
Radiotherapy and Oncology 198 (2024) 110410

Available online 23 June 2024
0167-8140/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Original Article 

HaN-Seg: The head and neck organ-at-risk CT and MR 
segmentation challenge 
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A B S T R A C T   

Background and purpose: To promote the development of auto-segmentation methods for head and neck (HaN) 
radiation treatment (RT) planning that exploit the information of computed tomography (CT) and magnetic 
resonance (MR) imaging modalities, we organized HaN-Seg: The Head and Neck Organ-at-Risk CT and MR Seg-
mentation Challenge. 
Materials and methods: The challenge task was to automatically segment 30 organs-at-risk (OARs) of the HaN 
region in 14 withheld test cases given the availability of 42 publicly available training cases. Each case consisted 
of one contrast-enhanced CT and one T1-weighted MR image of the HaN region of the same patient, with up to 30 
corresponding reference OAR delineation masks. The performance was evaluated in terms of the Dice similarity 
coefficient (DSC) and 95-percentile Hausdorff distance (HD95), and statistical ranking was applied for each 
metric by pairwise comparison of the submitted methods using the Wilcoxon signed-rank test. 
Results: While 23 teams registered for the challenge, only seven submitted their methods for the final phase. The 
top-performing team achieved a DSC of 76.9 % and a HD95 of 3.5 mm. All participating teams utilized archi-
tectures based on U-Net, with the winning team leveraging rigid MR to CT registration combined with network 
entry-level concatenation of both modalities. 
Conclusion: This challenge simulated a real-world clinical scenario by providing non-registered MR and CT im-
ages with varying fields-of-view and voxel sizes. Remarkably, the top-performing teams achieved segmentation 
performance surpassing the inter-observer agreement on the same dataset. These results set a benchmark for 
future research on this publicly available dataset and on paired multi-modal image segmentation in general.   

Introduction 

Radiation therapy (RT) is, in addition to surgery and systemic ther-
apy, a cornerstone of head and neck (HaN) cancer treatment [1]. In 

parallel with improvements in organ-sparing surgery, introduction of 
new systemic agents and refinements of multi-modal treatment sce-
narios, advances in RT have over the past decades contributed signifi-
cantly to the preservation of organ function and reduction of mortality 
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in HaN cancer patients [1]. With the introduction of artificial intelli-
gence (AI), the RT workflow has witnessed a shift towards a more 
qualitative, standardized and fast implementation of a wide range of 
applications [2]. In comparison to manual slice-by-slice image delin-
eation [3–5], AI-assisted methods for medical image analysis perform 
auto-segmentation of tumor volumes and organs-at-risk (OARs) from 
three-dimensional (3D) computed tomography (CT) [6–10], magnetic 
resonance (MR) [11–14] and/or positron emission tomography (PET) 
[15] images. In the process of creating optimal patient-specific radiation 
dose distribution plans, auto-segmentation provides a faster RT work-
flow that is less labor-intensive with reduced intra- and inter-observer 
variability [2]. 

With a variety of AI-assisted methods at our disposal [16,17], 
computational challenges [18] provide a systematic and objective 
method evaluation. In a competition-oriented setup, challenge orga-
nizers release images with known reference delineation masks used by 
participants for method development. These methods are then evaluated 
on images with reference delineation masks available only to challenge 
organizers. Since 2009, six different computational challenges focusing 
on HaN OAR segmentation have been organized [19–23]. Five teams 
segmented the mandible and brainstem from 25 CT images during the 
Medical Image Computing and Computer Assisted Interventions (MIC-
CAI) 2009 conference [19], six teams segmented the parotid glands from 
the same database during MICCAI 2010 [20], and six teams segmented 
six OARs (i.e. brainstem, mandible, optic chiasm, optic nerves, parotid 
glands, submandibular glands) from 40 CT images during MICCAI 2015 
[21] within the Head and Neck Auto-Segmentation Challenge. During the 
2019 Annual Meeting of the American Association of Physicists in 
Medicine (AAPM), 10 teams segmented the parotid glands, subman-
dibular glands and lymph nodes from 55 MR images within the Auto-
segmentation on MRI for Head-and-Neck Radiation Treatment Planning 
Challenge (RT-MAC) [22], while during MICCAI 2019, 12 teams 
segmented 13 OARs (i.e. eyes, lens, optic nerves, optic chiasm, pituitary 
gland, brainstem, temporal lobes, spinal cord, parotid glands, inner ear, 
middle ear, temporo-mandibular joints and mandible) from 60 CT im-
ages within the StructSeg2019: Automatic Structure Segmentation for 
Radiotherapy Planning Challenge.1 Finally, during MICCAI 2023, 12 
teams segmented a complete set of 45 different OARs from 200 CT scans 
within the SegRap2023: Segmentation of Organs-at-Risk and Gross Tumor 
Volume of Nasopharyngeal Carcinoma for Radiotherapy Planning Challenge 
[23]. 

