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Abstract: Knee effusion, a common and important indicator of joint diseases such as osteoarthritis, is
typically more discernible on magnetic resonance imaging (MRI) scans compared to radiographs.
However, the use of radiographs for the early detection of knee effusion remains promising due
to their cost-effectiveness and accessibility. This multi-center prospective study collected a total of
1413 radiographs from four hospitals between February 2022 to March 2023, of which 1281 were
analyzed after exclusions. To automatically detect knee effusion on radiographs, we utilized a state-
of-the-art (SOTA) deep learning-based classification model with a novel preprocessing technique
to optimize images for diagnosing knee effusion. The diagnostic performance of the proposed
method was significantly higher than that of the baseline model, achieving an area under the receiver
operating characteristic curve (AUC) of 0.892, accuracy of 0.803, sensitivity of 0.820, and specificity of
0.785. Moreover, the proposed method significantly outperformed two non-orthopedic physicians.
Coupled with an explainable artificial intelligence method for visualization, this approach not only
improved diagnostic performance but also interpretability, highlighting areas of effusion. These
results demonstrate that the proposed method enables the early and accurate classification of knee
effusions on radiographs, thereby reducing healthcare costs and improving patient outcomes through
timely interventions.

Keywords: knee joint effusion; radiographs; orthopedic diagnosis; deep learning; classification;
visualization

1. Introduction

Knee effusion is a primary symptom of knee joint diseases, particularly common
among patients with degenerative arthritis such as osteoarthritis [1–3]. Without timely
detection and appropriate treatment, effusion can lead to significant consequences, causing
continuous joint deterioration and impacting patients’ quality of life [4–6].

According to orthopedic diagnostic guidelines, identifying effusion in X-ray images
involves recognizing a well-defined, rounded, homogeneous soft tissue density in the
suprapatellar recess on lateral X-rays [7–9]. However, effusion is often challenging to
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discern in X-ray images, particularly in the early stages due to subtle initial signs that
can be easily overlooked. While magnetic resonance imaging (MRI) offers better clarity
for diagnosing knee effusion, assessing effusion in X-ray images is crucial for optimizing
time and cost efficiency [10,11]. Therefore, radiographic imaging plays a pivotal role in
diagnosing knee effusion [12–15].

Recent advancements in radiology have shown significant research growth, partic-
ularly in the application of artificial intelligence (AI) and deep learning for radiological
evaluations and automation [16–20]. Notably, these advancements in X-ray imaging have
shown promising results for early disease detection [21,22]. Despite the demonstrated
efficacy of deep learning across various radiological applications, to our knowledge, no AI
research exists for diagnosing knee effusion in X-ray images. Current studies have mainly
focused on knee joint recognition and the severity assessment of knee osteoarthritis [23–25].
Additionally, attempts to visualize effusion areas in joints have been limited to the elbow
region [26], leaving a notable gap in similar applications for knee effusion detection.

Therefore, this study proposes an AI-based diagnostic methodology that enhances
orthopedic diagnoses by classifying and visualizing knee joint effusion on X-ray imaging.
Our approach involves performing image-level classification of knee effusion using novel
preprocessing techniques, focusing on identifying predominant effusion sites. Additionally,
we visualize the effusion areas through weakly supervised localization.

