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Abstract: Background: This study aimed to explore how genetic variations in individuals impact
neutralization activity post-mRNA vaccination, recognizing the critical role vaccination plays in
curbing COVID-19 spread and the necessity of ensuring vaccine efficacy amidst genetic diversity.
Methods: In a 4-week clinical pilot study, 534 healthy subjects received their first COVID vaccine dose,
followed by the second dose. Antibody levels were evaluated thrice. From this pool, 120 participants
were selected and divided into high- and low-antibody groups based on their levels. Genomic DNA
was isolated from peripheral blood mononuclear cells for pilot genome-wide association studies
(GWAS) conducted on a single platform. Real-time PCR was used to confirm differences in gene
expression identified via GWAS analysis. Results: Three SNPs exceeded the level of p < 1.0 × 10−3.
The rs7795433 SNP of the HDAC9 gene (7q21.1) showed the strongest association with COVID-19
vaccination under the additive model (OR = 5.63; p = 3 × 10−5). In the PCR experiments, the AA
genotype group showed that the gene expression level of HDAC9 was likely to be decreased in the
low-antibody-formation group at the time of vaccination. Conclusion: We found that AA genotype
holders (rs7795433 SNP of the HDAC9 gene) have a high probability of having a higher antibody
count when vaccinated, and GG type holders have a high probability of the opposite. These findings
show that the genetic characteristics of vaccinated people may affect antibody production after
COVID vaccination.

Keywords: GWAS; HDAC9; COVID-19; mRNA vaccine; humoral immunity

1. Introduction

The global impact of coronavirus disease 2019 (COVID-19), resulting from severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered widespread illness
and mortality, raising concerns about global susceptibility to infectious diseases [1]. To
address this pandemic, there has been vigorous research into vaccines, and the introduction
of mRNA-based vaccines appears to be quite effective in managing it; numerous clinical
studies have shown their effectiveness in providing protection and ensuring safety [2–5].

The rapid global approval and deployment of vaccines in response to the global
pandemic marked an unprecedented effort in the fight against COVID-19 [6,7]. Despite
the success of widespread vaccine administration, variations in immune responses have
been observed among individuals [8,9]. Factors such as environmental influences, pre-
existing health conditions, and social circumstances, along with genetic factors, have been
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proposed as host-related contributors to this variability [10–12]. Within this multifaceted
landscape, our particular focus is on investigating the role of host genetic elements. This
holds significance in developing a deeper understanding of the mechanisms underlying
COVID-19 and in more clearly distinguishing modifiable factors.

Genetic polymorphisms are recognized to impact responses to both viral infections
and immunization. In fact, previous studies have revealed that with respect to conventional
vaccines, such as MMR, HBV, and influenza, the reasons for individual variations in
immune responses after vaccination can be significantly explained by differences in genetic
factors [13–16]. The influence of host genetic factors on COVID-19 infection and vaccination
is also garnering attention [17]. The human leukocyte antigen (HLA) gene, a key player
in the immune response, has the potential to influence T-cell immune responses related
to antigen presentation and the establishment of lasting immune memory [18]. Genetic
polymorphisms in HLA, based on genome-wide association studies (GWAS), have been
reported to impact the clinical progression of patients infected with RNA viruses, such
as SARS-CoV-2. Notably, HLA-DRB1*04:01, HLA-B*46:01, and HLA-C*04:01 have been
associated with severe clinical outcomes or protective effects in COVID-19 [19–21].

In spite of the active research and understanding surrounding COVID-19, our compre-
hension of host genetic factors influencing the generation and maintenance of antibodies
remains limited. Recognizing the importance of understanding the link between individual
immune genetic factors and host immune responses, we aimed to explore the genetic
factors within the Korean population that influence differences in neutralizing antibody
production after mRNA vaccination against COVID-19.