While the number of images for method development and evaluation 
as well as the number of OARs to segment have increased with years, no 
computational challenge has yet targeted HaN OAR segmentation by 
combining multi-modal information from CT and MR images of the same 
patients. The information obtained from MR images has been recom-
mended to complement CT images to improve the visualization of soft 
tissues [3,24,25], and proved to be particularly beneficial for delin-
eating and segmenting both tumor volumes and OARs in the HaN region 
[3,26]. As a result, auto-segmentation methods integrating both mo-
dalities have been proposed [27–29] that may, by replacing CT image 
acquisition with synthetic CT image generation [30,31], further 
contribute to the paradigm of MR-only RT [32–35]. To promote the 
development of new and application of existing state-of-the-art auto- 
segmentation methods, we therefore organized HaN-Seg: The Head and 
Neck Organ-at-Risk CT and MR Segmentation Challenge that was held on 
the Grand Challenge online platform2 between March 2023 and February 
2024. In this report, we provide details about the HaN-Seg challenge 
organization, submitted methods and obtained results. 

Materials and methods 

Dataset 

The HaN-Seg challenge data consisted of 56 cases [36], where each 
case is represented by one contrast-enhanced CT and one T1-weighted 
MR image of the HaN region of the same patient that was appointed 
for RT due to previous cancer diagnosis, with corresponding curated 
reference 3D delineation masks for CT images of up to 30 OARs (Fig. 1). 
Each case was delineated by an RT technologist or radiation oncologist, 
and the resulting delineations were curated by a medical imaging 
researcher. In each phase, the 3D OAR delineation masks were defined 
for CT images but were obtained by aid of co-registered MR images 
(please refer to [36] for dataset details). The cases were randomly split 
into a training set with 42 cases that is publicly available3 [36] and was 
used by participants for method development, and a test set with 14 
cases that is withheld and was used by the organizers for method 
evaluation. 

Challenge setup 

The task of the HaN-Seg challenge was to automatically segment 30 
OARs in the HaN region from the devised test set given the availability of 
the training set, i.e. to provide 3D OAR segmentation masks in the co-
ordinate system of each test CT image by considering a pair of CT and 
MR images is available for each training and test case. The challenge was 
organized by taking into account the current guidelines for biomedical 
image analysis competitions [18]. Participants were required to register 
as a team on the Grand Challenge online platform, and submit their 
methods in the form of Docker containers. In the Preliminary Test Phase, 
each participant was allowed to submit multiple methods (limited to one 
submission per week over a period of 31 weeks). Each submitted method 
was then executed on the platform with its performance estimated on 
four pre-selected cases from the test set, and the resulting team rankings 
were updated on the live public leaderboard. In the Final Test Phase, 
both existing and new participants were allowed to submit multiple 
methods (limited to one submission per day over a period of 15 weeks), 
which were executed on all 14 cases from the test set. The best- 
performing final methods were ranked according to their performance. 

Evaluation metrics and ranking 

The submitted methods were evaluated in terms of the Dice simi-
larity coefficient (DSC) and 95-percentile Hausdorff distance (HD95), 
implemented by Google DeepMind4 [7], which are established metrics 
for assessing segmentation performance in RT [16,37,38]. Statistical 
ranking was applied for each metric by pairwise comparison of the 
methods using the Wilcoxon signed-rank test [39] with Bonferroni 
correction, resulting in a significance score and metric-specific rank. 
Specifically, separately for each metric, if a method resulted to be sta-
tistically significantly better in performance than the method it was 
compared to, its significance score was increased by 1 (from the initial 
zero value). According to the aggregated significance scores, ranks were 
assigned separately for each metric. Identical ranks were assigned to 
algorithms that showed only marginal performance differences so as to 
evaluate only statistically significant differences among methods. The 
final rank was obtained by aggregating the ranks over both metrics, and 
in the case it was equal for multiple methods, they were ordered ac-
cording to the mean of both metrics. 

1 https://structseg2019.grand-challenge.org  
2 https://han-seg2023.grand-challenge.org 

3 https://doi.org/10.5281/zenodo.7442914  
4 https://github.com/google-deepmind/surface-distance 
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Results 

In total, seven teams submitted their methods to the Final Test Phase 
of the HaN-Seg challenge, however, one team was excluded from further 

analysis because the submitted method produced trivial segmentation 
results (i.e. empty segmentation masks or masks without any overlap 
with or resemblance to the OARs in the HaN region), and one team chose 
not to participate in the challenge report. The remaining five teams and 

Fig. 1. An example of a case from the publicly available HaN-Seg dataset [36], consisting of one contrast-enhanced computed tomography (left, top) and one T1- 
weighted magnetic resonance (left, bottom) head and neck image of the same patient, with up to 30 corresponding reference organ-at-risk segmentation 
masks (right). 

