediction. In contrast, the downregulation of KRAS signaling and late estrogen 
response were related to mRNA function in the J5 cluster. This result was different from that observed in lncRNA 
functional prediction.
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Fig. 1.  Unsupervised clustering of TCGA HGSC based on lncRNA expression. (A) Schematic flow sheet 
of clustering in this study. (B) Comparison of overall and disease-free survival, as determined according to 
unsupervised clustering based on lncRNA expression. (C) Unsupervised clustering of 367 samples from TCGA 
HGSC based on lncRNA expression using total RNA-seq data from TCGA HGSC. (D) Heatmap of mRNA 
expression from TCGA HGSC, as determined using unsupervised clustering based on lncRNA expression.
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The five groups were named as follows based on the lncRNA and mRNA functional prediction results: 
J1, Immune group; J2, EMT group; J3, Estrogen response group; J4, EMT-androgen response group; J5, 
Differentiated group. Although we only identified a small number of gene sets in the J5 group, the upregulated 
lncRNAs were similar to those reported in the differentiated group through TCGA OVCA analysis (Fig. S4 and 
Table. S2).

Fig. 2.  Functional prediction of lncRNA and mRNA for five clusters. (A–E) Results of the prediction of 
lncRNA (red)-related gene sets, including simultaneously predicted gene sets of lncRNA and mRNA (orange) 
from the J1 to the J5 clusters, respectively. Sky blue circles indicate gene sets functionally predicted by all five 
clusters. Purple and light blue circles indicate gene sets containing 10% and < 10% lncRNA in each cluster, 
respectively.
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Representative transcription factors of the five groups were individually identified
To investigate the characteristics of groups classified based on lncRNA expression patterns, mutation profiles, 
miRNA expression patterns, and DNA methylation were analyzed (Fig. S5-6, Table.S3-4). However, no 
differences were observed between the groups. This suggests that the differences in expression observed across 
the lncRNA groups are caused by factors other than epigenetic changes. Therefore, we identified transcription 
factors as one of the factors regulating the expression of large gene groups. First, we selected mRNAs whose 
expression showed a positive correlation with lncRNA expression in each group to identify transcription factors 
in the lncRNA-based groups (Fig. 3A, Fig. S7A-B). Since the transcription factors regulating lncRNA expression 
are largely unknown, we identified specific transcription factors for each group using these highly correlated 
mRNAs. The number of lncRNAs and mRNAs in the J2 group was more than twice as high as that in the other 
groups. However, the proportion of positively correlated lncRNAs and mRNAs was higher in the J4 group than 
in the other groups, suggesting a stronger coordination between their upregulation in this group.

Transcription factor inference analysis was conducted using msViper to identify unique transcription factors 
for each group. Three transcription factors were identified in J1: CDKN2A, ETV7, and IFI27 (Fig. 3B, Table. 
S5). Twenty-one transcription factors were identified in J2, including DACH1, DACT2, and ZNF423 (Fig. 3C 
and Table. S6). Moreover, the transcription factors identified in J3 were: RUNX1, TFAP2C, and TRPS1 (Fig. 3D 
and Table. S7). RUNX2 was identified as a representative transcription factor of J4. Similarly, ZFHX4, SNAI2, 
TWIST1, and TWIST2 were related to J4 (Fig. 3E and Table. S8). Furthermore, the transcription factor EHF was 
identified in the J5 cluster (Fig. 3F and Table. S9).

We identified lncRNAs and mRNAs whose expression showed a positive correlation with that of known 
transcriptional target genes of representative transcription factors in the five groups. In the J1 cluster, 46.0% of 
lncRNAs had a positive correlation with transcription factor target genes: J2, 30.2%; J3, 18.8%; J4, 88.7%; and 
J5, 7.4% (Fig. S7C). Furthermore, 27.9%, 11.5%, 17.8%, 69.2%, and 7.5% of mRNAs in the J1, J2, J3, J4, and J5 
clusters, respectively, showed a positive correlation (Fig. S7D). Based on this analysis, we hypothesized that 
MTFs drive the coordinated upregulation of lncRNAs and mRNAs in the J4 group.