2. Materials and Methods
2.1. Study Design and Participants

This was a longitudinal study of the genetic effects on COVID-19 antibodies after
vaccination in Korean adults (Clinical Research Information Service, KCT0007342). We
recruited a total of 534 subjects who received their first COVID-19 vaccine in August 2021.
All subjects completed three visits. Written informed consent was obtained from all patients
prior to participation in accordance with the Declaration of Helsinki, and with approval
from the Institutional Review Board of Yongsebrans Hospital (IRB No. 9-2021-0101). All
subjects who received the second dose were followed up at 2 weeks and 4 weeks to
measure antibody responses. While there was no significant difference in antibody levels
between participants after the first vaccination, a notable discrepancy in antibody levels
was observed between subjects two weeks after the second vaccination. Based on this
antibody response, we created two groups: a high-antibody group and a low-antibody
group. Each group consisted of 60 subjects: the high-antibody group were the 60 patients
who showed the highest percentage increase in antibody titres two weeks after the second
dose compared to their antibody titres after the first dose; and the low-antibody group
were the 60 patients with the lowest percentage increase in antibody titers 2 weeks after the
second dose compared to their antibody titers after the first dose. Among these 120 selected
subjects, 14 subjects who received a viral-vector-based COVID-19 vaccine instead of an
mRNA COVID-19 vaccine at dose 2 were excluded, resulting in 50 subjects in the high-
antibody group and 56 subjects in the resistant group (Figure 1).

2.2. Measurement of Anthropometric and Biochemical Parameters

Participants were examined a total of three times: at baseline, i.e., after completion
of the first vaccine dose only; two weeks after the second COVID-19 vaccine dose; and
four weeks later. At each visit, weight, height, systolic blood pressure (SBP), and diastolic
blood pressure (DBP) were measured, and blood samples were taken. Participants were
weighed and measured for height in light clothing and without footwear. Heights were
recorded to the nearest 0.1 cm using a Seca 225 (SECA, Hamburg, Germany), and weights
were determined to the nearest 0.1 kg on a GL-6000-20 scale (G-tech, Seoul, Republic of
Korea). Body mass index (BMI) was subsequently calculated as the weight in kilograms
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divided by the square of height in meters (m2). SBP and DBP were recorded in the seated
position using a Heine Gamma® G7 aneroid sphygmomanometer (Heine Optotechnik,
Hessing, Germany) following at least a five-minute rest. Blood samples were taken af-
ter a minimum of 8 h of fasting and were analyzed for plasma glucose, total cholesterol,
triglycerides, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL)
cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) using
a Cobas 8000 c702 module (Roche Diagnostics, Mannheim, Germany). White blood cell
(WBC) count was measured with an XN-9000 (Sysmex Corporation, Kobe, Japan). Levels
of 25-hydroxyvitamin D (vitamin D) were assessed using the Cobas 8000 e801 module
(Roche Diagnostics). Total immunoglobulin E (IgE, reference range, ≤100 kU/L) was
quantified using the Phadia 250 (Phadia, Uppsala, Sweden). Hypertension was defined
as SBP ≥ 140 mm Hg, DBP ≥ 90 mm Hg, or current use of antihypertensive medica-
tion, and type 2 diabetes was defined as previous diagnosis of type 2 diabetes or fasting
glucose ≥126 mg/dL.
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Figure 1. Flowchart for the selection of study participants.

2.3. Detection of Virus-Specific Antibodies

Automated ECLIA tests were performed using two types of SARS-CoV-2 antibody
kits on the Cobas 8000 e801 module (Roche Diagnostics, Mannheim, Germany). The
Elecsys Anti-SARS-CoV-2 assay uses a recombinant protein representing the nucleocapsid
(N) antigen for the qualitative detection of antibodies to SARS-CoV-2, with the results
interpreted as negative for anti-SARS-CoV-2 antibodies if the cut-off index (COI) is less
than 1.0 and as positive if it is 1.0 or higher. The Elecsys Anti-SARS-CoV-2 S assay uses
a recombinant protein representing the receptor-binding domain (RBD) of the spike (S)
protein for the quantitative determination of antibodies to SARS-CoV-2, with results below
0.80 U/mL considered negative and results of 0.80 U/mL or above considered positive.
Surrogate virus neutralization tests (sVNT) were performed using the cPass SARS-CoV-2
neutralization antibody detection kit (GenScript, Piscataway, NJ, USA) in conjunction with
the SpectraMax 190 microplate reader (Molecular Devices, San Jose, CA, USA). This reader,
optimized for DNA analysis in a 96-well format, also excels in the accurate quantification
of enzyme-linked immunosorbent assays (ELISA). It uses a photometric system capable
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of detecting low concentrations of biological samples, ensuring accurate measurement
of neutralizing antibodies against SARS-CoV-2. Results were interpreted as percentage
inhibition (%inhibition) based on OD450 intensity. The manufacturer-recommended cut-off
of ≥30% signal reduction was used to indicate the presence of anti-SARS-CoV-2 neutralizing
antibodies. All %inhibition results were converted to IU/mL of the WHO International
Standard using an Excel-based conversion tool [22]. The upper limit of the measurable
range was 97.57% inhibition (or 3002 IU/mL). All tests were processed according to the
manufacturer’s instructions.