Table 1 
The teams participating in the HaN-Seg challenge with corresponding short descriptions and main properties (i.e. method architecture, employed modalities and 
registration type).  

Team Description Architecture Modality Registration 

eli1 
(E. T.) 

A multi-modal nnU-Net [41] (i.e. a self-configuring U-Net [40]) was used with standard parameter settings 
for segmentation with the default Dice and cross-entropy loss [49,50]. To leverage the knowledge from the 
MR modality, they focused on an efficient and robust rigid MR-to-CT image registration that was based on 
SimpleElastix, an extension of the open-source toolbox elastix [51] within the SimpleITK framework [52]. 
Image preprocessing consisted of unifying image voxel size to CT resolution (i.e. voxel size was made 
consistent across images). 

nnU-Net CT & MR Rigid      

cwlg102 
(C. L. & J. S. K.) 

A localization stage was first used, where the OAR bounding boxes were detected in 2D axial CT image 
cross-sections using YOLOv7 [53], followed by a segmentation stage, where cropped OARs were segmented 
using the 3D patch-based DynUNet, which mimics the concept of nnU-Net [41] within the MONAI 
framework [54] with the Dice and binary cross-entropy loss [49,50]. Image preprocessing consisted of 
resizing all CT images to the axial resolution of 1024 × 1024 pixels and intensity histogram matching 
normalization. The final model was obtained by six-fold cross-validated ensemble voting on the training set. 
While they experimented with rigid image registration, their final submission relied exclusively on CT 
images. 

DynUNet(nnU- 
Net) 

CT Not applied      

CHB-QuantIF 
(Z. M. & R. M.) 

Transfer learning was applied on the publicly available STU-Net-B model [55], which is a modified version 
of nnU-Net [41], pre-trained on 1204 TotalSegmentator CT images [56]. Additionally, the class-adaptive 
Dice loss function [57] was used to tackle the differences in OAR volumes. Image preprocessing consisted of 
unifying image voxel size, and rigid registration of MR to CT images using ANTsPy [58]. 

nnU-Net CT & MR Rigid      

Mamaa 
(Y. M. & F.Y.) 

A framework named UID-Net was used consisting of a U-Net segmentation backbone [40], where a basic 
convolution block was augmented with two Inception modules [59] and depthwise separable convolutions  
[60] to extract features at multiple scales, and enhance non-linearity and feature capabilities. Deep 
supervision [61] was used to enhance robustness, gradient propagation and feature representation, and 
Dice loss [49] to handle class imbalance. Image preprocessing consisted of unifying image voxel size, 
intensity normalization by segmental linear functions [62], and registration by translating the mid-coronal 
2D cross-sections of MR images to align with those of CT images. 

UID-Net(nnU- 
Net) 

CT & MR Translation      

m.m.gs The team chose not to participate in the report, and consequently the method description is omitted.      

TurboMiki 
(M. R. & M.W.) 

The U-Net [40] with additional residual connections was used for segmentation that concatenated the CT 
and MR image into a single framework input, and applied a weighted sum of the Dice and focal loss [49,63]. 
Image preprocessing consisted of resizing all images to the axial resolution of 512 × 512 pixels. 

U-Net CT & MR Not applied 

CT: computed tomography; MR: magnetic resonance; OAR: organ-at-risk; 2D: two-dimensional; 3D: three-dimensional. 
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their corresponding methods are introduced in Table 1. 
The mean performance of each method was calculated from the re-