MSC, AEBP1, and CREB3L1 are master regulators that govern transcriptional programs in 
the J4 group
Co-expression network analysis was conducted using eigen centrality to identify the most influential 
transcriptional factors (Fig. 4A-E). We further eliminated every mRNA and lncRNA shown in Fig. 4D except 
representative transcription factors to show co-expression network analysis results among transcription factors 
more clearly. The node closest to 1 was the lncRNA LINC01614 in J4. COL3A1 exhibited the second highest 
eigen centrality (eigen centrality = 0.997), whereas MSC (eigen centrality = 0.918) was identified as the top 
node among representative transcription factors (Table. S10). As AEBP1 and CREB3L1 also showed significant 
eigen centrality (> 0.5) in addition to MSC, COL3A1, LUM, DCN, FNDC1, THBS2, COL1A1, MMP2, FN1, 
and FAP were simultaneously regulated by these three transcription factors. In addition, these simultaneously 
regulated genes exhibited high eigenvector centrality (Fig. S8A-C). MSC, AEBP1, and CREB3L1 may be related 
to extracellular matrix, cell adhesion, and collagen remodeling, which are representative features of EMT9–11. 
Therefore, we generated scores reflecting these EMT features to verify these hypotheses. J4 showed higher 
scores than the other groups (Fig. 5A). Consistent with this result, nine simultaneously regulated genes were 
functionally related to EMT, as determined through gProfiler (Fig. 5B-C).

LncRNAs Regulate EMT-Associated MTFs in the J4 group
As shown in Fig. 6A, MSC, AEBP1, and CREB3L1 were identified as MTFs in the J4 group. These MTFs were 
predicted to simultaneously regulate six downstream transcription factors: SNAI2, RUNX2, PRRX1, ZFHX4, 
ETV1, and TWIST1. Co-expression network analysis revealed that LINC01614 has the highest centrality. 
However, lncRNAs harboring high centrality were not included in the target list of MTFs. Therefore, we postulated 
that these lncRNAs might be central regulators of the transactivation of MTFs. To verify this hypothesis, we first 
selected lncRNAs exhibited a positive correlation (R ≥ 0.4) with MSC, AEBP1, and CREB3L1. Fifteen of the 
selected lncRNAs commonly included in the three MTFs were finally collected (Fig. 6B). All 15 lncRNAs showed 
eigen centrality ≥ 0.76 (Fig. 6C). Therefore, we hypothesized that these lncRNAs may regulate MTFs in J4 to 
increase the expression of EMT-related genes (Fig. 6D).