2. Materials and Methods
2.1. Patient Population

This multi-center prospective study was approved by the institutional review board,
and written consent for all subjects was waived. We acquired X-ray images from 1413 cases
from four hospitals, which were prospectively collected between February 2022 and March
2023. We excluded 132 cases based on the following criteria: (a) incomplete visibility of
effusion areas, (b) overlapping left and right knees in a single radiograph, (c) images that
are blurred or excessively dark or bright, and (d) presence of orthopedic hardware such as
K-wires (KW) around the patella. The remaining 1281 cases were randomly divided into an
80% of training set and a 20% of test set. The data flow diagram is illustrated in Figure 1.
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As shown in Figure 1, 300 randomly selected effusion cases in the training set were
annotated with bounding boxes (bbox) around the patella by a medical AI researcher to
train a patella detection model. The dataset was then divided into a training set of 200 cases
(67%) and a test set of 100 cases (33%). Additionally, three orthopedic physicians, each
with more than 10 years of experience, annotated all cases for the presence of effusion.
Effusion was defined as a well-defined, rounded, homogeneous soft tissue density within
the suprapatellar recess on a lateral radiograph. Consequently, the training set included
496 (48%) normal cases and 530 (52%) effusion cases, while the test set included 121 (47%)
normal cases and 134 (53%) effusion cases. Sample X-ray images of normal and effusion
cases are shown in Figure 2.
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Figure 2. Sample X-ray images of patients with knee: (a) normal case; (b) effusion case (the red
bounding box indicates the area of effusion).

2.2. X-ray Acquisition Parameters

The X-ray images were taken in the lateral decubitus position, and detailed informa-
tion for each hospital is provided in Table 1. Due to privacy concerns, the images were
collected in the Joint Photographic Experts Group (JPEG) format, limiting the availability
of further details.
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Table 1. The demographic information and acquisition parameters of multi-center images.

Characteristics
Hospital A

(S.T.)
(n = 280)

Hospital B
(S.S.T.)

(n = 233)

Hospital C
(G.S.T.)
(n = 450)

Hospital D
(C.T. Hospital)

(n = 450)

Sex
Male 118 67 189 185

Female 162 166 261 265
Age (mean ± SD) 62 ± 4 62 ± 5 62 ± 2 63 ± 3

Number of Image (disease statue)
Normal 168 (60%) 139 (59.7%) 150 (33.3%) 150 (33.3%)

Abnormal 112 (40%) 94 (40.3%) 300 (66.7%) 300 (66.7%)
X-ray parameter

Tube potential (kVp) 60 60–70 60 60
Tube intensity (mA) 100 100 100 100

Exposure time (s) 0.125 0.300 0.125 0.125
Focus to detector distance (cm)

Supine 85 100 100 100
Erect 78 100 100 100

S.T., Sungmo Top Orthopedics; Hospital A, S.S.T., Songpa Samsung Top Orthopedics; Hospital B, G.S.T., Guro
Samaung Top Orthopedics; Hospital C, C.T. Hospital; Chungdam Top Orthopedics; Hospital D.

2.3. Methodology

We proposed a method that classifies the presence of knee effusion and enables the
visualization of the effusion area. Our proposed architecture is depicted in Figure 3.
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2.3.1. Knee Structure-Aware Image Preprocessing

To address variations in fields of view (FoV) and intensity levels caused by different
acquisition protocols across institutions, we developed a robust preprocessing strategy.
First, we addressed image intensity variations by removing background elements outside
the body using a region-growing algorithm. Second, we constructed a deep learning-based
patella detection model using the YOLO v8 [27] architecture to crop the effusion area. To
standardize each predicted bounding box (bbox) of the patella, we first aligned the center
of the bbox of all data to the average center position of the patella. Then, we rescaled the
image based on the smallest bbox in the training set. After scaling, we added zero-padding
to ensure that the image was centered. Subsequently, the image was cropped to a size of
1600 × 1600 pixels to preserve the area information of the effusion without distortion. This
process ensures a standardized input image that includes the effusion area with a uniform
size. The results of our proposed preprocessing method are shown in Supplement S2.
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2.3.2. DL Architecture

We conducted a comparative analysis of five different network models pre-trained on
ImageNet [28]: VGG19 [29], ResNet50 [30], DenseNet121 [31], EfficientNet [32], and Vision
Transformer (ViT) [33]. The input consisted of preprocessed images derived from the origi-
nal X-ray images, and the output was a continuous value between 0 and 1 representing the
probability of effusion presence. The training set (n = 1026) was divided into a development
set (n = 771, 75%) and a validation set (n = 255, 25%). For the qualitative analysis of the
classification model, we compared various class activation map (CAM) methodologies and
empirically selected Eigen-CAM [34] for its superior qualitative performance.