sults obtained on the 14 cases from the test set, and the results for each 
individual OAR are presented in Table 2 in terms of DSC and Table 3 in 
terms of HD95. If a method produced an empty segmentation mask, it 
was assigned a DSC of zero and the maximum HD95 over all six methods 
for that particular organ. Results across all OARs and test cases are 
shown as box-plots in Fig. 2. In terms of DSC, the overall mean ±
standard deviation performance was 76.9 ± 8.4 %, 76.8 ± 9.3 %, 75.1 
± 8.6 %, 75.2 ± 8.4 %, 73.1 ± 14.0 % and 60.9 ± 11.6 %, and the 
overall median (interquartile range) performance was 81.0 % (18.6 %), 
80.2 % (17.2 %), 78.1 % (18.9 %), 78.0 % (18.5 %), 77.5 % (20.2 %) and 
67.9 % (27.2 %) for teams eli1, cwlg102, CHB-QuantIF, Mamaa, m.m.gs 
and TurboMiki, respectively. In terms of HD95, the overall mean ±
standard deviation performance was 3.5 ± 2.4 mm, 3.8 ± 3.8 mm, 3.7 
± 2.3 mm, 3.9 ± 2.7 mm, 9.1 ± 18.4 mm and 14.0 ± 16.2 mm, and the 
overall median (interquartile range) performance was 2.7 mm (2.2 mm), 
3.0 mm (2.6 mm), 3.0 mm (2.6 mm), 3.0 mm (2.5 mm), 3.2 mm (4.0 
mm) and 5.5 mm (6.5 mm) for teams eli1, cwlg102, CHB-QuantIF, 
Mamaa, m.m.gs and TurboMiki, respectively. According to the ob-
tained results, the most difficult OARs to segment were the optic chiasm, 
arytenoids and lacrimal glands, while the best segmentation perfor-
mance was observed for the mandible, posterior part of the eyeballs, 
brainstem and thyroid gland. 

The statistical ranking results, obtained from computing significance 
scores and metric-specific ranks, are reported in Table 4. The overall 
differences in the performance between the first- and second-ranked 
teams (i.e. eli1 and cwlg102, respectively) were relatively small. How-
ever, the differences become more evident when observing the results 
for specific OARs (Table 2 and Table 3). In fact, when the first-ranked 
team outperformed the second-ranked team, the differences were 

larger than for the reverse scenario, especially in the case of HD95. The 
third-ranked teams (i.e. CHB-QuantIF and Mamaa) closely follow the 
first two teams, with no statistically significant differences between 
them. Finally, the two bottom-ranked teams (i.e. m.m.gs and TurboMiki) 
exhibit a considerable drop in performance, both in terms of DSC 
(Table 2) and HD95 (Table 3). 

Discussion 

In this study, we present the outcomes of the HaN-Seg computational 
challenge, where participants were tasked with segmenting 30 OARs 
from paired CT and MR images. With 42 segmented image pairs for 
training, methods in the form of Docker containers were evaluated on 14 
unseen pairs. The evaluation employed DSC and HD95 metrics, with final 
rankings determined through statistical testing. The winning approach 
utilized rigid MR to CT registration, achieving 76.9 % and 3.5 mm in 
terms of mean DSC and mean HD95, respectively, across all OARs. Ad-
vancements in various aspects of AI, specifically deep learning meth-
odologies, including training efficiency, data augmentation, feature 
fusion techniques, and inference methods, have been driving the prog-
ress in medical image segmentation. Computational challenges provide 
a unique opportunity to objectively compare different methods on held- 
out test datasets, utilizing uniform evaluation metrics and minimizing 
bias. We structure our discussion of the HaN-Seg results into two pri-
mary components: methodological considerations of the submitted ap-
proaches and their clinical implications. We conclude by reflecting on 
the limitations of our study and suggesting potential avenues for future 
research. 

Table 2 
The HaN-Seg challenge segmentation results in terms of the mean Dice similarity coefficient (DSC) for each participating team and each organ-at-risk (OAR). The best 
mean values are in bold.  

OAR  DSC: mean ± standard deviation (%)  