MTF silencing affects the expression of EMT-related genes but not that of lncRNAs 
exhibiting high centrality
We performed in vitro analyses based on CCLE data to select the cell line suitable to represent the J4 group (Fig. 
S9A-B). The 59 M cells showed an increased expression of the MTF target genes in the J4 group compared to 
other cell lines (Fig. S9C-D). The EHF scores of the target genes in the J5 group also increased in these cells. 
However, the lncRNA scores were exclusively increased in J4. Consistent with our hypothesis, ssGSEA revealed 
a significant increase in the expression of the transcriptional target genes MSC, AEBP1, and CREB3L1 in 59 M 
cells (Fig. S9E-G). Next, we silenced each of the three MTFs and performed qRT-PCR to estimate changes in 
the expression of simultaneously regulated genes and lncRNAs exhibiting high centrality (> 0.9) in 59 M cells. 
As hypothesized, treatment with appropriate siRNAs downregulated the expression of simultaneously regulated 
genes whereas that of lncRNAs exhibiting high centrality was not affected (Fig. 7A-I). These results support 
the hypothesis that high-centrality lncRNAs may participate in the regulation of MTF activity, potentially 
contributing to the upregulation of EMT-related genes.
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Fig. 3.  Prediction of cluster-specific transcription factors. (A) A flow sheet of the prediction of transcription 
factors using msViper. (B and F) The msVIPER plot shows the transcriptional activity of the most significantly 
differentially active transcription factors in each group. Each plot shows the expression of transcription factor 
targets of one group compared to other groups. Vertical lines resembling barcodes represent transcriptional 
factor target genes. These lines are sorted from left to right based on expression levels, from the most 
downregulated to the most upregulated expression across the groups. Each blue and red bar indicates negative 
and positive regulation of the TF target genes shown in the third column, respectively. The “Act” and “Exp” 
columns indicate the normalized enrichment score of the expected activity (Act) of the entire transcriptional 
factor network and the expression level (Exp) of the transcriptional factor itself. P-values were determined 
using the enrichment method in the VIPER algorithm. P < 0.05 was considered statistically significant.
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Fig. 4.  Construction of the TF-mRNA-lncRNA co-expression network. (A and E) TF-mRNA-lncRNA co-
expression networks for each group, as determined based on eigen centrality. Higher scores represent larger 
nodes and are closer to yellow, whereas lower scores represent smaller nodes and are closer to blue. The names 
of transcription factors are indicated in red. The red box is a magnified view of the denser parts of the network, 
as indicated. The eigenvector centrality of the yellow node is ≥ 0.9.
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Discussion
Molecular subtypes of OVCA were first identified using microarray data from 285 Australian patients12. TCGA 
later reported four subtypes classified as “Mesenchymal,” “Differentiated,” “Proliferative,” and “Immunoreactive” 
based on RNA-seq data. Most subtypes have been classified based on microarray or mRNA expression data13. 

Fig. 5.  Comparison of target gene expression of predicted MTFs in the J4 group. (A) Comparison of the 
expression of gene sets related to MTFs in each cluster using ssGSEA. (B) Simultaneous functional prediction 
of nine genes identified through network analysis using gProfiler. (C) Results summarizing the top five gene 
sets for each gene set source.
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Fig. 6.  Discovery of MTF-regulating lncRNAs. (A) Target transcription factors of top MSC, AEBP1, and 
CREB3L1 in the J4 group. Yellow and blue indicate high and low eigenvector centrality scores, respectively. (B) 
The scheme for analytic flow (left panel) and Venn diagram (right panel) presenting the number of lncRNAs 
simultaneously exhibiting positive correlation with three representative MTFs based on Pearson’s correlation 
(R ≥ 0.4). (C) A list of lncRNAs simultaneously correlated with three MTFs. (D) A proposed model of EMT 
gene regulation of MTFs through lncRNAs in HGSC.
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In 2016, HGSC was classified based on DNA methylation, protein, microRNA, and gene expression data for 
OVCA samples obtained from TCGA14. However, lncRNAs remain considerably understudied. In addition, the 
classification of HGSC based on lncRNA expression has not been investigated.

In this study, we performed CNMF clustering using HGSC RNA-seq data and classified HGSC into five 
clusters based on lncRNA expression. In addition, we predicted lncRNA function using Funcpred. Although 
lncRNAs have been actively investigated since 2010, a direct functional prediction tool has not been established14. 
Therefore, similar to “FuncPred,” lncRNA functions are indirectly inferred by matching coding genes. 
Alternatively, functions are suggested through cis-acting by evaluating neighboring genes. We also conducted 
functional prediction of mRNAs based on lncRNA expression using gProfiler to mitigate the limitation of 
indirect functional prediction in the five clusters. The results were consistent with those obtained in FuncPred. 
This approach enabled the classification of HGSC into five groups. Each group was classified as follows based 
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on functional prediction: “Immune group,” “EMT group,” “Estrogen response group,” “EMT-androgen response 
group,” and “Differentiated group”.