2.4. Genome-Wide Association Study

The genomic DNA used in this study was isolated from peripheral blood mononu-
clear cells. A pilot GWAS was performed using a Theragen Precision Medicine Research
Array (PMRA array), a customized array based on the Asian Precision Medicine Research
Array, to genotype study subjects (cases) and controls on a single platform (Thermo Fisher
Scientific, Waltham, MA, USA). From the resulting data, markers with Hardy–Weinberg
equilibrium p-values less than 10−6, totaling 20,071; genotype call rates less than 97%, total-
ing 251,155; and minor allele frequencies (MAF) of 0.01, totaling 210,965, were sequentially
discarded. This left 301,925 SNPs available for subsequent analysis. We then performed
principal component analysis (PCA) to identify the first principal component (PC1) and the
second principal component (PC2), which explained most of the variation in the data (see
Supplementary Figure S1).

2.5. Real-Time PCR

cDNA was synthesized using the ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan)
according to the manufacturer’s recommendations. PCR reactions were performed on a
QuantStudio 12K Flex ( https://www.thermofisher.com/order/catalog/product/4472048)
Real-Time PCR System (ThermoFisher, Waltham, MA, USA) in 384-well plates with a total
volume of 10 µL per reaction. The reaction mixture included Universal Master Mix, dNTPs,
MgCl2, and AmpliTaq Gold from Applied Biosystems with 0.5 µL of a 20× TaqMan Assay
for the HDAC9 gene (assay ID: Hs01081558_m1; Applied Biosystems, Waltham, MA, USA).
GAPDH was used as an internal control using the TaqMan Human GAPDH Assay (assay
ID: Hs99999905_m1; Applied Biosystems, Waltham, MA, USA). Each reaction mixture also
contained 2 µL of template cDNA and 2.5 µL of distilled water. Amplification conditions
were set to an initial denaturation at 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for
15 s and 60 ◦C for 1 min. Each sample was amplified in triplicate, and data analysis was
performed using QuantStudio 12K Flex software.

2.6. Statistical Analysis

The association between case–control status and individual SNPs was assessed using
odds ratios (ORs) and p-values. Multivariate adjustment was performed using two models:
Model 1 included age, gender, and body mass index (BMI) as covariates; while Model 2
extended Model 1 by including vaccine type and the first and second principal components
(PC1 and PC2) derived from principal component analysis. We conducted logistic regres-
sion analyses using PLINK (ver. 1.9, NIH-NIDDK’s Laboratory of Biological Modeling,
the Purcell Lab, and others). Locus plots were generated for genome-wide significant loci
using LocusZoom (ver. v0.4.8, University of Michigan, Department of Biostatistics, Center
for Statistical Genetics [23] ).

2.7. Power Calculation

Adjusted for an assumed α of 0.05 and a power of 0.8, we performed power and
sample size calculations for genetic association studies while considering the potential
impact of mis-specifying the genetic model. We employed the genpwr package within the
R statistical program for this analysis [24–26]. We defined the true genetic model as an
additive model, reflecting the genuine relationship between genotype and the outcome
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variable. Additionally, we specified a ‘Test’ model to indicate how the genetic effect would
be encoded for the purpose of statistical testing. Consequently, the number per group was
determined to be 32 in Model 1 and 25 in Model 2 (refer to Supplementary Table S1). Finally,
the number of subjects in each group was determined to be 60 in consideration of various
conditions, such as papers on similar research topics, the statistical subject calculation
process, and securing blood samples from the subjects [27].