eli1 cwlg102 CHB-QuantIF Mamaa m.m.gs TurboMiki 

Carotid artery (L)  82.8 ± 5.1  85.2 ± 4.5 79.6 ± 6.0  80.1 ± 5.8 71.2 ± 19.4  63.8 ± 9.5 
Carotid artery (R)  85.2 ± 3.3  86.8 ± 3.5 82.4 ± 3.8  81.7 ± 5.2 69.8 ± 22.1  63.8 ± 7.3 
Arytenoids  59.9 ± 14.3  52.3 ± 23.9 55.4 ± 13.1  62.1 ± 12.5 47.7 ± 26.5  39.6 ± 14.2 
Mandible  94.3 ± 1.7  95.0 ± 1.6 94.2 ± 1.3  93.2 ± 2.0 94.6 ± 2.1  88.1 ± 2.7 
Brainstem  88.5 ± 4.7  84.9 ± 3.1 86.9 ± 3.4  84.6 ± 3.6 85.4 ± 4.9  79.9 ± 3.4 
Buccal mucosa  69.1 ± 8.9  71.1 ± 7.3 67.2 ± 9.5  68.0 ± 9.9 70.9 ± 8.4  59.7 ± 11.1 
Oral cavity  89.4 ± 4.6  89.4 ± 4.5 89.6 ± 4.5  88.9 ± 4.0 87.6 ± 6.3  85.6 ± 4.4 
Cochlea (L)  73.4 ± 10.1  78.8 ± 7.8 69.1 ± 8.7  72.5 ± 8.6 69.9 ± 14.7  61.6 ± 12.4 
Cochlea (R)  74.1 ± 10.6  78.2 ± 8.1 68.6 ± 12.2  66.2 ± 12.5 67.4 ± 18.9  58.9 ± 19.1 
Cricopharyngeal inlet  64.5 ± 11.4  62.8 ± 9.4 62.8 ± 11.2  62.4 ± 11.0 59.9 ± 18.0  55.5 ± 11.0 
Cervical esophagus  63.1 ± 13.2  62.1 ± 12.3 61.8 ± 11.9  58.3 ± 14.6 54.8 ± 17.5  52.6 ± 15.2 
Eyeball (A, L)  76.6 ± 7.5  79.1 ± 7.0 77.6 ± 4.8  76.3 ± 8.0 75.0 ± 14.0  62.9 ± 22.4 
Eyeball (A, R)  78.5 ± 7.2  80.6 ± 5.7 78.6 ± 5.0  78.8 ± 5.1 72.3 ± 20.6  64.9 ± 13.9 
Eyeball (P, L)  92.0 ± 2.0  93.0 ± 1.4 91.5 ± 1.9  91.5 ± 2.3 92.5 ± 2.2  86.0 ± 6.3 
Eyeball (P, R)  91.2 ± 1.6  92.6 ± 1.4 91.1 ± 1.4 91.5 ± 1.9 91.7 ± 2.1  84.9 ± 6.3 
Lacrimal gland (L)  60.8 ± 14.8  65.3 ± 10.4 61.4 ± 13.6  61.8 ± 9.6 66.3 ± 10.3  45.0 ± 16.2 
Lacrimal gland (R)  61.9 ± 15.2  64.2 ± 13.7 61.1 ± 11.9  59.4 ± 13.2 61.2 ± 16.3  39.6 ± 24.3 
Submandibular gland (L)  85.7 ± 8.2  82.2 ± 10.8 83.1 ± 10.8  82.7 ± 10.3 82.5 ± 10.5  74.7 ± 10.4 
Submandibular gland (R)  84.5 ± 6.5  82.9 ± 7.0 83.1 ± 6.6  83.2 ± 9.0 85.1 ± 5.3  73.8 ± 6.6 
Thyroid gland  88.3 ± 4.7  85.4 ± 15.3 86.9 ± 5.5  86.5 ± 7.0 86.9 ± 6.3  79.3 ± 8.9 
Glottic larynx  75.0 ± 6.9  67.5 ± 11.2 73.3 ± 6.4  73.1 ± 6.8 70.6 ± 14.1  64.1 ± 11.0 
Supraglottic larynx  80.9 ± 5.1  79.3 ± 7.0 79.7 ± 6.5  79.4 ± 4.9 79.0 ± 6.1  73.8 ± 8.6 
Lips  74.0 ± 8.0  73.8 ± 10.2 73.5 ± 8.7  72.1 ± 8.8 71.0 ± 11.9  65.5 ± 8.5 
Optic chiasm  44.6 ± 8.6  45.6 ± 13.2 41.1 ± 16.2  44.4 ± 10.1 35.3 ± 15.4  31.9 ± 16.1 
Optic nerve (L)  67.7 ± 11.8  71.7 ± 8.7 64.3 ± 10.0  65.8 ± 11.2 65.8 ± 16.9  47.1 ± 11.0 
Optic nerve (R)  72.5 ± 7.5  75.5 ± 5.3 67.2 ± 8.3  71.8 ± 5.6 68.5 ± 13.6  0.0 ± 0.0 
Parotid gland (L)  86.7 ± 2.2  85.1 ± 3.8 86.1 ± 2.2  83.9 ± 3.1 83.0 ± 11.5  76.3 ± 7.8 
Parotid gland (R)  85.7 ± 3.7  82.1 ± 6.6 84.0 ± 4.1  82.8 ± 4.6 82.1 ± 6.2  72.6 ± 8.3 
Pituitary gland  73.6 ± 9.2  68.7 ± 12.4 68.0 ± 14.4  71.5 ± 12.7 63.5 ± 22.4  0.0 ± 0.0 
Spinal cord  83.3 ± 2.4  82.0 ± 3.9 82.4 ± 2.9  80.2 ± 5.0 80.2 ± 7.5  74.6 ± 4.5 

Mean performance  76.9 ± 8.4  76.8 ± 9.3 75.1 ± 8.6  75.2 ± 8.4 73.1 ± 14.0  60.9 ± 11.6 

L: left; R: right; A: anterior; P: posterior. 
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Methodological details 