We analyzed HGSC multi-omics data obtained from TCGA to investigate differences in molecular 
characteristics among the five groups. First, comparison of mutation profiles revealed no significant differences 
in the frequency of driver mutations among the groups. Similarly, comparison of SCNA revealed no significant 
differences in amplification and deletion among the five groups. This is contrary to the representative amplification 
of 1q21.3 chromosomes frequently observed in the five groups in previous studies15,16. Despite extensive reports 
of lncRNA-miRNA interaction, comparison of miRNA expression patterns among the five groups also revealed 
no significant differences in median miRNA expression in the present study. Methylation is another important 
regulatory mechanism of gene expression17,18. However, the methylation β-values were not relatively low in the 
five HGSC groups.

Although multi-omics analyses did not reveal dominant alterations that could explain our observations, 
these results prompted us to investigate transcriptional regulatory mechanisms in the five groups. LncRNAs 
can regulate transcriptional factors at multiple steps (transcription factors accessing DNA, mRNA synthesis, 
processing, stability, and translation)19. The transcription factors of each cluster were identified using ARACNe 
and Viper. In our analysis, transcription factors were identified independently within each cluster based on 
differentially expressed mRNAs and lncRNAs that were specific to each group. As a result, no overlapping TFs 
were observed across the five clusters. This outcome was not due to the intentional exclusion of shared TFs but 
rather reflected the nature of the analysis design, where each cluster was evaluated using a distinct set of input 
genes. The target genes of transcription factors were compatible with our functional prediction of mRNAs and 
lncRNAs. Furthermore, co-expression network analysis identified lncRNAs with high eigenvector centrality that 
were associated with MSC, AEBP1, and CREB3L1 in the J4 group20. While these MTFs also exhibited high 
centrality, this metric was used to prioritize candidates for further investigation, as it reflects network influence 
rather than direct biological causality.

MSC is a member of the helix-loop-helix family of transcription factors and was first reported in mouse 
skeletal muscle precursors. MSC and LEF1 functions are related to EMT-related extracellular matrix (ECM) 
organization and cell-ECM interactions. AEBP1 promotes tumorigenesis through the NF-κB pathway and EMT 
in colon and gastric cancers. Similarly, CREB3L1 contributes to cancer onset and progression and may be a 
promising clinical biomarker for cancers involved in the initiation of EMT9–11. These results indicate that the 
three MTFs contribute to EMT-related gene regulation, which is a predicted representative function of the J4 
group. In addition, lncRNAs whose expression was highly correlated with the three MTFs had high centrality. 
Thus, in silico and in vitro experiments suggest that they could regulate MTFs. Consistent with our hypothesis, 
lncRNAs act as signaling molecules to regulate the transcription of downstream genes. LINC01614, an lncRNA 
exhibiting the highest centrality, promotes the development of lung and breast cancers. Additionally, most of the 
genes co-expressed with LINC01614 have been associated with EMT in human cancers21–23.

Several lncRNAs have been identified as potential clinical biomarkers for response to therapy or prognosis in 
breast cancer. Although their clinical utility is yet to be clearly demonstrated, the use of lncRNAs as predictive 
biomarkers in response to treatment has advantages over protein- and mRNA-based biomarkers because lncRNAs 
reveal remarkable tissue- and stage-specific expression patterns24,25. LINC00702 is upregulated in ovarian cancer 
cells, promoting tumor development. In breast cancer, LINC00702 knockdown significantly reduces cell growth 
and induces apoptosis. Similarly, suppression of LINC02544 has been shown to reduce proliferation, invasion, 
and migration of LUSC cells26,27. LINC01929 has been implicated in regulating key cancer cell behaviors, 
including proliferation, migration, invasion, and apoptosis, across multiple cancer types. In oral squamous cell 
carcinoma, LINC01929 knockdown reduced proliferation and invasion while promoting apoptosis, whereas in 
breast cancer, its suppression inhibited cell proliferation and induced cell cycle arrest. These findings highlight 
the potential of LINC01929 as a therapeutic target28,29. For the remaining lncRNAs (AL109924.2, AL356417.2, 
and AC112721.2), no prior studies have been reported to date. However, our functional prediction (funcPred) 
analysis suggested that these lncRNAs may be associated with EMT and MYC target gene regulation.