2.3.3. Model Specifications

This study utilized the PyTorch 2.0 framework to train a binary classification model
with CrossEntropyLoss. The model was trained for 150 epochs with a batch size of 14, a
learning rate of 0.001, and the SGD optimizer. Training was performed on an NVIDIA
RTX A5000 24GB GPU with CUDA version 11.8 and an AMD EPYC 7452 32-core processor,
sourced from COMPUWORKS Co., Seoul, Republic of Korea, and it took approximately
40 min.

2.4. Statistical Analysis

For the statistical analysis, the following software was used: R Core Team, 2024 (R:
A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna. https://www.R-project.org, accessed on 23 April 2024). DeLong’s
test [35] and McNemar’s test [36] were used to compare the performances of the two
models. A p value of less than 0.05 was considered statistically significant.

3. Results
3.1. Performance of the Classification Models

We compared the classification performances of five different deep learning models
using images without preprocessing. The DenseNet121 achieved the highest area under
the receiver operating characteristic (ROC) curve (AUC) on the validation set, and the
results are presented in Supplement S3. Therefore, we selected DenseNet121 as a baseline
classification model to analyze the impacts of our proposed method.

In the effusion classification, the proposed method showed a significantly higher AUC
(95% confidence interval [CI]) compared to the baseline DenseNet121 model, with 0.892
(0.853–0.931) versus 0.821 (0.770–0.872), with a p-value of <0.001. The sensitivities (95%
CI) were 0.820 (0.753–0.880) and 0.753 (0.686–0.835), and the specificities (95% CI) were
0.785 (0.710–0.851) and 0.776 (0.619–0.785), respectively. The results are shown in Table 2.
Figure 4 displays the ROC curves and confusion matrices.

Table 2. Comparison of each method’s performance for classification; the highest values are bold-
faced.

Metric
(±95% CI) DenseNet121 Proposed Method p-Value †

AUC 0.821
(0.770–0.872)

0.892
(0.853–0.931) <0.001

Accuracy 0.764
(0.707–0.815)

0.803
(0.749–0.850) 0.133

Sensitivity 0.753
(0.686–0.835)

0.820
(0.753–0.880) 0.052

Specificity 0.776
(0.619–0.785)

0.785
(0.710–0.851) 1.000

† p-values were calculated by DeLong’s test in AUC and McNemar’s test for the other metrics. CI, confidence
interval.

https://www.R-project.org
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3.2. Comparison with Physician Evaluation

In our study, two physicians evaluated the presence or absence of knee effusion on the
test-set radiographs. One had 7 years of experience in rehabilitation medicine and the other
had 5 years in occupational and environmental medicine. The comparison of classification
metrics and ROC curves between these physicians and our method is presented in Table 3
and Figure 5. Our method showed accuracy, sensitivity, and specificity scores of 0.803 (95%
CI, 0.749–0.850), 0.820 (95% CI, 0.753–0.880), and 0.785 (95% CI, 0.710–0.851), respectively. In
contrast, Physician 1 showed lower performance, with scores of 0.568 (95% CI, 0.505–0.630),
0.701 (95% CI, 0.626–0.776), and 0.421 (95% CI, 0.330–0.512). Physician 2 had scores of 0.568
(95% CI, 0.505–0.630), 0.723 (95% CI, 0.641–0.798), and 0.396 (95% CI, 0.314–0.479). All
metrics showed significantly better performance for the proposed method compared to the
two non-orthopedic physicians (p < 0.05).

Table 3. Comparison chart between the proposed method and physician evaluations. The highest val-
ues are bold faced (non-orthopedic physician 1: physical medicine and rehabilitation, non-orthopedic
physician 2: occupational and environmental medicine).