A high unification regarding the deep learning architectures is 
observed across all teams, all employing a modification of the U-Net 
architecture [40], predominantly based on the nnU-Net framework 
[41]. We hypothesize that this is due to the strong inductive bias of the 
convolutional neural networks (CNNs), which has been identified as 
particularly beneficial when the training dataset is of moderate size 
[42]. Moreover, CNNs can rival and outperform the performance of 
novel attention-based networks such as Transformers or Mamba net-
works [43]. Last but not least, the U-Net architecture and its variants, 
such as the nnU-Net framework, are established in the medical imaging 
community, are easy to access through publicly available implementa-
tions, and proved to generate state-of-the-art results on several publicly 
available datasets used in different biomedical segmentation challenges 

[41]. Perhaps surprising is that all multi-modal methods used the early 
fusion approach, i.e. input level channel concatenation of CT and MR 
modalities [44], whereas hybrid or late fusion might be advantageous to 
extract high-level features before the fusion [45]. Although not related 
to CT and MR image fusion, the method proposed by team cwlg102 is the 
only one using majority voting based on an ensemble of networks 
trained on different folds of the training set. 

The challenge was designed to resemble the challenging real-world 
clinical scenario, by providing non-registered planning CT and MR im-
ages, which included metal and motion-related artifacts. As seen in 
clinical practice, CT and MR images of the same subject exhibit varying 
fields-of-view (FoV), with MR modalities commonly featuring a smaller 
FoV compared to CT due to acquisition intricacies such as MR acquisi-
tion time. Consistent with the clinical workflow, participants were 
tasked with providing OAR segmentation masks in the CT image space, 

Table 3 
The HaN-Seg challenge segmentation results in terms of the mean 95-percentile Hausdorff distance (HD95) for each participating team and each organ-at-risk (OAR). 
The best mean values are in bold.  

OAR  HD95: mean ± standard deviation (mm)  

eli1 cwlg102 CHB-QuantIF Mamaa m.m.gs TurboMiki 

Carotid artery (L)   3.5 ± 4.6  3.0 ± 4.2  4.7 ± 5.2  5.0 ± 5.3  44.7 ± 21.1  17.8 ± 3.6 
Carotid artery (R)   2.7 ± 4.6  4.3 ± 9.5  3.2 ± 3.1  3.0 ± 4.1  55.7 ± 42.3  27.3 ± 16.4 
Arytenoids   3.0 ± 1.4  4.7 ± 4.8  3.6 ± 1.4  2.8 ± 1.3  6.2 ± 5.4  5.0 ± 2.5 
Mandible   1.3 ± 0.8  1.2 ± 0.8  1.4 ± 0.7  1.6 ± 0.8  1.7 ± 1.1  5.2 ± 2.3 
Brainstem   3.9 ± 2.1  4.7 ± 1.6  4.6 ± 1.8  4.5 ± 1.6  4.8 ± 2.7  5.5 ± 1.3 
Buccal mucosa   5.3 ± 2.4  5.1 ± 2.5  5.5 ± 2.6  5.8 ± 2.7  5.5 ± 2.4  6.5 ± 2.2 
Oral cavity   5.3 ± 2.6  5.4 ± 2.4  5.0 ± 2.1  5.8 ± 2.7  15.8 ± 35.3  7.2 ± 2.2 
Cochlea (L)   1.4 ± 0.7  1.3 ± 0.8  2.0 ± 0.6  1.7 ± 0.8  9.9 ± 30.3  9.6 ± 27.8 
Cochlea (R)   1.9 ± 0.9  1.6 ± 0.9  2.3 ± 0.7  2.4 ± 1.3  1.9 ± 1.0  2.3 ± 0.9 
Cricopharyngeal inlet   6.4 ± 3.5  6.5 ± 3.5  6.2 ± 3.7  7.2 ± 6.7  6.4 ± 4.0  7.5 ± 3.7 
Cervical esophagus   8.0 ± 4.9  7.5 ± 3.7  7.6 ± 3.8  8.1 ± 3.3  7.9 ± 3.9  8.4 ± 3.9 
Eyeball (A, L)   2.3 ± 0.6  2.4 ± 0.7  2.5 ± 0.5  2.3 ± 0.7  2.6 ± 0.9  3.2 ± 1.4 
Eyeball (A, R)   2.3 ± 1.2  2.1 ± 0.7  2.3 ± 0.7  2.1 ± 0.6  2.5 ± 1.4  3.5 ± 1.5 
Eyeball (P, L)   1.9 ± 0.5  1.5 ± 0.3  1.8 ± 0.6  1.8 ± 0.5  1.6 ± 0.7  2.9 ± 1.4 
Eyeball (P, R)   1.9 ± 0.6  1.6 ± 0.5  2.1 ± 0.5  1.8 ± 0.5  1.9 ± 0.6  2.8 ± 1.0 
Lacrimal gland (L)   3.9 ± 1.7  3.1 ± 1.2  3.1 ± 1.6  3.4 ± 1.7  3.3 ± 1.5  4.1 ± 1.7 
Lacrimal gland (R)   3.7 ± 1.9  3.6 ± 1.6  3.8 ± 1.8  3.9 ± 1.7  4.1 ± 2.1  6.1 ± 2.9 
Submandibular gland (L)   3.1 ± 2.4  6.5 ± 11.3  4.3 ± 4.4  5.1 ± 5.9  7.7 ± 12.4  5.0 ± 2.8 
Submandibular gland (R)   3.9 ± 2.8  4.1 ± 2.8  4.1 ± 2.4  4.5 ± 3.2  3.8 ± 2.1  6.2 ± 2.3 
Thyroid gland   2.6 ± 2.0  4.0 ± 7.0  2.9 ± 2.1  3.1 ± 3.2  3.3 ± 2.3  4.7 ± 2.6 
Glottic larynx   2.8 ± 1.2  3.7 ± 1.9  3.0 ± 1.2  3.4 ± 1.3  14.4 ± 39.9  4.3 ± 2.1 
Supraglottic larynx   3.5 ± 1.2  4.2 ± 1.7  3.4 ± 1.3  3.6 ± 1.3  4.4 ± 2.0  4.2 ± 1.9 
Lips   6.5 ± 3.2  6.3 ± 3.0  6.5 ± 2.9  6.9 ± 3.0  8.1 ± 4.1  8.3 ± 4.3 
Optic chiasm   4.2 ± 1.7  4.4 ± 2.1  4.4 ± 1.8  4.1 ± 1.6  5.4 ± 2.1  6.3 ± 2.5 
Optic nerve (L)   2.6 ± 1.5  2.2 ± 0.9  2.4 ± 0.8  2.4 ± 0.9  6.4 ± 8.9  5.4 ± 3.3 
Optic nerve (R)   2.7 ± 1.9  2.5 ± 1.6  2.8 ± 0.9  2.7 ± 0.9  5.5 ± 7.4  28.5 ± 0.0 
Parotid gland (L)   5.1 ± 2.6  5.1 ± 2.5  5.3 ± 3.5  5.9 ± 3.0  8.3 ± 8.4  8.8 ± 3.5 
Parotid gland (R)   5.3 ± 3.1  6.6 ± 5.1  6.2 ± 3.1  6.4 ± 3.5  6.0 ± 2.4  51.1 ± 36.1 
Pituitary gland   2.1 ± 0.7  2.4 ± 1.0  2.6 ± 1.1  2.3 ± 1.0  18.6 ± 60.4  159.9 ± 73.2 
Spinal cord   2.6 ± 2.4  2.1 ± 1.2  2.0 ± 0.6  2.3 ± 1.1  5.9 ± 6.5  3.7 ± 2.6 