In line with recent trends in lncRNA research, our study also elucidates the potential role of lncRNAs as a 
prognostic marker or therapeutic target in HGSC. Our lncRNA-based clustering suggests that the J4 group has 
a worse prognosis. In addition, J4 was primarily characterized by EMT- and androgen-response signatures, 
although additional pathways may contribute to its aggressive phenotype. Finally, our co-expression network 

Fig. 7.  The effect of MTF silencing on target gene expression, as determined using in vitro analyses. 59 M 
cells were treated with control siRNA (siControl) or three MTF siRNAs for 48 h. q-PCR results showing the 
expression of MTFs (MSC, AEBP1, and CREB3L1) (A and C), mRNA target genes (D and F), and lncRNAs (G 
and I) in transfected cells are shown. Data are presented as the mean ± S.E.M. P-values were calculated using 
the Mann–Whitney U test, and all experiments were performed in triplicate. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001. Statistically insignificant results are not shown. Abbreviations: MSC, Musculin; AEBP1, AE 
binding protein 1; CREB3L1, CAMP responsive element binding protein 3 like 1; COL3A1, Collagen type III 
alpha 1 chain; LUM, Lumican; DCN, Decorin; FNDC1, Fibronectin type III domain containing 1; THBS2, 
Thrombospondin-2; COL1A1, Collagen, type I, alpha 1; MMP2, matrix metalloproteinase-2; FN1, Fibronectin 
1; FAP, fibroblast activation protein alpha; LINC01614, Long intergenic non-protein coding RNA 1614; 
LINC00702, Long intergenic non-protein coding RNA 702; LINC02544, Long intergenic non-protein coding 
RNA 2544; AL356417.2, novel transcript, antisense to FNDC1; AC112721.2, novel protein (LOC728009); 
LINC01929, Long intergenic non-protein coding RNA 1929.

◂
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analysis suggested the mechanistic role of high-centrality lncRNAs in the transactivation of MTFs. This result 
was supported by in vitro silencing experiments.

Conclusions
This study provides a novel classification of HGSC based on lncRNA expression and presents functional 
prediction of five groups according to lncRNA and mRNA expression: “Immune,” “EMT,” “Estrogen response,” 
“EMT-Androgen response,” and “Differentiation” groups. Of these, the EMT-Androgen response group showed 
strong centrality mediated by MTFs, including MSC, AEBP1, and CREB3L1, as well as group-specific lncRNAs. 
These findings revealed the biology of a special subgroup of HGSC and provided potential diagnostic and 
therapeutic targets for the EMT-Androgen response group.

Methods
Public databases
Data derived from 367 OVCA samples were obtained from The Cancer Genome Atlas (TCGA, ​h​t​t​p​s​:​/​/​w​w​w​
.​c​a​n​c​e​r​.​g​o​v​/​t​c​g​a​​​​​.​)​. The downloaded dataset included total RNA-seq, miRNA, methylation, and clinical data. 
The TCGA-OV GISTIC2 gene-level copy number and somatic mutation data was downloaded from The Broad 
Institute TCGA GDAC Firehose with no further processing30.

We identified 47 cell lines representing major subtypes of OVCA within the Cancer Cell Line Encyclopedia 
project (CCLE, https://sites.broadinstitute.org/ccle/). We analyzed these cell lines using RNA-seq data. The cell 
lines were then classified using the widely accepted OVCA classification paradigm based on clinico-pathological 
and molecular evidence: Type I (n = 28) and Type II (n = 19) cell lines31,32. As all Type II OVCA cell lines 
correspond to HGSC, RNA-seq data of the 19 cell lines were analyzed.

RNA-seq data processing and subtype discovery
In total, 60,433 identifiers from the RNA-seq data were downloaded using TCGA GDC; lncRNAs and coding 
RNAs were classified using the GTF file (v30). Furthermore, 15,171 lncRNAs were identified using GENCODE 
as described previously33. Of the remaining 45,262 genes, 20,531 coding genes were identified using the HUGO 
probe map.