3. Results
3.1. Population Characteristics

For this study, a total of 534 participants who received two doses of the COVID-
19 vaccine were recruited and stratified into either a high-antibody group (n = 60) or a
low-antibody group (n = 60) in a 1:1 ratio based on their neutralizing antibody titers (anti-
N-Ab). To eliminate the effects of vaccine type differences, individuals who received a viral
vector vaccine at either dose (n = 14) were excluded from the analysis. Table 1 shows the
baseline characteristics of the subjects in each group. The high- and low-antibody groups
had comparable characteristics with respect to age, the presence of diabetes, and rates of
hypertension. Measures of fasting plasma glucose, total cholesterol, liver enzymes, vitamin
D, and IgE were not significantly different between the groups. However, participants
in the low-antibody group had lower rates of obesity and lower white blood cell (WBC)
counts than those in the high-antibody group. Figure 2 illustrates the typical pattern of
antibody response: anti-N-Ab was generated after the first vaccine dose, with a significant
increase observed for two weeks after the second dose. Antibody levels declined from their
peak until four weeks after the second dose.

Table 1. Baseline characteristics of the study population according to antibody level.

High Ab Low Ab p-Value

N 50 56
Age, years 45.9 ± 8.1 46.9 ± 7.5 0.489
Sex (male, %) 24 (48.0) 33 (58.9) 0.035
Body mass index, kg/m2 26.4 ± 4.3 23.9 ± 3.1 0.001
Glucose, mg/dL 95.6 ± 19.1 99.5 ± 15.9 0.256
Total cholesterol, mg/dL 182.4 ± 48.7 187.0 ± 40.0 0.597
Triglyceride, mg/dL 118.5 (80.2–203.7) 127.5 (66.7–196.5) 0.482
HDL cholesterol, mg/dL 47.6 ± 15.6 54.2 ± 14.4 0.024
LDL cholesterol, mg/dL 119.1 ± 42.0 119.1 ± 38.6 0.990
Ig E 69.4 (26.1–170.7) 47.0 (18.9–102.0) 0.055
Vitamin D 21.4 (16.5–26.9) 19.8 (13.9–23.3) 0.430
WBC ( ×103 L) 6.24 ± 1.62 5.65 ± 1.31 0.040
AST (IU/L) 28.9 ± 10.2 22.5 ± 9.7 0.166
ALT (IU/L) 26.7 ± 18.0 24.2 ± 16.8 0.463
Comorbid condition, n (%)
Hypertension, (%) 6 (12.0) 5 (8.9) 0.604
Diabetes, (%) 4 (8) 4 (7.1) 0.867
Neutralizing Ab Titer
First vaccination 342.3 ± 269.0 92.7 ± 168.7 0.001
Second vaccination 2935.2 ± 334.3 2044.0 ± 857.9 0.001
4 Weeks later 2837.9 ± 410.3 1373.3 ± 707.1 0.001
Vaccination, n (%)
First dose Second dose 0.001
Moderna Moderna 29 (58.0) 12 (21.4)
Pfizer Pfizer 21 (42.0) 44 (78.6)

Data are expressed as the mean ± SD or percentage. p-values were calculated using the independent two sample
t-test or the chi-squared test.
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3.2. GWAS Results

We used logistic regression analysis to identify statistically significant associations with
COVID-19 vaccination. Unfortunately, none of the GWAS results achieved conventional
genome-wide significance (p < 5 × 10−8). Therefore, we applied the study-wise criteria
(p < 0.001), and 80 SNPs passed this study criteria with adjustment for three factors (age,
gender, body mass index). As shown as Table 2, the rs7795433 SNP of the HDAC9 gene
(7q21.1) showed the strongest association with COVID-19 vaccination under additive
model (OR = 5.63; p = 3 × 10−5). Genotype and allele frequencies of rs7795433 were
analyzed within the antibody groups (1 = high-antibody; 0 = low-antibody). As a result
of the analysis, it was found that the high-antibody group had a large distribution of AA
genotype or A allele; and on the contrary, the low-antibody group had a large distribution
of the GG genotype or G allele.

Table 2. Top 10 SNPs identified in the genome-wide association study for low- and high-antibody
production following COVID-19 vaccination.