Mean performance   3.5 ± 2.4  3.8 ± 3.8  3.7 ± 2.3  3.9 ± 2.7  9.1 ± 18.4  14.0 ± 16.2 

L: left; R: right; A: anterior; P: posterior. 

Fig. 2. Box plots comparing all six teams in terms of the Dice similarity coef-
ficient (DSC) and 95th percentile Hausdorff distance (HD95), shown in the top 
and bottom rows, respectively. 

Table 4 
The results of the statistical ranking of submitted methods in the HaN-Seg 
challenge according to the Dice similarity coefficient (DSC) and 95-percentile 
Hausdorff distance (HD95) significance score (S) and corresponding rank (R).  

Method DSC HD95 Ranking 

S R S R Aggregate Final 

eli1 4 1 4 1 2 1 
cwlg102 4 1 3 2 3 2 
CHB-QuantIF 1 3 2 3 6 3* 
Mamaa 1 3 2 3 6 3* 
m.m.gs 1 3 1 5 8 5 
TurboMiki 0 6 0 6 12 6  

* Team Mamaa had a higher mean DSC and team CHB-QuantIF had a higher 
mean HD95, therefore resulting in a shared final rank. 
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where voxel sizes were not standardized across all CT images. Before 
feeding the images into their networks, teams tackled this challenge by 
either resizing the images to a uniform size or resampling them to 
achieve consistent voxel spacing, after which they applied cropping. 
Following inference, segmentation masks underwent resampling to 
match the physical space of the source CT images. 

Clinical implications 

The clinical utility of the proposed auto-segmentation tools can be 
assessed by comparing their performance with the intra- and inter- 
observer agreement [46,47]. Despite the demanding nature of the 
problem, the two top-performing methods by teams eli1 and cwlg102 
performed better than the inter-observer agreement for the majority of 
organs, as observed between a junior and a senior expert on CT images 
from the same dataset as used in the challenge [46]. This indicates that 
auto-segmentation tools are increasingly applicable in clinical practice, 
which is reinforced by the recent FDA approval of several auto- 
contouring tools for OARs [48]. 