The top 1500 lncRNAs were selected through the Median Absolute Deviation (MAD) method in the order 
of high expression. Unsupervised clustering was conducted using consensus nonnegative matrix factorization 
(CNMF) for the selected lncRNAs (ConsensusClusterPlus R package; parameters: max K = 6, reps = 100). 
Next, multiple k-factor decompositions of expression matrices were computed and their stability evaluated34. 
Consensus values ranging from 0 (never clustered) to 1 (always clustered) were marked by blue to red in the 
consensus matrix. The sample correlation matrix ranges from -1.0 to 1.0 and is colored white to blue. Clustering 
results were verified using the cophenetic coefficient, average silhouette width, and total within sum of square 
(WSS). Cophenetic coefficients and average silhouette widths closer to 1 indicate a suitable cluster. Total WSS is 
used to determine the point where the WSS rapidly decreases based on the sum of squares of distances within 
the cluster as the appropriate number of clusters. The appropriate number of clusters was determined based on 
the results of the three test methods. Next, the mRNA expression pattern was classified based on our cluster 
according to lncRNA expression. The top 1,500 of the 20,531 coding genes were selected using the MAD method, 
similar to lncRNA. Differentially expressed genes were subsequently identified according to the group.

Functional enrichment analysis
The function of lncRNAs was predicted using the funcpred database35. Funcpred predicts lncRNA function 
using tissue-specific and evolutionarily conserved expression. The lncRNAs matching the coding genes were 
reclassified into gene sets to which the coding genes belonged. Functional analysis was performed using the 
hallmark gene annotation source, and significant gene set results satisfying p-value < 0.05 were selected. The 
number of lncRNAs contained in each gene set was subsequently counted. mRNA functional analysis was 
performed using gprofiler36, a public web server used to characterize and manipulate gene lists resulting from 
high-throughput mining of genomic data. mRNAs expressed specifically in each cluster were selected, and 
functional analysis was conducted using hallmark gene sets.

Identification of transcription factors
Master regulator inference analysis was performed based on the ARACNe and viper algorithms37,38. The analysis 
was conducted based on the ARACNe-AP package with default parameters as described on GitHub ​(​​​h​t​t​p​s​:​/​/​g​i​t​
h​u​b​.​c​o​m​/​c​a​l​i​f​a​n​o​-​l​a​b​/​A​R​A​C​N​e​-​A​P​​​​​)​. TRRUST39 and GTRD40 lists were collected for transcription factors, GO 
transcription factors, and active genes. In total, 2,192 transcription factors were selected41. Next, lncRNAs and 
mRNAs with upregulated expression were selected in each cluster; those showing positive correlation (Pearson’s 
Correlation, R ≥ 0.4) were then collected. As the transcription factor targeting the lncRNA was unknown, an 
indirect method through simultaneously upregulated mRNA expression was used. We used a t-test and generated 
a null model through sample permutations and subsequent t-tests to compare gene expression changes between 
groups. Master regulator inference analysis was conducted via the msviper function from the viper package 
(in R package v.1.40.0) using t-statistics, corresponding p-values, and a null model. P < 0.05 was considered 
statistically significant.

Construction of a network of master transcription factors
The eigen centrality of each transcription factor was identified using the tidygraph R package based on the 
results of the selected MTF42. lncRNAs with a positive correlation (R ≥ 0.4) with the target gene of the MTF were 
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selected to evaluate centrality. This approach enabled the linking of MTF—mRNA—lncRNA, and the result was 
visualized using Cytoscape (version 3.9.1)43. In addition, the topological properties of the regulatory network 
were visualized, and the direct crosstalk of the target gene was validated using the edge bundle function, a 
Cytoscape plug-in.