Model 1 Model 2

Chr a Gene BP b SNP c Minor
Allele MAF OR

(L95–U95) d p-Value OR
(L95–U95) d p-Value

7 HDAC9 18833779 rs7795433 G 0.48 5.63
(2.51–12.65) 3 × 10−5 6.99

(2.74–17.87) 5 × 10−5

8 MSC-AS1 71979513 rs10111413 A 0.50 0.24
(0.12–0.47) 5 × 10−5 0.21

(0.09–0.47) 1 × 10−4

7 HDAC9 18828330 rs6951522 C 0.47 5.18
(2.37–11.36) 4 × 10−5 6.76

(2.69–16.96) 5 × 10−5

7 HDAC9 18838251 rs2073963 G 0.48 5.14
(2.35–11.24) 4 × 10−5 6.24

(2.53–15.37) 7 × 10−5

4 NDST4/MIR1973 115308340 rs118002192 C 0.13 0.12
(0.04–0.38) 4 × 10−4 0.17

(0.05–0.60) 6 × 10−3
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Table 2. Cont.

Model 1 Model 2

Chr a Gene BP b SNP c Minor
Allele MAF OR

(L95–U95) d p-Value OR
(L95–U95) d p-Value

11 HTR3A 113984620 rs1176717 A 0.21 0.23
(0.10–0.54) 7 × 10−4 0.31

(0.12–0.79) 1 × 10−2

7 AUTS2 70660723 rs17141963 T 0.47 0.20
(0.17–0.63) 8 × 10−4 0.26

(0.12–0.59) 1 × 10−3

7 HDAC9 18837993 rs957958 G 0.50 4.42
(2.12–9.22) 8 × 10−5 5.04

(2.20–11.56) 1 × 10−4

6 LOC105377862 3491893 rs7742726 C 0.36 3.73
(1.69–8.25) 1 × 10−3 3.58

(1.52–8.44) 4 × 10−3

7 HDAC9 18837785 rs957960 A 0.47 5.02
(2.29–11.00) 6 × 10−5 6.23

(2.51–15.45) 8 × 10−5

a Chromosome. b Base pair. c Top SNPs with p-values less than 1 × 10−3 in the analysis after adjustment for
age and sex. d Odds ratios (ORs) and confidence interval. Usually, the lead SNP in each locus is reported after
pruning with MAF. Covariants: Model 1: age, sex, BMI; Model 2: age, sex, BMI, vaccine type, PC1, PC2.

3.3. Sample Distribution and Allele Frequency by Genotype of HDAC9 SNP (rs7795433)

As shown in Table 3, we analyzed the genotype and allele frequencies within the
antibody groups (1 = high-antibody; 0 = low-antibody). The high-antibody group had
a lot of AA genotypes or A alleles; whereas the low-antibody group had a lot of GG
genotypes or G alleles. Through this result, we found that AA genotype holders have a
high probability of having an antibody higher when vaccinated, and GG type holders have
a high probability of the opposite.

Table 3. Individual or allelic proportion of HDAC9 SNP (rs7795433) in the high- and low-antibody
production groups, respectively.

Antibody Production
rs7795433 Genotype rs7795433 Allele

AA GA GG Total (n) A G Total (n)

High (%) Group A Group B Group C Effect Alle Non-Effect Alle
16 (32%) 26 (52%) 8 (16%) 50 58 (58%) 42 (42%) 100

Low (%)
Group D Group E Group F
12 (21%) 30 (54%) 14 (25%) 56 54 (48%) 58 (52%) 112

3.4. Real-Time PCR Analysis of HDAC9 SNP (rs7795433)

Table 4 describes the average delta ct (PCR ct value corresponding to the relative
expression level, comparing the expression levels of the candidate gene Hdac9 and the
house keeping gene GAPDH gene) for each sample. The higher the average delta value, the
higher the ct value, which means that the PCR pick appears late, meaning that the amount
of HDAC9 in the initial sample is low. The AA genotype group showed that the gene
expression level of HDAC9 was likely to be decreased in the low-antibody-formation group
at the time of vaccination. However, in this result, it is judged that a large amount of RNAs
were decomposed because the samples for the RNA seq were tested in a frozen state. As a
result, the average ct value of blood samples for GAPDH expression were 16–17; whereas
in this study, a high ct value of above 35 was observed. This is an important limitation of
this study, meaning that the real-time PCR results should only be used as reference values
and not as the main results of this study.
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Table 4. Analysis of the relative expression of HDAC9 genes between high- and low-antibody
production groups within the same genotype group.