Metric
(±95% CI)

Proposed
Method

Non-Orthopedic

Physician 1 p-Value † Physician 2 p-Value †

Accuracy 0.803
(0.749–0.850)

0.568
(0.505–0.630) <0.001 0.568

(0.505–0.630) <0.001

Sensitivity 0.820
(0.753–0.880)

0.701
(0.626–0.776) 0.020 0.723

(0.641 –0.798) 0.048

Specificity 0.785
(0.710–0.851)

0.421
(0.330–0.512) <0.001 0.396

(0.314–0.479) <0.001

† p-values were calculated by McNemar’s test. CI, confidence interval.
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Figure 5. Comparison of physician evaluations on the ROC curve (non-orthopedic physician 1:
physical medicine and rehabilitation; non-orthopedic physician 2: occupational and environmental
medicine).

3.3. Qualitative Results of the Classification Models

By applying a trained classification model that uses a binary label to indicate the
presence of effusion, we generated Eigen-CAM images that highlight the effusion areas.
These Eigen-CAM images emphasize regions related to effusion, typically located in the
upper region of the knee joint. Figure 6 demonstrates the qualitative results, comparing
Eigen-CAM with and without the knee structure-aware preprocessing, showing where
the model identifies and emphasizes key areas using a heatmap. Additional results are
illustrated in Supplement S4, and the results of comparing different CAM methodologies
are shown in Supplement S5.
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4. Discussion

In this study, we proposed a novel method for classifying the absence or presence of
knee effusion in radiographs. By applying the proposed method, the model’s performance
significantly improved, with an AUC of 0.892 compared to 0.821 for the model without
our method. Additionally, our method significantly outperformed two non-orthopedic
physicians in terms of accuracy, sensitivity, and specificity, achieving scores of 0.803, 0.820,
and 0.785, respectively. These results demonstrate the potential of AI to facilitate the early
and accurate classification of knee effusions.

Our findings reveal that while DenseNet121 has already shown robust performance
in various clinical studies [37,38], our novel approach enhances the model’s ability to
discern the presence or absence of knee effusion in radiographs. The proposed prepro-
cessing method optimizes the input data to enhance image features important for iden-
tifying disease-specific conditions, focusing on knee regions related to effusion, such as
the patella. In X-ray images, effusion can be very subtle and difficult to detect compared
to MRI scans [10], even in patients with the disease. Therefore, it was necessary to utilize
anatomically clear body structures for more robust standardization of the images and FoV.
Accordingly, we devised a preprocessing method that detects the patella in lateral knee
X-rays to precisely locate regions where effusion is likely to occur. This enables the model
to perform more precise and accurate feature extraction and classification. Both qualita-
tive and quantitative analysis showed that the preprocessing allowed for more nuanced
interpretations of subtle clinical signs of effusion.

Currently, X-ray imaging is a major tool for the initial diagnosis of diseases due
to its relatively low cost, minimal radiation exposure, and faster acquisition time [39].
Therefore, diagnosis of knee joint disorders is widely based on X-ray images [12]. One
critical condition of knee joint disorders is effusion, which occurs outside the bones of
the knee and can indicate other abnormalities within the joint [40]. However, visually
identifying effusion in X-ray images is challenging, especially in the early stages, making
it particularly difficult for non-orthopedic physicians [41]. In our physician evaluation,
the results show that our model achieved higher diagnostic accuracy compared to non-
orthopedic physicians. This may be due to two main reasons: First, the physicians involved
in the study lacked specialized knowledge and experience in X-ray image interpretation, as
they were not orthopedic surgeons familiar with arthroscopic surgery. Second, the dataset
used in this study primarily consisted mostly of early-stage effusions, which can be more
subtle and ambiguous to diagnose. Nevertheless, the AI model provided more accurate
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diagnoses because it has a superior ability to selectively focus on, interpret, and classify the
unique patterns presented by effusions. Therefore, AI models can be used as a supportive
computer-aided diagnosis system in other departments where diagnosing knee effusion is
challenging for non-orthopedic surgeons.