Enrichment analysis of transcription factors targeting related genes
The target gene of each transcription factor was selected based on the result confirming the master transcription 
factor (MTF). A single-sample gene set enrichment analysis (ssGSEA) was performed using the CCLE dataset 
to confirm the expression of selected target gene sets at the cellular level. The ssGSEA is a rank-based algorithm 
that calculates a score illustrating the level of absolute enrichment of a particular gene set in each sample. The 
ssGSEA was analyzed through the GenePattern (https://www.genepattern.org/), and the results were visualized 
through the heatmap R package.

Cell culture and transfections
The Caov3 (cat#30,075), OVCAR3 (cat#30,161), and SNU8 (cat#00,008) cell lines were purchased from the 
Korean Cell Line Bank (Seoul, Korea), whereas the 59  M (cat#89,081,802) cell line was purchased from the 
European Collection of Authenticated Cell Cultures (UK). All cell lines were authenticated using short tandem-
repeat profiling. The OVCAR3, SNU8, and 59 M cells were cultured in Roswell Park Memorial Institute medium 
(cat# 10040CV; Corning, NY, USA) supplemented with 10% fetal bovine serum (cat# 35015CV; Corning), 1% 
penicillin, and streptomycin. Similarly, CAOV3 cells were cultured in Dulbecco’s modified Eagle’s medium (cat# 
10013CV; Corning) supplemented with 10% fetal bovine serum (cat# 35015CV; Corning) and 1% penicillin and 
streptomycin (cat# 15,140,122; Thermo Fisher Scientific, Waltham, MA, USA).

Three different small interfering RNAs (siRNAs) targeting Musculin (MSC, cat# 9242–1, 9242–2, 9242–3), 
AE binding protein 1 (AEBP1, cat# 165–1, 165–2, 165–3), and CAMP responsive element binding protein 3 like 
1 (CREB3L1, cat# 90,993–1, 90,993–2, 90,993–3) were purchased from Bioneer (Daejeon, Korea). Non-targeting 
siRNA was used as a negative control. The RNAi oligonucleotide or RNAi negative control was transfected into 
the cells using a Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific) according to the 
manufacturer’s instructions.

RNA isolation and real-time PCR
Total RNA was extracted from cells using TRIzolⓇ reagent (Invitrogen, Waltham, MA, USA), and cDNA was 
synthesized from total RNA using the SuperScriptⓇ III First Strand Synthesis Kit (Invitrogen). Real-time PCR 
(qPCR) was performed using Power SYBRⓇ Green Master Mix (Applied Biosystems, Foster City, CA, USA) on 
the Step One™ Real-Time PCR System (Applied Biosystems). The comparative cycle threshold (CT) method was 
used to evaluate relative quantification. The primers used in quantitative reverse transcription PCR (RT-qPCR) 
are listed in Supplemental Table 1 Each experiment was performed in triplicate. GAPDH was used as an internal 
control.

Statistical analyses
SPSS statistics software (Version 26.0; IBM, Armonk, NY, USA) or GraphPad Prism (Version 10.4.1; GraphPad 
Software, San Diego, CA, USA) were used for statistical analyses. Overall and disease-free survival were 
calculated as the number of years between the year of diagnosis and the year of all-cause death, the date of last 
follow-up, or 5-year censored survival data. Survival analysis was assessed by comparing overall and disease-
free survival according to clusters classified using Kaplan–Meier curves and Log-rank tests44. The survival 
curve was plotted using the R package ‘survminer’ (v.0.5.0)45. Mean values were compared using Student’s t-test 
(two-tailed) and analysis of variance as appropriate. Pearson’s correlation coefficient was used to examine the 
relationship between lncRNAs and the genes of interest. Data are expressed as the mean ± SD, and all p-values 
are two-sided. p < 0.05 was considered statistically significant.

Data availability
We obtained data from 367 ovarian cancer (OVCA) samples in The Cancer Genome Atlas (TCGA, ​h​t​t​p​s​:​/​/​w​w​
w​.​c​a​n​c​e​r​.​g​o​v​/​t​c​g​a​​​​​) and identified 47 cell lines representing major OVCA subtypes from the Cancer Cell Line 
Encyclopedia (CCLE, https://sites.broadinstitute.org/ccle).
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