Average Delta ct per Sample (Hdac9–GapDH)

AA GA GG
MM Mm mm

Group A Group B Group C
R374 4.088497 R082 5.982103 R035 NA
R434 4.125577 R362 4.662499 R391 NA
R503 3.808289 R436 5.774843 R498 4.644077

Group D Group E Group F
R501 5.253894 R038 6.569895 R360 4.760575
R383 5.220209 R386 6.568871 R365 4.2658
R471 4.61415 R415 6.731386 R504 4.924133

Average Delta ct for Each Group (Hdac9–GapDH)

MM Mm mm
Group A Group B Group C

Mean and SD 4.007454 0.173476 5.473148 0.70965 4.644077 0
Group D Group E Group F

Mean and SD 5.029417 0.360026 6.623384 0.093534 4.650169 0.342772

Relative Quantitative Comparison between Each Group

A vs. D B vs. E C vs. F
MM Mn mm

Delta delta CT −1.02196 −1.15024 −0.00609
RQ Ct (relative quantification) 2.03068 2.219501 1.004232

t-test p-value 0.011429 0.04965 0.09891

4. Discussion

In this study, we divided individuals into high- and low-antibody titers after SARS-
CoV-2 vaccination and conducted a GWAS to analyze genetic differences. The results
revealed the most significant difference in the HDAC9 gene’s SNP rs7795433, identifying it
as a promising candidate gene influencing antibody production differences. Additionally,
when examining the allele frequency of the HDAC9 SNP, the A allele and A allele carriers
(AA + GA) were more likely to be in the high-antibody group, while the G allele and G allele
carriers (GA + GG) were more likely to be in the low-antibody group. Furthermore, RT-
PCR was performed on three individuals from each AA, GA, GG genotype, and antibody
group to confirm HDAC9 gene expression differences. The results show that in the high-
antibody group, the AA genotype had the highest expression, while in the low-antibody
group, the GG genotype had the highest expression. This suggests an association between
better antibody production and the AA genotype. Additionally, when comparing antibody
groups within the same genotype, significant differences in HDAC9 gene expression were
observed, with AA (p = 0.011) and GA (p = 0.049) genotypes showing significantly higher
expression in the high0antibody group compared to the low-antibody group. This implies
that higher HDAC9 activity may contribute to increased antibody production.

Histone deacetylases (HDACs) are enzymes crucial for maintaining chromatin balance
by counteracting histone acetyltransferases, thereby regulating gene transcription [28].
They facilitate the removal of acetyl groups from lysine residues present on histones as well
as non-histone proteins, leading to the effective suppression of gene transcription. This
process of epigenetic modification serves to uphold genomic stability, thereby securing
the meticulous progression of cell development and differentiation [29]. The eighteen
mammalian HDACs presently recognized are grouped into four classes according to their
similarities in structure, enzymatic functions, and intracellular positions [30].

HDAC inhibitors, recognized as potent epigenetic regulators, have gained significant
attention in drug discovery, particularly in the context of cancer [31–33]. This stems from
the recognition that modulating epigenetic alterations is considered an effective therapeutic
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approach for cancer, aiming to regulate aberrant transformations. Studies have indicated
anti-tumor effects, such as the inhibition of cell growth and differentiation, reduction in
angiogenesis, and induction of cell apoptosis, when commonly overexpressed HDACs
in cancer are inhibited [34–36]. Several HDAC inhibitors have been approved for cancer
therapy, primarily demonstrating efficacy in hematological malignancies but yielding less-
satisfactory results in the treatment of solid tumors [37,38]. Moreover, HDAC inhibitors
have also been revealed to play a role in the anti-inflammatory aspect. This fact has, in turn,
expanded clinical research beyond cancer treatment to autoimmune diseases, infectious
diseases, and more [39,40]. This can be easily understood, considering that the immune
processes occurring in the host in response to cancer may be similar in the context of
inflammation [41].