The incorporation of the MR image modality in the auto- 
segmentation framework remains a challenging task. Besides the fact 
that the multi-modal setting inherently poses a more computationally 
demanding training due to the input dimensionality growth, the method 
needs to robustly perform multi-modal (MR-CT) registration and be able 
to handle missing information in order to achieve complete end-to-end 
automation. For example, in case the MR image has a smaller FoV 
than the CT image, one trivial solution is to simply pad the image, 
however, the segmentation model still needs to be trained to produce 
high-quality segmentation masks, e.g. by relying solely on information 
provided by the CT modality. Indeed, this is not trivial − team cwlg102 
tested their models with or without the inclusion of rigidly registered 
MR images and opted to completely disregard the MR image modality 
and use an ensemble that relies solely on CT images. 

While oncologists find MR images an invaluable source of informa-
tion for OAR delineation, there are several potential reasons why CNNs 
did not benefit from MR images, which can be observed from the solid 
performance of team cwlg102 that relied on CT images only, in com-
parison to other teams that relied on both CT and MR images (Table 4). 
Firstly, CNN performance is expected to significantly depend on the 
registration accuracy, as modality misalignments may hinder CNNs in 
accurately extracting meaningful intensity patterns from the images. 
Rigid registration selected by some teams due to its computation effi-
ciency cannot result in perfect CT and MR alignment. While being more 
accurate, non-rigid registration can be sometimes too time-consuming 
and therefore violate the 15-minute time frame allocated for each seg-
mentation by the challenge setting. Secondly, the moderate size of the 
dataset could be a limiting factor. Given the complexities of registration 
and the presence of various artifacts affecting CT and MR image quality, 
it is plausible that a larger dataset is required to effectively train CNNs 
on MR-CT pairs compared to CT images alone. Thirdly, the early fusion 
approach employed by the CNNs may not be optimal for extracting 
meaningful features from MR images. Layer- or late-fusion techniques 
could potentially be more effective in mitigating registration-related 
misalignments and extracting valuable features from both modalities 
[44]. This suggests that alternative fusion strategies may be worth 
exploring to improve the utilization of the MR modality to aid model 
performance. Lastly, although obtained by aid of co-registered MR im-
ages, the reference 3D OAR delineation masks were defined in the co-
ordinate system of CT images [36], which may inherently cause to favor 
CT over MR images. 

Limitations and future perspectives 

One limitation of this challenge is the moderate dataset size, con-
sisting of 42 training and 14 test cases. However, to ensure objectivity 
and rigorous comparison between the competing teams, rankings were 

determined through statistical testing, with 420 measurements per 
method (i.e. 14 test cases multiplied by 30 OARs) for each metric. This is 
illustrated by a third place tie between the team CHB-QuantIF and team 
Mamaa, a scenario that would not occur if rankings were based solely on 
mean values. Another potential limitation was the restricted execution 
time, capped at 15 min per test case, and the available inference VRAM 
limited to 16 GB. Feedback from the participants suggested that time 
constraints led to the prevalence of rigid over deformable registration. 
Additionally, limited GPU VRAM necessitated the adjustment of patch 
sizes and overlap ratios during sliding window inference. Nonetheless, 
while these resource limitations required participants to adapt their 
methods, they reflect practical constraints often encountered in clinical 
settings, where time and computational resources may be limited as 
well. 

Despite the limitations, the challenge unequivocally demonstrated 
that auto-segmentation tools can achieve performance comparable to or 
even surpassing inter-observer agreement, thus underscoring their 
clinical utility. However, while quantitative analyses provide valuable 
insights, multi-center qualitative studies are imperative to validate the 
practical applicability of these methods in clinical practice. We hope 
that this challenge will inspire future endeavors on larger datasets of 
paired CT and MR multi-modal images, facilitating extensive experi-
ments on how deep learning methods can leverage both modalities 
amidst various artifacts and image quality variations. 

Conclusion 

The HaN-Seg challenge, alongside the publicly available HaN-Seg 
dataset [36], establishes a benchmark for objectively comparing new 
methods in OAR segmentation within the HaN region from CT, MR, or 
combined CT and MR images. The obtained performance results, 
coupled with the prevalence of U-Net architectures among the partici-
pants, suggest that innovations in method architecture may not be 
paramount for method performance, and that more emphasis is instead 
put on method robustness and improving worst-case performance. We 
hope that our findings will encourage and facilitate the development of 
novel general-purpose multi-modal methods for semantic segmentation. 
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