Moreover, we were able to visualize the areas on which the AI model concentrated
during effusion prediction by employing Eigen-CAM. The areas highlighted by Eigen-
CAM accurately indicate the regions where effusion is present. This indicates that the
model recognizes the visual patterns associated with the features of effusion locations.
Nonetheless, effusion can be challenging to accurately capture using Eigen-CAM due to
its blurred appearance compared to surrounding tissues and the unclear structure of the
quadriceps tendon. However, Eigen-CAM emphasized the posterior quadriceps tendon
and anterior patella, indicating that the model could consider thickened or indented areas
of the femur or the synovial membrane as significant indicators. It might also consider
the condition of the suprapatellar fat pad compressed by effusion fluid as a key factor in
predicting the presence or absence of effusion. This visual interpretation offers insights into
the model’s decision-making process based on specific anatomical structures and features,
helping clinicians trust and effectively use AI predictions. Additionally, determining the
presence of effusion heavily depends on the clinician’s experience. Therefore, Eigen-CAM
can play an educational role by using visualization to help less experienced clinicians better
understand the clinical signs of effusion.

The proposed methodology demonstrates promising clinical applicability in detecting
knee effusion. This condition is closely associated with musculoskeletal pathologies,
making the diagnosis of effusion crucial. The model can be effectively utilized to diagnose
conditions related to knee joint effusion, such as OA and anterior cruciate ligament (ACL)
tears. Furthermore, the proposed preprocessing methodology could be applied to other
knee pathologies, including meniscal tears, tibial plateau fractures, ligament injuries, and
patellar disorders. Moreover, the model’s ability to focus on specific anatomical regions
suggests its potential for diagnosing effusions in other joints, such as the talus in the ankle
and the epicondyle in the elbow. This indicates that the model could be expanded into a
useful tool for diagnosing a variety of joint-related diseases.

Additionally, the inference time of the proposed method is a vital component of
this study. The proposed method performed predictions on 255 images in just 4.332 s
(0.016 s per image), indicating its capability to provide rapid and accurate diagnoses.
This rapid inference time significantly improves the clinical applicability of the model,
especially in medical environments where timely diagnosis is essential for patient care
and treatment. The AI model can provide highly accurate diagnoses in just a few seconds,
greatly supporting medical professionals and streamlining the diagnostic process. This
rapid assessment enables AI to screen patients who specifically need immediate attention
from a physician.

Our study has several limitations: First, the comparison experiment between non-
orthopedic physicians and AI involved a limited number of participants, making it difficult
to generalize if our results are representative of all non-orthopedic physicians. Additionally,
we did not conduct comparison experiments with orthopedic physicians who are experts
in diagnosing effusion. Furthermore, a reader study will be necessary to assess the clinical
utility of the developed computer-aided diagnosis system [42,43]. Second, despite utilizing
data from multiple centers, we aggregated all the data and randomly partitioned it into
training and test sets. Therefore, we did not perform external validation. To evaluate
the generalization performance of our model, we plan to establish an external validation
dataset. Our model must perform well across diverse clinical settings, including handling
knee images with features such as surgical scars or the poor-quality images that were
excluded from this study. Therefore, we aim to enhance the model’s effectiveness by testing
its performance across various clinical conditions and anatomical regions. Third, while the
Eigen-CAM provides a rough indication of the location of effusions, it does not reveal the
specific interpretable features considered by the model in making a diagnosis. Therefore,
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our future work aims to develop a model that uses a large language model (LLM) guide to
explain, in text, the reasons for diagnosing effusion or normal conditions [44,45].

5. Conclusions

This study demonstrated the capabilities of the proposed deep learning model in
diagnosing knee effusion, with significantly better performance than both the state-of-the-
art deep-learning-based model and non-orthopedic physicians. The developed computer-
aided diagnosis system based on the proposed method would greatly help in accurately
and rapidly screening patients with effusion, aided by the interpretable visualization map.
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