Recently, initial compounds have functioned as non-specific HDAC inhibitors, prompt-
ing ongoing research focused on developing inhibitors tailored to the 18 HDAC subtypes.
This emphasis stems from recognizing the role of differentiated HDACs in tissue-specific
transcriptional control, and the awareness that non-specific HDAC inhibitors may result
in undesirable side effects [42]. Our study has established the immunological relevance
of HDAC9, which belongs to Class IIa. HDAC9 is frequently overexpressed in cancer
cells, rendering it a significant target in cancer therapy research [43,44]. Furthermore, it
is associated with the onset of chronic diseases such as cardiovascular diseases, autoim-
mune diseases, osteoporosis, liver fibrosis, and obesity [45,46]. Therefore, the modulation
of HDAC9, either through inhibition or activation, emerges as a promising avenue for
therapeutic intervention in various diseases. In the human hematopoietic system, HDAC9
is predominantly expressed in cells of monocytic and lymphoid lineages [42]. HDAC9
plays a role in various immune responses, including the activation of antiviral innate im-
munity, aligning with our research findings. HDAC9 directly engages with TANK-binding
kinase 1 (TBK1), amplifying TBK1 activity to trigger the innate immune antiviral response.
Upon exposure to innate immune stimuli, DNA methyltransferase 3A (Dnmt3a) in naïve
peritoneal macrophages increases the expression of HDAC9, consequently enhancing host
responses [47].

Ripamonti et al. investigated the role of HDAC6 inhibitors in immunity against
SARS-CoV-2 [48]. Excessive activation of innate immunity in COVID-19 leads to the
overproduction of inflammatory cytokines, resulting in a severe disease course [49]. In
this regard, HDAC6 inhibitors were found to reduce cytokine release, decrease T cell
exhaustion, and contribute to innate immune cell memory processes, potentially providing
therapeutic benefits in severe COVID-19 cases. On the other hand, a study exploring
how HDAC inhibition affects SARS-CoV-2 infection in mesothelial cells revealed that
blocking HDAC1-3 actually boosts SARS-CoV-2 cell entry, replication, and production [50].
Additionally, another investigation on a different RNA virus, influenza A virus, showed
that suppressing HDAC6 activity leads to an elevated virus titer [51]. HDAC6 belongs
to HDAC class IIb, while HDAC1-3 is part of class I, and HDAC9, which is in class IIa,
encompasses all zinc-dependent members of the largest family of HDACs [52]. Despite
their shared characteristics, each class has unique chemical attributes and tissue-specific
behaviors. Therefore, insights gained from these previous studies on other classes can aid
in understanding the role of HDAC9 identified in this research.

To sum up, the key implication drawn is the necessity for a precise understanding and
control of HDAC. While most drugs targeting HDAC have functioned as inhibitors, concen-
trating on pathological conditions where gene overexpression is a therapeutic target [53,54],
our findings reveal that HDAC can contribute positively to the immune response at suit-
able expression levels, and inhibition might be detrimental [50,51]. This emphasizes the
significance of delving into and managing the appropriate expression level and emphasizes
the requirement for a precise comprehension of each specific class of HDAC, given its
pervasive impact on the entire body.

Our study has several limitations. First, we could not establish causality. Additionally,
the findings may not be generalizable to diverse ethnic populations. The selected SNP
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might not fully represent the entire HDAC9 gene. The lead SNP (rs7795433) is located in the
intron region of HDAC9, and there is a notable high recombination rate observed around
the SNP cluster. Although there are other genes around the lead SNP, such as TWIST1
and FERD3L, considering the known gene functions, it is presumed that the HDAC9 gene
played an important role in immune function related to antibody production. The absence
of whole-genome or whole-exome sequencing limits the discovery of other influential genes.
Moreover, this study is constrained by not selecting high- and low-antibody groups from a
larger population. Lastly, individuals who had contracted COVID-19 were excluded during
the study to mitigate the impact of potential natural infections on antibody concentration
after vaccination. Consequently, the actual efficacy difference in COVID-19 prevention
could not be assessed. Nevertheless, our study is significant in identifying candidate
gene HDAC9, which is associated with differences in antibody production after COVID-
19 mRNA vaccination, focusing on the Korean population. Furthermore, by observing
higher HDAC9 gene expression in the high-antibody group within the same gene, we
have confirmed that the degree of HDAC9 expression can influence differences in antibody
generation after vaccination. This information is considered crucial for future vaccine
administration planning and personalized immune management.

5. Conclusions

The HDAC9 gene has been identified to play a role in antibody generation after
COVID-19 vaccination, with a higher likelihood of increased antibody production in the AA
allele group. These findings have the potential not only to inform individual vaccination
schedules for future cases of COVID-19 but also to contribute to the development of
therapeutic interventions as epigenetic modulators.
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